Recall that properties of the generalized inverse A^- of the matrix A are discussed on pages 183 - 187 for the notes on general linear models.

In \mathbb{R}, the command for the generalized inverse of a matrix X is given by $\text{ginv}(X)$. This function is in the package MASS, which must be loaded first. Hence, one type use the command library(MASS) at the beginning of your computer run to load this program, and then you can call ginv to your hearts content.

1: Consider following system of equations:

$$4x_1 + 3x_2 + 6x_3 = 6$$
$$2x_1 + 6x_2 + 2x_3 = 4$$

(a) Write this in matrix form, $Ax = y$.
(b) Compute a generalized inverse A^- of A.
(c) Recalling that a g-inverse satisfies $AA^-A = A$, use R to compute AA^-A. Does this equal A?
(d) What is one solution to these equation (e.g., compute $x = A^-y$).
(e) Recall that a consistent system of equations satisfies $AA^-y = y$. Is our system consistent?
(f) Use R to compute $I - A^-A$
(g) Recall that for a consistent system, all solutions can be written as $x = A^-y + (I - A^-A)c$, where c is any vector of constants. What is the family of solutions for this equation?