Distributions of Functions of Normal Random Variables
Version 27 Jan 2004

The Unit (or Standard) Normal

The unit or standard normal random variable U is a normally distributed variable with mean zero and variance one, i.e. $U \sim \mathcal{N}(0, 1)$. Note that if $x \sim \mathcal{N}(\mu, \sigma^2)$ that

$$
\frac{x - \mu}{\sigma} \sim U \sim \mathcal{N}(0, 1)
$$

(1)

Thus to simulate a normal random variable with mean μ and variance σ^2, we can simply transform unit normals, as

$$
x \sim \mu + \sigma U \sim \mathcal{N}(\mu, \sigma^2)
$$

(2)

Consider n independent random variables $x_i \sim \mathcal{N}(\mu, \sigma^2)$, then $\bar{x} \sim \mathcal{N}(\mu, \sigma^2/n)$, and this

$$
\frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim U \sim \mathcal{N}(0, 1)
$$

(3)

Example 1. Let’s construct a 95% confidence interval for the mean μ for Equation (3). First, let’s use R to compute a value $U_{0.975}$ such that $\Pr(U \leq U_{0.975}) = 0.975$. In R, typing the command `qnorm(0.975)` returns 1.96. Likewise, `qnorm(0.025)` returns −1.96 and hence $\Pr(U \leq -1.96) = 0.025$. Hence,

$$
\Pr(-1.96 \leq U \leq 1.96) = 0.95
$$

Recalling Equation (3),

$$
\Pr(-1.96 \leq U \leq 1.96) = \Pr \left(-1.96 \leq \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \leq 1.96 \right)
$$

Rearranging gives

$$
\Pr \left(-1.96\sigma/\sqrt{n} \leq \bar{x} - \mu \leq 1.96\sigma/\sqrt{n} \right)
$$

or

$$
\Pr \left(-\bar{x} - 1.96\sigma/\sqrt{n} \leq -\mu \leq -\bar{x} + 1.96\sigma/\sqrt{n} \right)
$$
which can also be written as
\[
Pr \left(\bar{x} - 1.96\sigma / \sqrt{n} \leq \mu \leq \bar{x} + 1.96\sigma / \sqrt{n} \right) = 0.95
\]
giving a 95% confidence interval for the mean \(\mu \).

Central and Noncentral \(\chi^2 \) Distributions

The \(\chi^2 \) distribution arises from sums of squared, normally distributed, random variables — if \(x_i \sim \mathcal{N}(0, 1) \), then \(u = \sum_{i=1}^{n} x_i^2 \sim \chi^2_n \), a central \(\chi^2 \) distribution with \(n \) degrees of freedom. It follows that the sum of two \(\chi^2 \) random variables is also \(\chi^2 \) distributed, so that if \(u \sim \chi^2_n \) and \(v \sim \chi^2_m \), then
\[
u + v \sim \chi^2_{(n+m)} \tag{4a}
\]
Two other useful results are that if \(x_i \sim \mathcal{N}(0, \sigma^2) \), then
\[
\sum_{i=1}^{n} x_i^2 \sim \sigma^2 \cdot \chi^2_n \tag{4b}
\]
and for \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \),
\[
\sum_{i=1}^{n} (x_i - \bar{x})^2 \sim \sigma^2 \cdot \chi^2_{(n-1)} \tag{4c}
\]
In this last case, subtraction of the mean causes the loss of one degree of freedom. Note that a special case of Equation (4c) is the sample estimate of the variance,
\[
\text{Var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
so that
\[
(n - 1)\text{Var}(x) \sim \sigma^2 \cdot \chi^2_n, \quad \text{implying} \quad \frac{(n - 1)\text{Var}(x)}{\sigma^2} \sim \chi^2_n \tag{4d}
\]

Example 2. We can use Equation (4d) to construct a confidence interval on the true variance \(\sigma^2 \) given the sample variance \(\text{Var}(x) \), provided the \(x_i \) are drawn from independent normals with the same mean and variance \(\sigma^2 \).
First, recall that the R command `qchisq(p, df)` returns a value X such that $\Pr(\chi^2_{df} \leq X) = p$. Suppose sample size is $n = 20$. Since $qchisq(0.975, 19)$ returns a value of 32.85 and $qchisq(0.025, 19)$ returns 8.91, we have

$$\Pr(8.91 \leq \chi^2_{19} \leq 32.85) = 0.95$$

From Equation 4d,

$$\Pr(8.91 \leq \chi^2_{19} \leq 32.85) = \Pr \left(8.91 \leq \frac{(n-1)\text{Var}(x)}{\sigma^2} \leq 32.85 \right)$$

Noting that for

$$\Pr(a \leq x \leq b) = \Pr \left(\frac{1}{a} \geq \frac{1}{x} \geq \frac{1}{b} \right)$$

we have

$$\Pr \left(8.91 \leq \frac{19\text{Var}(x)}{\sigma^2} \leq 32.85 \right) = \Pr \left(\frac{1}{8.91} \geq \frac{\sigma^2}{19\text{Var}(x)} \geq \frac{1}{32.85} \right)$$

or

$$\Pr \left(\frac{19\text{Var}}{8.91} \geq \sigma^2 \geq \frac{19\text{Var}}{32.85} \right) = 0.95$$

or

$$\Pr \left(2.13\text{Var} \geq \sigma^2 \geq 0.58\text{Var} \right) = 0.95$$

giving the 95% confidence interval on the variance as 0.58Var to 2.13Var.

A noncentral χ^2 arises when the random variables being considered have nonzero means. In particular, if $x_i \sim N(\mu_i, 1)$, then $u = \sum_{i=1}^{n} x_i^2$ follows a noncentral χ^2 distribution with n degrees of freedom and noncentrality parameter

$$\lambda = \sum_{i=1}^{n} \mu_i^2 \quad \text{ (5a)}$$

and we write $u \sim \chi^2_{n, \lambda}$. As shown in Figure 1, increasing the noncentrality parameter λ shifts the distribution to the right. This is also seen by considering the mean and variance of u,

$$E(u) = n + \lambda \quad \text{and} \quad \sigma^2(u) = 2(n + 2\lambda) \quad \text{ (5b)}$$
4 Functions of Normal Random Variables

It follows directly from the definition that sums of noncentral χ^2 variables also follows a noncentral χ^2 distribution, so that if $u \sim \chi^2_{n, \lambda_1}$ and $v \sim \chi^2_{m, \lambda_2}$, then

$$(u + v) \sim \chi^2_{(n+m), (\lambda_1 + \lambda_2)} \quad (5c)$$

Finally, Equations 4b,c can be generalized to noncentral χ^2 random variables as follows. Suppose $x_i \sim N(\mu_i, \sigma^2)$, then

$$\sum_{i=1}^{n} x_i^2 \sim \sigma^2 \cdot \chi^2_{n, \lambda} \quad \text{where} \quad \lambda = \sum_{i=1}^{n} \frac{\mu_i^2}{\sigma^2} \quad (5d)$$

Turning the distribution of $\sum_{i=1}^{n} (x_i - \bar{x})^2$, defining

$$\lambda^* = \sum_{i=1}^{n} \frac{(\mu_i - \bar{\mu})^2}{\sigma^2}, \quad \text{where} \quad \bar{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mu_i$$

then

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 \sim \sigma^2 \cdot \chi^2_{n, \lambda^*} \quad (5e)$$

Note that if all the x_i have the same mean ($\mu_i = \mu = \bar{\mu}$), $\lambda^* = 0$ and the χ^2 is central, while if there is some variance in the means of the x_i, then distribution is a noncentral χ^2.

R provides commands for quantities of interest with noncentral χ^2 distributions.

- **qchisq(p, df, ncp)** returns a value X such that $P(\chi^2_{df, ncp} \leq X) = p$
Functions of Normal Random Variables

- `pchisq(X, df, ncp)` returns the probability that $\Pr(\chi^2_{df,ncp} \leq X)$
- leaving out the field for `ncp` returns these values for a central χ^2.

Student’s t Distribution

If $x \sim N(\mu, \sigma^2)$, then for Equation 2, we have $(\bar{x} - \mu)/(\sigma/\sqrt{n}) \sim N(0, 1)$, which allows for both hypothesis testing and construction of confidence intervals when σ^2 is known. When the variance is unknown, the above test statistic replaces the true (but unknown) variance σ^2 with the sample variance $\text{Var}(x)$,

$$t = \frac{\bar{x} - \mu}{\sqrt{\text{Var}/n}} \quad (6)$$

Notice that

$$t = \left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \right) \left(\frac{1}{\sqrt{\text{Var}/\sigma^2}} \right) = \frac{U}{\sqrt{\chi^2_{n-1}/(n-1)}}$$

Thus, we define a t distributed random variable with ν degrees of freedom by

$$t_\nu = \frac{U}{\sqrt{\chi^2_{\nu}}/\nu} \quad (7a)$$

A t random variable has mean zero and variance

$$\sigma^2(t_\nu) = 1 + \frac{2}{\nu - 2} \quad \text{for} \quad \nu > 2 \quad (7b)$$

The coefficient of kurtosis is $k_4 = \frac{6}{\nu - 4}$, implying that the t distribution has heavier tails than a normal.

The noncentral Student’s t distribution is defined as follows: If $x \sim N(\mu_0, \sigma^2)$, but we assume the correct mean is μ, then

$$t_{\nu, \lambda} = \frac{\bar{x} - \mu}{\sqrt{\text{Var}/n}}$$

is distributed as a noncentral t random variable with $n - 1$ degrees of freedom and noncentrality parameter $\lambda = (\mu - \mu_0)/\sigma$.

Central and Noncentral F Distributions

The ratio of two χ^2-distributed variables leads to the F distribution. In particular, if $u \sim \chi^2_n$ and $v \sim \chi^2_m$, then the ratio of these two χ^2 variables divided by their respective degrees of freedom follows a central F distribution with numerator and denominator degrees of freedom n and m (respectively), i.e., $(u/n)/(v/m) \sim F_{n,m}$. Since

$$\lim_{m \to \infty} F_{n,m} \to \frac{\chi^2_n}{n}$$
the F distribution can be approximated by a χ^2_n when the denominator degrees of freedom is large.

R provides commands for quantities of interest for F distributions.

- \texttt{qf(p, df1, df2)} returns a value X such that $\Pr(F_{df1,df2} \leq X) = p$
- \texttt{pf(X, df1, df2)} returns the probability that $\Pr(F_{df1,df2} \leq X)$

The \textbf{noncentral F distribution} results when the numerator χ^2 variable is noncentral. If $u \sim \chi^2_{n,\lambda}$ and $v \sim \chi^2_{m}$, then $F = (u/n)/(v/m)$ follows a noncentral F distributed with noncentrality parameter λ, and we write $F \sim F_{n,m,\lambda}$. As with the noncentral χ^2, increasing λ shifts the distribution further to the right. Again, this is seen in the mean and variance, with

\[
E(F) = \frac{n}{m-2} \left(1 + \frac{2\lambda}{n} \right) \quad (A5.16a)
\]

\[
\sigma^2(F) = 2 \left(\frac{m}{n} \right)^2 \left[\frac{(n+m)^2 + (n+2\lambda)(m-2)}{(m-2)^2(m-4)} \right] \quad (A5.16b)
\]

R provides commands for quantities of interest for noncentral F distributions.
- \texttt{pf(X, df1, df2, ncp)} returns the probability that $\Pr(F_{df1,df2,ncp} \leq X)$
- the obvious command \texttt{qf(p, df1, df2, ncp)} does not work, as the same value is returned for all values of \texttt{ncp}.