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Lecture 7
Correlated Characters

Bruce Walsh. July 2005. Asian Institute on Statistical Genetics

Genetic and Environmental Correlations

Many characters are positively or negatively correlated at the level of phenotype (e.g., height and
weight, forearm length and digit span) and we can directly measure the phenotypic correlation, rP ,
between two traits X and Y .

As the following (path) diagram indicates, the phenotypic correlation rP between two traits is
generated by correlations between the genetic (rA) and/or environmental (rE) values of X and Y .
In the figure, double-headed arrows imply possible correlations between variables.

rA = correlation of breeding values arises from two sources

• pleiotropic effects of loci on both traits; correlation from pleiotropy indicates the extent
to which the character is controlled by the same genes

• linkage disequilibrium, which will decay over time

rE = correlation of environmental deviations

• includes non-additive genetic effects

• arises from exposure of the two traits to the same individual environment

Recall (Lecture 3) that the correlation between X and Y equals r = cov(X,Y )/σXσY . Rearranging,
we can express the covariance as

cov(X,Y ) = r σX σY

Therefore
covP = rP σXP σY P , covA = rA σXA σY A, covE = rE σXE σY E (7.1)

The covariance of phenotypic values = the sum of the genetic and environmental covariances:

covP = covA + covE

so that
rP σXP σY P = rA σXA σY A + rE σXE σY E (7.2)

describes the relationship between phenotypic, genetic and environmental correlations.
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This expression can be simplified somewhat. First, define hX and hY as the square roots of the
heritabilities of characters X and Y , with

h =
σA
σP

, σA = hσP

Likewise define e2 = 1− h2

e2 =
σ2
E

σ2
P

, e =
√

1− h2 =
σE
σP

, σE = eσP (7.3)

Substituting σA = hσP and σE = eσP into equation (7.2) gives

rP = hX hY rA + eX eY rE

= rA hX hY + rE

√
(1− h2

x)(1− h2
Y ) (7.4)

Hence, the phenotypic correlation is a function of the heritabilities of the traits and the genetic and
environmental correlations. If heritabilities are high, the genetic correlation is more important; if
heritabilities are low, the environmental correlation is more important. In practice, phenotypic and
genetic correlations often have the same sign and are of similar magnitude, but this is not always
the case.

Estimating the Genetic Correlation

Methods for estimating rA and rE are analogous to estimating heritabilities from resemblance be-
tween relatives. The difference is that with a single trait, the covariance between the trait value
in two relatives provides an estimate of the additive genetic variance of that trait, while with two
traits, the covariance of trait X in one relative and trait Y in the other provides an estimate of the
additive genetic covariance between the two traits.

Half sibs

The covariance of traits X and Y between sires = covXY = (1/4)covA

The variance between sires of trait X = σ2
SX = (1/4)σ2

AX

The variance between sire of trait Y = σ2
SY = (1/4)σ2

AY

Therefore, rA = covXY /(σSXσSY )

Offspring-parent

The covariance of trait X in the offspring with trait Y of the parents

cov(XO, YP ) = (1/2)covAX ,AY (7.5a)

The covariance of trait X in the offspring with trait X of the parents

cov(XO, XP ) = (1/2)σ2
AX (7.5b)

The covariance of trait Y in the offspring with trait Y of the parents

cov(YO, YP ) = (1/2)σ2
AY (7.5c)

Hence,

rA =
cov(XO, YP )√

cov(XO, XP ) · cov(YO, YP )
(7.5d)

Estimates of genetic correlation have very large sampling errors, typically requiring extremely large
experiments for precise estimates.
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Genotype-environment interaction and the cross-environment genetic correlation

If a character is measured in two environments, it can be considered as two characters (e.g., X in
environment one, Y in environment two). By rearing families in both environments, it is possi-
ble to estimate the genetic correlation between these ”characters”. The magnitude of this cross-
environment correlation reflects the extent to which the same genes control the character in each
environment.

Example: Genetic correlations within and between environments in a seed beetle
(data courtesy of F. Messina)

Females from each of 94 half-sib families of seed beetles (Callosobruchus maculatus) were placed in
petri dishes which either contained or lacked seeds. The total number of eggs laid and longevity
in days were recorded for each beetle (N = 4,408). From the data, four genetic correlations can
be estimated: the correlations between fecundity and longevity within each treatment, and the
correlations of longevity and fecundity across treatments.

Trait 1 Trait 2 Genetic correlation S.E.
Fecundity, seeds present Longevity, seeds present 0.35* (0.16)
Fecundity, seeds absent Longevity, seeds absent -0.44* (0.19)
Fecundity, seeds present Fecundity, seeds absent 0.76*** (0.10)
Longevity, seeds present Longevity, seeds absent 0.44* (0.18)

(* P < 0.05; ***P < 0.001)

The scatter plots below show estimated breeding values for each of the 94 sires. These and the above
genetic correlation estimates were obtained by REML using SAS (Messina and Fry, unpublished).

Fecundity and longevity showed a significant positive genetic correlation when seeds were present,
but the correlation was negative when seeds were absent. Thus, these genetic correlations changed
over environments.
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Correlated Response to Selection

When characters are genetically correlated, selection solely on one will result in a correlated change
in the second. Such a change in the unselected character is called a correlated response.

We compute the expected correlated response in Y given selection onX as follows. The response to
selection of characterX (the mean value of offspring of selected parents) is (by definition) the mean
breeding value of the selected group. Thus the change in character Y in response to selection on X
is the regression of the breeding value of Y on the breeding value of X . The slope of this regression
is given by

bAY |AX =
covA
σ2
AX

=
rA σAX σAY

σ2
AX

= rA
σAY
σAX

(7.6)

Recalling first that a regression passes through the mean of both variables (with y−µy = by | x[x−µx])
and second that the breeding values have mean zero (µAX = µAY = 0), the regression of the breeding
values of Y on the breeding values of X is just

Y = bAY |AX X = rA
σAY
σAX

X (7.7)

The response of the directly selected character X is

RX = iX h
2
X σPX = i (σ2

AX/σ
2
PX )σPX = iX σ

2
AX/σPX = iX hx σAX (7.8a)

where
iX = Sx/σX (7.8b)

Recalling our comment above that RX is the change in the breeding value of X , the correlated
response of character Y is

CRY = bAY |AXRX

= (rA σAY /σAX ) (iX hX σAX )
= rA σAY iX hX

Substituting σAY = hY σPY gives

CRY = iX hX hY rA σPY (7.9)

Noting that the direct response on X is RX = iX h
2
X σPX , we see that h2

X and hX hY rA play similar
roles, resulting in the later being called the co-heritability.

Correlated Selection Differentials

When selection is applied to character X , character Y will show a correlated selection differential
when Y is phenotypically correlated with X . The figure below shows the change in the bivariate
mean before (+) and after (∗) selection. In this case, there is truncation selection only on trait X ,
but there is a correlated within-generation change in Y , with the mean of Y in the selected parents
differing from the mean before selection.
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Note that the correlated selection differential simply measures the within-generation change. Whether
this translates into a between-generation change (i.e., a response to selection) depends on whether
there is any genetic correlation between the characters. With only phenotypic correlations, none of
the correlated within-generation change is passed on to the offspring.

The reason for this can be illustrated by a hypothetical example, with truncation selection only onX .
Suppose that rA = 0 and rE > 0; therefore rP andSY will be> 0. The selected individuals, however,
will not have higher than average breeding values for Y , in spite of their higher than average
phenotypic values. Therefore the correlated response will be zero, regardless of the magnitude of
h2
Y and SY .

Estimating the Genetic Correlation from Selection Response

Another method for estimating the genetic correlation is analogous to the realized heritability. Recall
in the latter case, heritability is estimated by h2 = R/S.

One procedure to obtain a realized estimate of the additive genetic correlation is as follows: From
the same base population, in different lines:

• select individuals on the basis of character X . From these lines you can measure the
direct response to character X(RX) and the correlated response of character Y (CRY ).

• select individuals on the basis of character Y . From these lines you can measure the
direct response to character Y (RY ) and the correlated response of characterX(CRX).

From the identities above, note that

r2
A =

CRX
RX

CRY
RY

(7.10)

Similarly, to obtain a realized estimate of the genetic covariance between a trait in two different
environments,

• select individuals for character X in environment 1, and measure response in environ-
ment 1 (R1) and environment 2 (CR2)

• select individuals for character X in environment 2, and measure response in environ-
ment 2 (R2) and environment 1 (CR1)

The again provides an estimate of the genetic covariance of the trait in the two environments as

r2
GE =

CR1

R1

CR2

R2
(7.11)

Example: Computing the genetic correlation from a double selection experiment

The experiment is as follows: Select for increased and decreased abdominal bristle number, and
increased and decreased sternopleural bristle number, from the same base population of Drosophila
melanogaster.

• Large base population (the Raleigh population of the realized h2 example); select for
high and low values of each trait; 25 selected out of 100 scored per sex; selection
continued for 25 generations.
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Results: At generation 25, the mean abdominal (AB) and sternopleural (ST) bristle numbers
in the four selection lines were:

Mean Bristle Number
Selection Line AB ST
High AB 33.4 26.4
Low AB 2.4 12.8
High ST 22.2 45.0
Low ST 11.1 9.5

Hence, selection to increase AB gives a direct response in AB of 33.4 and a correlated response in
ST of 26.4. Expressing these responses in terms of divergence selection, we have

• Response in AB = RAB = 33.4− 2.4 = 31.0

• Response in ST = RST = 45.0− 9.5 = 35.5

• Correlated response in ST = CRST = 26.4− 12.8 = 13.6

• Correlated response in AB is CRAB = 22.2− 11.1 = 11.1

• The estimated genetic correlation of abdominal and sternopleural bristle number is

rA =
√
CRAB
RAB

CRST
RST

=

√
11.1
31

13.6
35.3

= 0.37

The positive genetic correlation between the two bristle traits may be due to linkage disequilibrium
or pleiotropy. Not all loci affecting the trait necessarily have the same pleiotropic effects; one could
conceive of a situation in which all loci were pleiotropic but rA is zero, if pleiotropic effects are not
directional across loci.

Indirect Selection
There are two ways the mean of a character X can change by selection:

• as a direct response to selection for trait X(RX)

• as a correlated, or indirect, response to direct selection for trait Y (CRX)

The relative magnitudes of the change in mean is given by the ratio

CRX
RX

=
iY rA σAXhY
iX hX σAX

=
iY rA hY
iX hX

Therefore the correlated response ofXto selection for Y will be greater than direct response
to selection for X when iY rA hY > iX hX , or when

• character Y has a greater heritability than X , and the genetic correlation between X
and Y is high. This could occur if X is difficult to measure with precision but Y is not.

• the selection intensity is much greater for Y than X . This would be true if Y were
measurable in both sexes but X measurable in only one sex.

Multitrait Selection Response in Matrix Form
The response to selection of several traits is best handled using matrix notation, which we briefly
introduce here. A matrix is an array of elements, e.g.

A =
(
a b
c d

)
, B =

(
e f
g h

)
, C =

(
i
j

)
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When the matrix consists of only a single row or a single column, it is called a vector, whereas A
and B are square matrices. C above is a column vector (consisting of a single column of entries).

Matrix multiplication is defined in such a fashion that the order of multiplication of the matrices is
critical. For the above matrices,

AB =
(
ae+ bg af + bh
ce+ dg cf + dh

)
, BA =

(
ae+ cf eb+ df
ga+ ch gd+ dh

)
and

AC =
(
ai+ bj
ci+ dj

)
, BC =

(
ei+ fj
gi+ hj

)
while the matrix products CA and CB are not defined. The identity matrix, I, which serves a role
similar to 1 in scaler multiplication/division, is given by (for the 2 x 2 cases),

I =
(

1 0
0 1

)
Note that AI = IA = A. Finally, the Inverse A−1 of a square matrix A is defined as satisfying

A-1A = AA-1 = I (7.12a)

For a 2 x 2 matrix,

A−1 =
1

ad− bc

(
d −b
−c a

)
(7.12b)

The role of the inverse and identity matrix is in solving systems of equations. Suppose we are trying
to solve for x in AX = C. Premultiplying both sides by the inverse of A gives

A-1Ax = A-1C

noting that A-1Ax = Ix = x gives x = A-1C

We now have all the pieces in place to express the response in matrix form. Suppose there are n
traits under selection and we place the n selection differentials for each trait into a column vector S,

S =


S1

S2
...
Sn


Likewise, define the phenotypic and additive genetic covariance matrices, P and G, respectively,
as matrices whose element in the ith row and j column is the covariance (phenotype or additive
genetic) between traits i and j. Note that the diagonal elements are the variances. For example, for
two characters

P =
(

σ2(P1) σ(P1, P2)
σ(P1, P2) σ2(P2)

)
, and G =

(
σ2(A1) σ(A1, A2)
σ(A1, A2) σ2(A2)

)
Let R denote the column vector of selection responses, so that the ith element in the list is Ri, the
change in the mean of character i following one generation of selection. The response to selection
becomes

R = GP−1S (7.13)

This equation is often referred to as the multidimensional breeders’ equation. Recall that the
response for a single character under selection is R = h2S = σ2

A(σ2
P )−1S. In the multidimensional

case, the genetic and phenotypic variance are replaced by variance-covariance matrices and we use
matrix inversion and multiplication.
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The Directional Selection Gradient

The multivariate breeder’s equation can also be written as

R = Gβ (7.14a)

where
β = P−1S (7.14b)

is called the directional selection gradient. The ith element of β, βi, measures the amount of direct
selection on traitXi (i.e., the effects of correlated selection differentials are removed). From the rules
of matrix multiplication, the response in trait j can be written as

Rj = σ2(Aj)βj +
∑
i6=j

σ(Aj , Ai)βi (7.15a)

where the first term is the change due to direct selection on trait j and the sum is the indirect
contribution to the response due to the correlated response of selection on other traits. Likewise
note that Pβ = S, so that the selection differential on trait j can be written as

Sj = σ2(Pj)βj +
∑
i6=j

σ(Pj , Pi)βi (7.15b)

where the first term represents the contribution from direct selection on trait j and the sum term the
contribution to the within-generation change due to direct selection on phenotypically correlated
traits.

Effect of Selection on Genetic Correlation

Sometimes two or more correlated characters are selected jointly — e.g. selection for increased body
length and weight of mice. This is also true of natural selection, for which all traits contributing
positively to the composite trait, fitness, are jointly selected.

One consequence of simultaneous selection for correlated characters is that the genetic correlation
between them can becomes negative.

Consider a simple example of a composite traitZ controlled by multiple genes, which have different
pleiotropic effects on two component traits, X and Y :

Locus Effects of allele 1 relative to allele 2:
on X on Y

A + +
B + -
C - +
D - -

The effect of selection on Z will be to fix allele 1 at locus A and allele 2 at locus D. However alleles
at loci B and C will remain segregating at intermediate frequencies. The genetic correlation of traits
X and Y tend to become negative because the only genes that remain affect X and Y in opposite
directions. The heritability of trait Z will tend to 0 and it will exhibit no further selection response.
The heritabilities of traitsX and Y will be greater than 0, and there would be a response to selection
for either trait separately. In this case the mean value of the correlated trait would decline.
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Correlated Characters Problems

1. Consider selection acting on two traits (1 and 2). The phenotypic variances and covariances
are σ2(P1) = σ2(P2) = 10, σ(P1, P2) = −5, while the additive genetic variances and covariances are
σ2(A1) = 4, σ2(A2) = 9, σ(A1, A2) = 3 . Compute the response on both characters when:

a: We select directly on trait 2, with S2 = 10 (use Equations 7.8 and 7.9)

b: We select directly on trait 1, with S1 = 10 use Equations 7.8 and 7.9)

c: S1 = 5, S2 = 5 (use the multivariate breeders equation)

2. The following covariances of performance in randomly chosen dam and daughter pairs of
dairy cattle were obtained from an analysis. Estimate the heritabilities of milk yield and fat % and
the genetic, phenotypic, and environmental correlations between them.

Dam’s yield Dam’s fat %
Dam’s yield (in 100 kg units) 68 -0.55
Dam’s fat % -0.55 0.11
Daughter’s yield 7.8 -.20
Daughter’s fat -0.18 0.035

3. The heritability of growth rate in pine seedlings is 0.5 when they are grown in the green-
house, and 0.2 when grown in the field. The genetic correlation between growth rate in the two
environments is 0.8. Suppose you wish to select for increased growth in the field. In which environ-
ment should you do the selection? How would your conclusions change if the genetic correlations
between growth rate in the two environments was 0.5?
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Solutions to Correlated Characters Problems

1. Here

hX =

√
4
10

= 0.63, hY =

√
9
10

= 0.95, rA =
3√
4 · 9

= 0.5

a) S2 = 10 implies i = 10/
√

10 = 3.16

R2 = i h2
2 σPw = 3.16 · 0.9 ·

√
10 = 8.99

CR1 = rA σA1 i h2 = 0.5 ·
√

4 · 3.16 · 0.95 = 3.00

b) S1 = 10 implies i = 10/
√

10 = 3.16

R1 = i h2
1 σP1 = 3.16 · 0.4 ·

√
10 = 4.00

CR2 = rA σA2 i h1 = 0.5 ·
√

9 · 3.16 · 0.63 = 2.99

c) S1 = S2 = 5. Using the multivariate breeder’s equation,

S =
(

5
5

)
, G =

(
4 3
3 9

)
, P =

(
10 −5
−5 10

)
,

First note that

P−1 =
1
15

(
2 1
1 2

)
, and P−1S =

(
1
1

)
Hence

R = GP−1S =
(

4 3
3 9

)(
1
1

)
=
(

7
12

)
2. Let character 1 denote yield, 2 denote fat %. First, using the covariance of a trait with
itself to estimate the phenotypic variances, we have

σ2
P1

= 68, σ2
P2

= 0.11

Second, the additive genetic variance in the trait is twice the covariance (for the same
character) between parent and offspring, giving

σ2
A1

= 2 · 7.8 = 15.6, σ2
A2

= 2 · 0.035 = 0.07

The phenotypic covariance is the covariance between characters 1 and 2 in the parent,

σ(P1, P2) = −0.55

Finally, the additive genetic covariance is twice the covariance for trait 1 in the parent and
trait 2 in the offspring. Likewise trait 2 in parent and 1 in offspring also estimates this
covariance, so we take the average of these two,

σ(A1, A2) = 2(1/2)(−0.20− 0.18) = −0.38

Thus
h2

1 =
15.6
68

= 0.23, and h2
2 =

0.07
0.11

= 0.64
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rp =
−0.55√
68 · 0.11

= −0.20

rA =
−0.38√

15.6 · 0.07
= −0.36

Finally, since VE = VP − VA, and Cov(P1, P2) = Cov(A1 +A2) + Cov(E1, E2)

VE1 = 68−15.6 = 52.4, VE2 = 0.11−0.07 = 0.4, Cov(E1, E2) = −0.55−(−0.38) = −0.17

giving

re =
−0.17√
52.4 · 0.4

= −0.04

3. Compare the ratio of the direct and correlated response. Let X denote the trait value
in the field and Y the value in the lab. Assuming the same amount of selection in either
setting, the ratio of the correlated field response CRX (based on selection in the lab) to the
direct response RX if selection is in the field is

CRX
RX

=
iY rAσAXhY
iXhXσAX

=
rAhY
hX

=
0.8
√

0.5√
0.2

= 1.265

So that a larger response in the field is given by selecting in the lab than by selecting directly
in the field.

If the correlation between environments is 0.5, then

CRX
RX

==
0.5
√

0.5√
0.2

= 0.791,

in which case direct selection in the field is more efficient.
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