Consider the following 25 data points (so save retyping, this list is also on the website as a text link)

8.26 6.33 10.4 5.27 5.35 5.61 6.12 6.19 5.2 7.01 8.74 7.78 7.02
6 6.5 5.8 5.12 7.41 6.52 6.21 12.28 5.6 5.38 6.6 5.38 6.6 8.74

Using this data

1: Using a randomization test, what is the p value for a test that the mean $= 8$?

2: What is the jackknife estimate, its standard error, and the approximate confidence intervals for the estimated skew,

$$\hat{S}_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3$$

3: Using 1000 bootstrap samples, consider an estimate of the scaled kurtosis,

$$\hat{K} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 - 3 \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^2$$

(a) Plot the distribution of bootstrap values

(b) What is the estimated bias and the standard deviation for \hat{K}?

(c) Using the results for (a), what is an approximate 95% (normally-assumption) confidence interval for K?

(d) Compute Efron’s 95% confidence limit for this data.

(e) Compute Hall’s 95% confidence limit for this data.

Fun R fact. If x is a vector of data, then the R command `sample(x, replace=T)` returns a sampling with replacement vector of the data in c, i.e., a bootstrap sample.