1: Data was measured on 50 individuals for arm size \((x) \) and brain size \((y) \), with the following results:

\[
\bar{x} = 10, \quad \bar{y} = 50, \quad 50 \sum_{i=1}^{50} (x_i - \bar{x})^2 = 100, \quad 50 \sum_{i=1}^{50} (y_i - \bar{y})^2 = 400, \quad 50 \sum_{i=1}^{50} (x_i - \bar{x})(y_i - \bar{y}) = 175
\]

(a) Compute the variances of \(x \) and \(y \), their covariance, and their correlation.

\[
\text{Var}(x) = \frac{100}{49} = 2.04, \quad \text{Var}(y) = \frac{400}{49} = 8.16, \quad \text{Cov}(x, y) = \frac{175}{49} = 3.57
\]

\[
\text{Corr}(x, y) = \frac{3.57}{\sqrt{2.04} \cdot \sqrt{8.16}} = 0.88
\]

(b) What is the best linear regression of arm size \((x) \) on brain size \((y) \)?

\[
b_{x \mid y} = \frac{3.57}{8.16} = 0.44, \quad a = \bar{x} - b_{x \mid y} \bar{y} = 10 - 0.44 \cdot 50 = -11.88
\]

Hence, the regression is \((\text{Arm size}) = -11.88 + 0.44(\text{Brain size}) \)

(c) What is the best linear regression of brain size \((y) \) on arm size \((x) \)?

\[
b_{y \mid x} = \frac{3.57}{2.04} = 1.75, \quad a = \bar{y} - b_{y \mid x} \bar{x} = 50 - 1.75 \cdot 10 = 32.58
\]

Hence, the regression is \((\text{Brain size}) = 32.50 + 1.75(\text{Arm size}) \)

(d) What fraction of the total variance in brain size does the regression account for?

Fraction of the total variance explained by the regression is the squared correlation, or

\[
0.88^2 = 0.766
\]

2: Use the properties of covariances to show that \(E[(x - \mu_x)^2] = E[x^2] - \mu_x^2 \).

\[
E[(x - \mu_x)^2] = E[x^2 - 2\mu_x x + \mu_x^2] = E[x^2] - 2\mu_x E[x] + \mu_x^2 = E[x^2] - 2\mu_x^2 + \mu_x^2 = E[x^2] - \mu_x^2
\]

3: What is the covariance between a particular data point \((x_i) \) and the sample mean \(\bar{x} \)?

\[
\sigma\left(x_i, \frac{1}{n} \sum_{j=1}^{n} x_j \right) = \frac{1}{n} \sum_{j=1}^{n} \sigma(x_i, x_j) = \frac{\sigma^2(x_i)}{n} + \frac{1}{n} \sum_{j \neq i} \sigma(x_i, x_j)
\]

4: Assuming the appropriate normality assumptions, compute the 95% confidence intervals for \(\sigma^2_x \) and \(\sigma^2_y \) using the data in (1). (Hint: Use R to obtain the appropriate \(\chi^2 \) values).

Since \(\sum_{i=1}^{n}(x_i - \bar{x})^2 \approx \sigma^2_x \chi^2_{n-1} \), it follows that

\[
\sum_{i=1}^{n}(x_i - \bar{x})^2 / \sigma^2_x \sim \chi^2_{n-1}
\]

Define \(\chi^2_n(\alpha/2) \) as satisfying

\[
\Pr(\chi^2_n < \chi^2_n(\alpha/2)) = \alpha/2 \quad \text{so that} \quad \Pr(\chi^2_n > \chi^2_n(1 - \alpha/2)) = \alpha/2
\]
Thus the upper cutoff for σ^2_x in an $(1 - \alpha)$ confidence interval of σ^2_x satisfies

$$\Pr \left(\frac{\sum^n (x_i - \bar{x})^2}{\sigma^2_x} \leq \chi^2_n(\alpha/2) \right) \quad \text{or} \quad \sigma^2_x \leq \frac{\sum^n (x_i - \bar{x})^2}{\chi^2_n(\alpha/2)}$$

The lower cutoff follows similarly, giving the $(1 - \alpha)$ confidence interval of σ^2_x as

$$\frac{\sum^n (x_i - \bar{x})^2}{\chi^2_{n-1}(1 - \alpha/2)} \leq \sigma^2_x \leq \frac{\sum^n (x_i - \bar{x})^2}{\chi^2_{n-1}(\alpha/2)}$$

For a 95% confidence interval, $\alpha = 0.05$. Hence we seek the value X such that $\Pr(\chi^2_{49} \leq X) = 0.0975$. From R, `qchisq(0.975, 49)` returns 70.22 and hence $\chi^2_{49}(0.975) = 70.22$.

Likewise `qchisq(0.025, 49)` returns 31.56 and hence $\chi^2_{49}(0.025) = 31.56$. Thus the 95% confidence interval for σ^2_x is $1.42 \leq \sigma^2_x \leq 3.17$ (note this confidence interval is not symmetric around the sample variance). Likewise, the interval for σ^2_y is $5.68 \leq \sigma^2_y \leq 12.68$.