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The major difference between QTL analysis using inbred-line crosses vs. outbred populations is that
while the parents in the former are genetically uniform, parents in the latter are genetically variable.
This distinction has several consequences. First, only a fraction of the parents from an outbred
population are informative. For a parent to provide linkage information, it must be heterozygous at
both a marker and a linked QTL, as only in this situation can a marker-trait association be generated
in the progeny. Only a fraction of random parents from an outbred population are such double
heterozygotes. With inbred lines, F1’s are heterozygous at all loci that differ between the crossed
lines, so that all parents are fully informative. Second, there are only two alleles segregating at
any locus in an inbred-line cross design, while outbred populations can be segregating any number
of alleles. Finally, in an outbred population, individuals can differ in marker-QTL linkage phase,
so that an M-bearing gamete might be associated with QTL allele Q in one parent, and with q in
another. Thus, with outbred populations, marker-trait associations must be examined separately for
each parent. With inbred-line crosses, all F1 parents have identical genotypes (including linkage
phase), so one can simply average marker-trait associations over all offspring, regardless of their
parents.

Before considering the variety of QTL mapping methods for outbred populations, some com-
ments on the probability that an outbred family is informative are in order. A parent is marker-
informative if it is a marker heterozygote, QTL-informative if it is a QTL heterozygote, and simply
informative if it is both. Unless both the marker and QTL are highly polymorphic, most parents will
not be informative. Given the need to maximize the fraction of marker-informative parents, classes
of marker loci successfully used with inbred lines may not be optimal for outbred populations. For
example, SNPs are widely used in inbred lines, but these markers are typically diallelic and hence
have modest polymorphism (at best). Microsatellite marker loci (STRs), on the other hand, are
highly polymorphic and hence much more likely to yield marker-informative individuals.

Table 10.1 Types of marker-informative matings.

Fully informative: MiMj ×MkM`

Parents are different marker heterozygotes.

All offspring are informative in distinguishing alternative alleles from both parents.

Backcross: MiMj ×MkMk

One parent is a marker heterozygote, the other a marker homozygote.

All offspring informative in distinguishing heterozygous parent’s alternative alleles.

Intercross: MiMj ×MiMj

Both parents are the same marker heterozygote.

Only homozygous offspring informative in distinguishing alternative parental alleles.

Note: Here i, j, k, and ` index different marker alleles.
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As shown in Table 10.1, there are three kinds of marker-informative crosses. With a highly
polymorphic marker, it may be possible to examine marker-trait associations for both parents. With
a fully (marker) informative family (MiMj ×MkM`) all parental alleles can be distinguished, and
both parents can be examined by comparing the trait values in Mi– vs. Mj– offspring and Mk–
vs. M`– offspring. With a backcross family (MiMj × MkMk), only the heterozygous parent can
be examined for marker-trait associations. Finally, with an intercross family (MiMj × MiMj),
homozygous offspring (MiMi, MjMj) are unambiguous as to the origin of parental alleles, while
heterozygotes are ambiguous, because allele Mi (Mj) could have come from either parent.

In designing experiments, it is useful to estimate the fraction of families expected to be marker-
informative. One measure of this is the polymorphism information content, or PIC, of the marker
locus,

PIC = 1−
n∑
i=1

p2
i −

n−1∑
i=1

n∑
j=i+1

2 p2
i p

2
j ≤

(n− 1)2(n+ 1)
n3

(10.1)

which is the probability that one parent is a marker heterozygote and its mate has a different genotype
(i.e., a backcross or fully informative family, but excluding intercross families). In this case, we can
distinguish between the alternative marker alleles of the first parent in all offspring from this cross.
The upper bound (given by the right hand side of Equation 10.1) occurs when all marker alleles are
equally frequent, pi = 1/n.

QTL Mapping Using Sib Families

One can use family data to search for QTLs by comparing offspring carrying alternative marker
alleles from the same parent. Consider half-sibs, where the basic linear model is a nested ANOVA,
with marker effects nested within each sibship,

zijk = µ+ si +mij + eijk (10.2)

where zijk denotes the phenotype of the kth individual of marker genotype j from sibship i, si is the
effect of sire i,mij is the effect of marker genotype j in sibship i (typically, j = 1, 2 for the alternative
sire marker alleles), and eijk is the within-marker, within-sibship residual. It is assumed that s, m,
and e have expected value zero, are uncorrelated, and are normally distributed with variances σ2

s

(the between-sire variance), σ2
m (the between-marker, within-sibship variance), and σ2

e (the residual
or within-marker, within-sibship variance). A significant marker variance indicates linkage to a
segregating QTL, and is tested by using the statistic

F =
MSm
MSe

(10.3)

Assuming normality, Equation 10.3 follows an F distribution under the null hypothesis that σ2
m = 0.

Assuming a balanced design with N sires, each with n/2 half-sibs in each marker class, Equation
10.3 has N and N(n− 2) degrees of freedom.

For a balanced design, the mean squares have expected values of

E( MSm ) = σ2
e + (n/2)σ2

m and E( MSe ) = σ2
e (10.4)

where

σ2
m =

E(MSm)− E(MSe)
n/2

= (1− 2c)2 σ
2
A

2
(10.5)

Thus, an estimate of the QTL effect (measured by its additive variance σ2
A, scaled by the distance c

between QTL and marker), can be obtained from the observed mean squares.
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One immediate drawback of measuring a QTL effect by its variance in an outbred population
is that even a completely linked QTL with a large effect can nonetheless have a small σ2

m. Consider
a strictly additive diallelic QTL with allele frequency p, where σ2

A = 2a2p(1− p). Even if a is large,
the additive genetic variance can still be quite small if the QTL allele frequencies are near zero or
one. An alternative way of visualizing this relationship is to note that the probability of a QTL-
informative sire is 2p(1 − p). If this is small, even if a is large, σ2

A will be small, as most families
will not be informative. In those rare informative families, however, the between-marker effect is
large. Contrast this to the situation with inbred-line crosses, where the QTL effect estimates 2a (as
opposed to σ2

m), since here all families are informative, rather that the fraction 2p(1 − p) seen an
outbred population.

One approach for increasing power is the granddaughter design (Weller et al. 1990), under
which each sire produces a number of sons that are genotyped for sire marker alleles (Figure 10.1),
and the trait values for each son are taken to be the mean value of the traits in offspring from the son
(rather than the direct measures of the son itself). This design was developed for milk-production
characters in dairy cows, where the offspring are granddaughters of the original sires. The linear
model for this design is

zijk` = µ+ gi +mij + sijk + eijk` (10.6)

where gi is the effect of grandsire i, mij is the effect of marker allele j (= 1, 2) from the ith sire, sijk
is the effect of son k carrying marker allele j from sire i, and eijk` is the residual for the `th offspring
of this son. Sire marker-allele effects are halved by considering granddaughters (as opposed to
daughters), as there is only a 50% chance that the grandsire allele is passed from its son onto its
granddaughter. However, this reduction in the expected marker contrast is usually more than
countered by the smaller standard error associated with each contrast due to the large number of
offspring used to estimate trait value.

Marker
genotyping

Progeny
testing

Sons (half sibs)

Granddaughters

Sire

Figure 10.1 The granddaughter design of Weller et al. (1990). Here, each sire produces a number of half-sib
sons that are scored for the marker genotypes. The character value for each son is determined by progeny
testing, with the trait value being scored in a large number of daughters (again half-sibs) from each son.

General Pedigree Methods

Likelihood models can also easily be developed for QTL mapping using sib families. These explicitly
model the transmission of QTL genotypes from parent to offspring, requiring estimation of QTL
allele frequencies and genotype means (as well as assumptions about the number of segregating
alleles). While this approach can be extended to multigenerational pedigrees, the number of possible
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combinations of genotypes for individuals in the entire pedigree increases exponentially with the
number of pedigree members, and solving the resulting likelihood functions becomes increasingly
more difficult. An alternative is to construct likelihood functions using the variance components
associated with a QTL (or linked group of QTLs) in a genetic region of interest, rather than explicitly
modeling all of the underlying genetic details. This approach allows for very general and complex
pedigrees. The basic idea is to use marker information to compute the fraction of a genetic region
of interest that is identical by descent between two individuals. Recall that two alleles are identical
by descent, or ibd, if we can trace them back to a single copy in a common ancestor.

Consider the simplest case, in which the genetic variance is additive for the QTLs in the region
of interest as well as for background QTLs unlinked to this region. Under this model, an individual’s
phenotypic value is decomposed as

zi = µ+Ai +A∗i + ei (10.7)

where µ is the population mean, A is the contribution from the chromosomal interval being ex-
amined, A∗ is the contribution from QTLs outside this interval, and e is the residual. The random
effects A, A∗, and e are assumed to be normally distributed with mean zero and variances σ2

A, σ2
A∗ ,

and σ2
e . Here σ2

A and σ2
A∗ correspond to the additive variances associated with the chromosomal

region of interest and background QTLs in the remaining genome, respectively. We assume that
none of these background QTLs are linked to the chromosome region of interest so that A and A∗

are uncorrelated, and we further assume that the residual e is uncorrelated with A and A∗. Under
these assumptions, the phenotypic variance is σ2

A + σ2
A∗ + σ2

e .
Assuming no shared environmental effects, the phenotypic covariance between two individuals

is
σ(zi, zj) = Rij σ

2
A + 2Θij σ

2
A∗ (10.8)

whereRij is the fraction of the chromosomal region shared ibd between individuals i and j, and 2Θij

is twice Wright’s coefficient of coancestry (i.e., 2Θij = 1/2 for full sibs). For a vector z of observations
on n individuals, the associated covariance matrix V can be expressed as contributions from the
region of interest, from background QTLs, and from residual effects,

V = Rσ2
A + Aσ2

A∗ + Iσ2
e (10.9a)

where I is the n× n identity matrix, and R and A are matrices of known constants,

Rij =
{

1 for i = j

R̂ij for i 6= j
, Aij =

{
1 for i = j

2Θij for i 6= j
(10.9b)

The elements of R contain the estimates of ibd status for the region of interest based on marker
information, while the elements of A are given by the pedigree structure.

The resulting likelihood is a multivariate normal with mean vector µ (all of whose elements
are µ) and variance-covariance matrix V,

`( z |µ, σ2
A, σ

2
A∗ , σ

2
e ) =

1√
(2π)n |V|

exp
[
−1

2
(z− µ)T V−1 (z− µ)

]
(10.10)

This likelihood has four unknown parameters (µ, σ2
A, σ2

A∗ , and σ2
e ). A significant σ2

A indicates the
presence of at least one QTL in the interval being considered, while a significant σ2

A∗ implies back-
ground genetic variance contributed from QTLs outside the focal interval. Both of these hypotheses
can be tested by likelihood-ratio tests (using σ2

A = 0 and σ2
A∗ = 0, respectively).
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Haseman-Elston Regressions

Starting with Haseman and Elston (1972), human geneticists have developed a number of methods
for detecting QTLs using pairs of relatives as the unit of analysis. The idea is to consider the number
of alleles identical by descent (ibd) between individuals for a given marker. If a QTL is linked to
the marker, pairs sharing ibd marker alleles should also tend to share ibd QTL alleles and hence are
expected to be more similar than pairs not sharing ibd marker alleles. This fairly simple idea is the
basis for a large number of relative-pair methods (often referred to as allele sharing methods).

Haseman and Elston regress (for each marker) the squared difference Yi = (zi1 − zi2)2 in trait
value in two relatives on the proportion πim of alleles ibd at the marker of interest,

Yi = a+ βπim + e (10.11)

Here the slope β and intercept a depend on the type of relatives and the recombination fraction c.
For full sibs,

β = −2 (1− 2c)2 σ2
A (10.12)

A significant negative slope provides evidence of a QTL linked to the marker, with the power of
this test scaling with (1− 2c)2 and σ2

A. The expected slopes for other pairs of relatives are

β =


−2 (1− 2c)σ2

A grandparent–grandchild;
−2 (1− 2c)2 σ2

A half-sibs;
−2 (1− 2c)2 (1− c)σ2

A avuncular (aunt/uncle–nephew/niece).

(10.13)

The Haseman-Elston test is quite simple: for n pairs of the same type of relatives, one regresses
the squared difference of each pair on the fraction of alleles ibd at the marker locus. A significant
negative slope for the resulting regression indicates linkage to a QTL. This is a one-sided test, as the
null hypothesis (no linkage) is β = 0 versus the alternative β < 0.

There are several caveats with this approach. First, different types of relatives cannot be mixed in
the standard H-E test, requiring separate regressions for each type of relative pair. This procedure
can be avoided by modifying the test by using an appropriately weighted multiple regression.
Second, parents and their offspring share exactly one allele ibd and hence cannot be used to estimate
this regression, as there is no variability in the predictor variable. Finally, QTL position (c) and
effect (σ2

A) are confounded and cannot be separately estimated from the regression slope β. Thus,
in its simplest form, the H-E method is a detection test rather than an estimation procedure. This
conclusion is not surprising, given that the H-E method is closely related to the single-marker linear
model. Estimation of c and σ2

A is possible by extending the H-E regression by using ibd status of
two (or more) linked marker loci to estimate πjt.

Affected Sib Pair Methods

When dealing with a dichotomous (i.e., presence/absence) character, pairs of relatives can be clas-
sified into three groups: pairs where both are normal, singly affected pairs with one affected and
one normal member, and doubly affected pairs. The first and last pairs are also called concordant,
while pairs that differ are called discordant. The motivation behind relative-pair tests is that if
a marker is linked to a QTL influencing the trait, concordant and discordant pairs should have
different distributions for the number of ibd marker alleles.

In addition to being much more robust than ML methods for dichotomous characters, relative-
pair tests also have the advantage of selective genotyping in that pairs are usually chosen so that at
least one member is affected. The pairs of relatives considered are usually full sibs, and a number
of variants of these affected sib-pair, or ASP, methods have been proposed. Most of these are
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detection tests, rather than estimation procedures, as they cannot provide separate estimates of
QTL effects and position. While our attention focuses on full-sib pairs, this basic approach can
easily be applied to any pair of relatives, provided there is variability in the number of ibd alleles.
(This excludes parent-offspring pairs, as these share exactly one allele ibd.) Most affected sib-pair
tests have the basic structure of comparing the observed ibd frequencies (or some statistic based
on them) of doubly affected pairs with either their expected values under no linkage or with the
corresponding values in singly affected pairs. There are many possible tests based on this idea and
most, it seems, have made their way into the literature. We consider three here.

Among those ni pairs with i affected members (i = 0, 1, 2), let pij denote the frequency of such
pairs with j ibd marker alleles (j = 0, 1, 2). From the binomial distribution, the estimator p̂ij has
mean pij and variance pij (1−pij)/ni. One ASP test is based on p̂22, the observed frequency of doubly
affected pairs that have two marker alleles ibd. Under the assumption of no linkage, p̂22 has mean 1/4
(as full sibs have a 25% chance of sharing both alleles ibd) and variance (1/4)(1−1/4)/n2 = 3/(16n2),
suggesting the test

T2 =
p̂22 − 1/4√

3
16n2

(10.14a)

For a large number of doubly affected pairs, T2 is approximately distributed as a unit normal under
the null hypothesis of no linkage. This test is one-sided, as p22 > 1/4 under linkage.

An alternative approach is to consider statistics that employ the mean number of ibd marker
alleles, pi1 +2 pi2. Under the hypothesis of no linkage, this has expected value 1 ·(1/2)+2 ·(1/4) = 1
and variance [ 12 · (1/2) + 22 · (1/4) ]− 12 = 1/2. For doubly affected pairs, the test statistic becomes

Tm =
√

2n2 ( p̂21 + 2 p̂22 − 1 ) (10.14b)

which again for large samples is approximately distributed as a unit normal and is a one-sided test,
as p21 + 2 p22 > 1 under linkage.

Finally, maximum likelihood-based goodness-of-fit tests can be used (Risch 1990b,c). In keeping
with the tradition of human geneticists, ML-based tests usually report LOD (likelihood of odds)
scores in place of the closely related likelihood ratio (LR). (Recall that 1 LR = 4.61 LOD.) Here the
data are n20, n21, and n22, the number of doubly affected sibs sharing zero, one, or two marker
alleles ibd, with the unknown parameters to estimate being the population frequencies of these
classes ( p20, p21, p22). The MLEs for these population frequencies are given by p̂2i = n2i/n2. The
LOD score for the test of no linkage becomes

MLS = log10

[
2∏
i=0

(
p̂2i

π2i

)n2i
]

=
2∑
i=0

n2i log10

(
p̂2i

π2i

)
(10.15)

where π2i is the probability that the pair of doubly affected sibs shares i alleles ibd in the absence
of linkage to a QTL. (For full sibs, π20 = π22 = 1/4, π21 = 1/2.) The test statistic given by Equation
10.15 is referred to as the maximum LOD score, or MLS, with a score exceeding three being taken
as significant evidence for linkage (Risch 1990b, Morton 1955b).

An alternative formulation for the MLS test is to consider each informative parent separately,
simply scoring whether or not a doubly affected sib pair shares a marker allele from this parent. This
approach generates 0 (match, both affected sibs share the allele) or 1 (no match) ibd data. Under
the null hypothesis of no linkage, each state (0 or 1) has probability 1/2, and the MLS test statistic
becomes

MLS = (1− n1) log10

(
1− p̂1

1/2

)
+ n1 log10

(
p̂1

1/2

)
(10.16)

where n1 and p1 are, respectively, the number and frequency of sibs sharing the parental allele. This
method has the advantage that sibs informative for only one parental marker can still be used. Using
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this approach, Davies et al. (1994) did a genome-wide search (also commonly called a genomic scan)
for markers linked to DS genes influencing human type 1 diabetes. Among doubly affected sibs,
one marker on chromosome 6, D6S273, had 92 pairs sharing parental alleles and 31 pairs not sharing
parental alleles. A second marker on the opposite end of this chromosome, D6S415, had 74 pairs
sharing parental alleles and 60 not sharing alleles. The MLS scores for these two markers are

MLS(D6S273) = 31 · log10

(
2 · 31
123

)
+ 92 · log10

(
2 · 92
123

)
= 6.87

MLS(D6S415) = 60 · log10

(
2 · 60
134

)
+ 74 · log10

(
2 · 74
134

)
= 0.32

Thus, the first marker shows significant evidence of linkage, while the second does not. Translating
these LOD scores into LR values (the latter being distributed as a χ2 with one degree of freedom)
gives LR = 4.61 · 6.87 = 31.6 (P < 0.001) for D6S273 and LR = 4.61 · 0.32 = 1.47 (P = 0.2) for D6S415.

Association Mapping

All of the above methods require know collections of relatives. This can be a problem to obtain,
especially if very large pedigrees are needed. Further, fine-mapping can be difficult because we
need (on average) 100 relatives to see a single recombination event between two markers separated
by 1 cM. Hence, even if the QTL has a large effect, very large family sizes are still needed to obtain
the number of recombinants required for fine mapping.

An alternative approach that is starting to become popular with very high density maps is
Association mapping. Here, one collects a large random set of individuals form the population
and relies on linkage disequilibrium between very closely linked genes to do the mapping.

Fine-mapping Major Genes Using LD

The simplest approach for using LD to map genes of large effect proceeds as follows. Suppose a
disease allele is either present as a single copy (and hence associated with a single chromosomal
haplotype) in the founder population or arose by mutation very shortly after the population was
formed. Assume that there is no allelic heterogeneity, so that all disease-causing alleles in the
population descend directly from the original mutation, and consider a marker locus tightly linked
to the disease locus. The probability that a disease-bearing chromosome has not experienced re-
combination between the disease susceptibility (DS) gene and marker after t generations is just
(1−c)t ' e−c t, where c is the marker-DS recombination frequency. Suppose the disease is predomi-
nantly associated with a particular haplotype, which presumably represents the ancestral haplotype
on which the DS mutant arose. Equating the probability of no recombination to the observed pro-
portion π of disease-bearing chromosomes with this predominant haplotype gives π = (1 − c)t,
where t is the age of the mutation or the age of the founding population (whichever is more recent).
Hence, one estimate of the recombination frequency is

c = 1− π1/t (10.17)

Example

Hästbacka et al. (1992) examined the gene for diastrophic dysplasis (DTD), an autosomal recessive
disease, in Finland. A total of 18 multiplex families (showing two or more affected individuals)
allowed the gene to be localized to within 1.6 cM from a marker locus (CSF1R) using standard
pedigree methods. To increase the resolution using pedigree methods requires significantly more
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multiplex families. Given the excellent public health system in Finland, however, it is likely that
the investigators had already sampled most of the existing families. As a result, the authors turned
to LD mapping.

While only multiplex families provide information under standard mapping procedures, this
is not the case with LD mapping wherein single affected individuals can provide information.
Using LD mapping thus allowed the sample size to increase by 59. A number of marker loci were
examined, with the CSF1R locus showing the most striking correlation with DTD. The investigators
were able to unambiguously determine the haplotypes of 152 DTD-bearing chromosomes and 123
normal chromosomes for the sampled individuals. Four alleles of the CSF1R marker gene were
detected. The frequencies for these alleles among normal and DTD chromosomes were found to be:

Chromosome type

Allele Normal DTD
1-1 4 3.3% 144 94.7%
1-2 28 22.7% 1 0.7%
2-1 7 5.7% 0 0%
2-2 84 68.3% 7 4.6%

Given that the majority of DTD-bearing chromosomes are associated with the rare 1-1 allele
(present in only 3.3% of normal chromosomes), the authors suggested that all DTD-bearing chromo-
somes in the sample descended from a single ancestor carrying allele 1-1. Since 95% of all present
DTD-bearing chromosomes are of this allele, π = 0.95. The current Finnish population traces back
to around 2000 years to a small group of founders, which underwent around t = 100 generations of
exponential growth. Using these estimates of π and t, Equation 10.17 gives an estimated recombi-
nation frequency between the CSF1R gene and the DTD gene as c = 1− (0.95)1/100 ' 0.00051. Thus,
the two genes are estimated to be separated by 0.05 cM, or about 50 kb (using the rough rule for
humans that 1 cM = 106 bp). Subsequent cloning of this gene by Hästbacka et al. (1994) showed it
be to 70 kb proximal to the CSF1R marker locus. Thus, LD mapping increased precision by about
34-fold over that possible using segregation within pedigrees (0.05 cM vs. 1.6 cM).

Population Structure and the Transmission/Disequilibrium Test

When considering genetic disorders, the frequency of a particular candidate (or marker) allele in
affected (or case) individuals is often compared with the frequency of this allele in unaffected (or
control) individuals. The problem with such association studies is that a disease-marker association
can arise simply as a consequence of population structure, rather than as a consequence of linkage.
Such population stratification occurs if the total sample consists of a number of divergent popula-
tions (e.g., different ethnic groups) which differ in both candidate-gene frequencies and incidences
of the disease. Population structure can severely compromise tests of candidate gene associations,
as the following example illustrates.

Segregation analysis gave evidence for a major gene for Type 2 diabetes mellitus segregating at high
frequency in members of the Pima and Tohono O’odham tribes of southern Arizona. In an attempt
to map this gene, Knowler et al. (1988) examined how the simple presence/absence of a particular
haplotype, Gm+, was associated with diabetes. Their sample showed the following associations:

Gm+ Total subjects % with Diabetes

Present 293 8%
Absent 4,627 29%
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The resulting χ2 value (61.6, 1 df) shows a highly significant negative association between the Gm+

haplotype and diabetes, making it very tempting to suggest that this haplotype marks a candidate
diabetes locus (either directly or by close linkage).

However, the presence/absence of this haplotype is also a very sensitive indicator of admixture
with the Caucasian population. The frequency of Gm+ is around 67% in Caucasians as compared to
< 1% in full-heritage Pima and Tohono O’odham. When the authors restricted the analysis to such
full-heritage adults (over age 35 to correct for age of onset), the association between haplotype and
disease disappeared:

Gm+ Total subjects % with Diabetes

Present 17 59%
Absent 1,764 60%

Hence, the Gm+ marker is a predictor of diabetes not because it is linked to genes influencing diabetes
but rather because it serves as a predictor of whether individuals are from a specific subpopulation.
Gm+ individuals usually carry a significant fraction of genes of Caucasian extraction. Since a gene
(or genes) increasing the risk of diabetes appears to be present at high frequency in individuals
of full-blooded Pima/Tohono O’odham extraction, admixed individuals have a lower chance of
carrying this gene (or genes).

The problem of population stratification can be overcome by employing tests that use family
data, rather than data from unrelated individuals, to provide the case and control samples. This
is done by considering the transmission (or lack thereof) of a parental marker allele to an affected
offspring. Focusing on transmission within families controls for association generated entirely
by population stratification and provides a direct test for linkage provided that a population-wide
association between the marker and disease gene exists.

The transmission/disequilibrium test, or TDT, compares the number of times a marker al-
lele is transmitted (T ) versus not-transmitted (NT ) from a marker heterozygote parent to affected
offspring. Under the hypothesis of no linkage, these values should be equal, and the test statistic
becomes

χ2
td =

(T −NT )2

(T +NT )
(10.18)

which follows a χ2 distribution with one degree of freedom. How are T and NT determined?
Consider an M/m parent with three affected offspring. If two of those offspring received this parent’s
M allele, while the third received m, we score this as two transmitted M, one not-transmitted M.
Conversely, if we are following marker m instead, this is scored as one transmitted m, two not-
transmitted m. As the following example shows, each marker allele is examined separately under
the TDT.

Example: Mapping Type 1 Diabetes

Copeman et al. (1995) examined 21 microsatellite marker loci in 455 human families with Type
1 diabetes. One marker locus, D2S152, had three alleles, with one allele (denoted 228) showing
a significant effect under the TDT. Parents heterozygous for this marker transmitted allele 228 to
diabetic offspring 81 times, while transmitting alternative alleles only 45 times, giving

χ2 =
(81− 45)2

(81 + 45)
= 10.29

which has a corresponding P value of 0.001. As summarized below, the other two alleles (230 and
240) at this marker locus did not show a significant TD effect.
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Allele T NT χ2 P

228 81 45 10.29 0.001
230 59 73 1.48 0.223
240 36 24 2.40 0.121

Hence, this marker is linked to a QTL influencing Type 1 diabetes, with allele 228 in (coupling)
linkage disequilibrium with an allele that increases the risk for this disease.
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Lecture 10 Problems

1. Consider an outbred population. The allele frequencies at a marker are
freq(M ) = 0.3 and freq(M ) = 0.7, while the allele frequencies at a QTL are
freq(Q) = 0.1 and freq(q) = 0.9.

a: What is the probability that a random individual is marker-informative?

b: What is the probability that a random individual is QTL-informative?

c: What is the probability that a random individual is informative (assume, in
the population, that the marker and QTL are in linkage equilibriumm)?

d: How many individuals do you need to sample to have a 90% chance that
at least one is informative?

2. Suppose two marker loci (m andn) are being followed in a group of affected-
sib pairs. Marker 1 has three alleles (m1, m2, and m3) while marker two has
two allles (n1, n2). For these alleles, the following share/not share numbers
were found

Marker Allele Share Not Share
m1 30 25
m2 40 10
m3 25 30
n1 33 30
n2 35 38

What do these data say about linkage (if any) to a disease gene?
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Solutions to Lecture 10 Problems

1. a. 2 · 0.3 · 0.7 = 0.42

b. 2 · 0.1 · 0.9 = 0.18

c. 0.42 · 0.18 = 0.0756

d. Prob(Not informative) = 1 − 0.0756 = 0.9244. Prob(n individuals all not
informative = 0.9244n. Prob(at least one informative individual) = 1− 0.9244n.
Solve form n in 1− 0.9244n = 0.9, or 0.9244n = 0.1, or

n = log(0.1)/ log(0.9244) = 29.2

2.

MLS(m1) = 30 · log10

(
2 · 30

55

)
+ 25 · log10

(
2 · 25

55

)
= 0.099

MLS(m2) = 50 · log10

(
2 · 50

60

)
+ 10 · log10

(
2 · 10

60

)
= 6.23

MLS(m3) = 25 · log10

(
2 · 25

55

)
+ 30 · log10

(
2 · 30

55

)
= 0.099

MLS(n1) = 33 · log10

(
2 · 33

63

)
+ 30 · log10

(
2 · 30

63

)
= 0.030

MLS(n2) = 35 · log10

(
2 · 35

73

)
+ 38 · log10

(
2 · 38

73

)
= 0.027

Hence, only linkage to marker allele m2 is significant. This suggests that the
disease allele is in linkage disequilibrium with allele m2
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