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Narrow -vs. Broad-sense Heritability

The reason for our focus, indeed obsession, on the heritability is that it determines the degree of
resemblance between parents and offspring, which in turn determines the response to selection.
In particular, the slope of a midparent-offspring regression is just h2 = VA/VP . The fact that the
regression involves midparents implies sexual reproduction. In many plant breeding settings, the
parent-offspring regression involves offspring that are asexual clones of the single parent. In this
case, the parent-offspring regression has slope given by the broad-sense heritability, H2 = VG/VP .

When we refer to heritability (without making use of either h2 or H2), we are by default referring
to the narrow-sense heritability h2. Use of the broad-sense heritability H2 is generally restricted
to discussions of clones (such as identical twins or asexual propagates of an individual). While H2

also gives the total fraction of variation in a trait due to differences in genotypic values, for sexually
reproducing species only variation in breeding values is (easily) converted into selection response.
Hence, h2 rather than H2 is a better measure for sexual species of the fraction of (easily) usable
genetic variance.

Why h2 instead of h?

Students often ask why we use h2 rather than h to refer to heritability. You can blame Sewall Wright
for this, as he used h to denote the correlation between breeding and phenotypic values within an
individual. Recalling that the square of the correlation is the total fraction of variation accounted
by a variable leads to the universal use of h2. Indeed, whenever we speak of heritability, we always
refer to h2 and never to h. To see that h is indeed the correlation between breeding and phenotypic
values within an individual, note from the definition of a correlation that

rAp =
σ(A, P )
σA σP

=
σ2

A

σA σP
=

σA

σP
= h (4.1)

Heritabilities are Functions of a Population

As heritability (in this case, either narrow h2 or broad H2 sense ) is a function of both the genetic and
environmental variances, it is strictly a property of a particular population. Different populations,
even if closely related, can have very different heritabilities. Since heritability is a measure of the
standing genetic variation of a population (either breeding values for h2 or genotypic values for H2), a
zero heritability DOES NOT mean that a trait is not genetically determined. For example, an inbred
line may show consist features that are clearly the result of genetic differences relative to other lines.
However, since there is no variation within this hypothetical inbred population, both h2 and H2 are
zero.

Increasing the Heritability

Note that both h2 and H2 decrease as the phenotype variance σ2
P increases. Hence, reducing the

environmental variance (for example, by more careful measurements of a trait or by using a more
uniform environment) generally increases the heritability. One note of caution, however. The
heritability is not only a genetic property of a population, but also of the distribution (or universe) of
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environmental values that the population experiences. Thus, a heritability measured in a laboratory
population may be rather different from the same population measured in a natural setting due to
a wider range of environments. This is not a serious problem for breeders and experimentalists,
provided that genotype-environment interactions are small. As the universe of environments change,
when significant G x E is present, this can change the genotypic values, and hence can change the
genetic variances. This issue is of special concern to plant breeders, where even slightly different
growing regions may have subtle, but consistent, differences in their distribution of environmental
values.

Heritability and the Prediction of Breeding Values

As mentioned, h2 is the proportion of the total variance attributable to differences in breeding values.
Further, h2 is the slope of the regression predicting breeding value given an individual’s phenotypic
value, as

A =
σ(P, A)

σ2
P

(P − µp) + e = h2(P − µp) + e (4.2a)

This follows from the definition of a regression slope and the fact that the regression must pass
through the mean of both A and P (0 and µp, respectively). The error e in predicting breeding value
A from phenotypic value P has mean zero and variance

σ2
e = (1− h2)σ2

A (4.2b)

Hence, the larger the heritability, the tighter the distribution of true breeding values around the
value h2(P − µp) predicted by an individuals’ phenotype.

Since heritability is a function of genetic variances, as allele frequencies change (for example, by
selection and/or drift), the heritabilities also change. The slope of the parent-offspring regression
changes during the course of selection, and as a result, our prediction of the response to selection
using some initial estimate of heritability from an unselected population is good for only a few
generations.

Heritability Values for Real Traits

Typically heritability values range from 0.1 to 0.6, although higher and lower values are certainly
found. One general trend is that traits more closely related to fitness tend to have lower heritabilities.

People h2

Height 0.65
Serum IG 0.45

Pigs
Back-fat thickness 0.70
Daily weight-gain 0.30
Litter size 0.05

Fruit flies
Abdominal bristles 0.50
Body size 0.40
Ovary size 0.30
Egg production 0.20
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Heritability Values and Population Divergence

While the heritability of a population provides a measure of its genetic potential to response to
a generation of selection, the magnitude of h2 only provides information on the potential over a
few generations. As allele frequencies change, so does heritability. A population showing a high
h2 value may have heritability erode to zero very quickly, while another population with a much
smaller h2 value may actually have heritability increase during selection as rare alleles become
more frequent. Hence, heritability is a completely unreliable predictor for long-term response, although it
is generally a good to excellent predictor of short-term response.

Likewise, measuring heritability values in two populations that show a difference in their means
provides no information on whether the underlying difference is genetic — h2 is only a measure
of the current variation in each population, it provides no information on the past history of either
population. Thus, high estimated h2 values in two divergent populations does not imply that the
divergence is genetic (it could be strictly environmental). Likewise, low estimates of h2 does not
imply that an observed difference between two populations is environmental — both population
could have exhausted genetic variation during selection for their divergence. In short, variances
within populations and means between populations are not comparable.

Estimation: One-way ANOVA and the simple full-sib design

We now turn to common designs for estimating heritability, starting the collections of sibs. Perhaps
the simplest sib design is to examine N full-sib families, each with n offspring. The traditional
approach to analyzing such data is the one-way analysis of variance, based on the linear model

zij = µ + fi + wij (4.3)

where zij is the phenotype of the jth offspring of the ith family, fi is the effect of the ith family and
wij is the residual error resulting from segregation, dominance, and environmental contributions.
We further assume that the wij are uncorrelated with each other and have common variance σ2

w, the
within-family variance (we will also use wFS and wHS to distinguish between the within-family
variance for full- and half-sibs respectively, but for now it is clear that we are simply dealing with a
full-sib family). The variance among family effects (the between-family, or among family, variance)
is denoted by σ2

f .
A basic assumption of linear models underlying ANOVA is that the random factors are uncor-

related with each other. This leads to a key feature:

• The analysis of variance partitions the total phenotypic variance into the sum of the variances from each
of the contributing factors.

For example, for the full-sib model, the critical assumption is that the residual within-family
deviations are uncorrelated with the family effects, i.e., σ(fi, wij) = 0. Thus, the total phenotypic
variance equals the variance due to sires plus the residual variance,

σ2
z = σ2

f + σ2
w(FS) (4.4)

The second ANOVA relationship that proves to be very useful is that

• The phenotypic covariance between members of the same group equals the variance among groups.

To see this for full-sibs, note that members of the same group (full sibs) share family effects, but
have independent residual deviations, so

Cov(Full Sibs) = σ( zij , zik )
= σ[ (µ + fi + wij), (µ + fi + wik) ]
= σ( fi, fi ) + σ( fi, wik ) + σ( wij , fi ) + σ( wij , wik )
= σ2

f (4.5)
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The identity Cov(within) = Var(between) allow us to relate an estimated variance component (e.g.,
the between-family variance σ2

f ) with the casual underlying variance components (e.g., σ2
A) that are

our real interest. For example, the variance among family effects equals the covariance between full
sibs,

σ2
f = σ2

A/2 + σ2
D/4 + σ2

Ec (4.6a)

where Ec is the common (or shared) family environmental effects (such as shared maternal effects)
Likewise, since σ2

P = σ2
f + σ2

w(FS), the within-group variance σ2
w(FS) (i.e., the variance of full-sib

values about their family mean) is

σ2
w(FS) = σ2

P − σ2
f

= σ2
P − ( σ2

A/2 + σ2
D/4 + σ2

Ec )
= σ2

A + σ2
D + σ2

E − ( σ2
A/2 + σ2

D/4 + σ2
Ec )

= (1/2)σ2
A + (3/4)σ2

D + σ2
E − σ2

Ec (4.6b)

The ANOVA table for a balanced full-sib design becomes:

Table 4.1. ANOVA for a balanced full-sib design for N families each with n sibs.

Factor df SS MS E(MS)

Among-families N − 1 SSf = n
N∑

i=1

(zi − z)2 MSf = SSf/(N − 1) σ2
w(FS) + nσ2

f

Within-families T −N SSw =
N∑

i=1

n∑
j=1

(zij − zi)2 MSw = SSw/(T −N) σ2
w(FS)

Note: The total sample size is T = Nn. Degrees of freedom are denoted by df, observed sums of squares by
SS, and expected mean squares by E(MS).

Estimating Variances and Variance Components

Unbiased estimators of σ2
f , σ2

w(FS), and σ2
z follow from the expected mean squares

Var(f) =
MSf −MSw

n
(4.7a)

Var(w) = MSw (4.7b)

Var(z) = Var(f) + Var(w) (4.7c)

Recalling Equation 4.6,
2σ2

f = σ2
A + σ2

D/2 + 2σ2
Ec

so that 2σ2
f provides an upper bound on σ2

A.
Standard errors for the variance estimators given by Equation 4.7a-4.7c follow (under the as-

sumptions of normality and balanced design) since the observed mean squares extracted from an
analysis of variance are distributed independently with expected sampling variance

σ2(MSx) ' 2(MSx)2

dfx + 2
(4.8)
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Since Equations 4.7a–4.7c are linear functions of the observed mean squares, the rules for
obtaining variances and covariances of linear functions (Lecture 3) can be used in conjunction with
Equation 4.8 to obtain the large-sample approximations

Var[ Var(w(FS)) ] = Var(MSw) ' 2(MSw)2

T −N + 2
(4.9a)

Var[ Var(f) ] = Var
[

MSf −MSw

n

]
' 2

n2

(
(MSf )2

N + 1
+

(MSw)2

T −N + 2

)
(4.9b)

Estimating heritability

Since the intraclass correlation for full-sibs is given by

tFS =
Var(f)
Var(z)

=
1
2
h2 +

σ2
D/4 + σ2

Ec

σ2
z

, (4.10a)

an upper bound for the estimate of heritability is given by

h2 ' 2tFS (4.10b)

This has a (large-sample) standard error of

SE(h2) ' 2(1− tFS)[1 + (n− 1)tFS]
√

2/[Nn(n− 1)] (4.10c)

Worked Example of a Full-sib Design

Table 4.2. Suppose N = 10 full-sib families each with n = 5 offspring are measured.

Factor df SS MS E(MS)

Among-families 9 SSf = 405 45 σ2
w + 5σ2

f

Within-families 40 SSw = 800 20 σ2
w

Var(f) =
MSf −MSw

n
=

45− 20
5

= 5, Var(w) = MSw = 20, Var(z) = Var(f) + Var(w) = 25

Hence, an upper bound for the additive variance is V ar(A) = 2V ar(f) = 10. Likewise, the estimated
heritability (assuming dominance and shared environmental effects can be ignored) is

2tFS = 2
5
25

= 0.4

with
SE(h2) ' 2(1− 0.4)[1 + (5− 1)0.4]

√
2/[50(5− 1)] = 0.312

illustrating the (usually) large standard errors on heritability estimates.

Lecture 4, pg. 5



Estimation: The Nested Full-sib, Half-sib Analysis

The simple full-sib design suffers in that one cannot obtain a clean estimate of σ2
A. A more efficient

design is the nested full-sib, half-sib design, wherein each male (or sire) is mated to several
unrelated females (or dams), generating a series of full-sib families nested within half-sibs.
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Figure 4.1 A nested full-sib, half-sib mating design. Each male is mated to sev-
eral unique (unrelated) females, from each of which several offspring are assayed.

The linear model for this nested design is

zijk = µ + si + dij + wijk (4.11a)

where zijk is the phenotype of the kth offspring from the family of the ith sire and jth dam, si is
the effect of the ith sire, dij is the effect of the jth dam mated to the ith sire, and wijk is the residual
deviation (the within-full-sib family deviations). As usual, under the assumption that individuals
are random members of the same population, the si, dij , and wijk are defined to be independent
random variables with expectations (mean values) equal to zero. Because of indepedence, the total
phenotypic variance is the sum of individual variances,

σ2
z = σ2

s + σ2
d + σ2

w (4.11b)

where σ2
s is the variance among sires, σ2

d the variance among dams within sires, and σ2
w the variance

within full-sib families.
To relate the observable components of variance (Equation 4.11b) to covariances between rel-

atives, first note that the total phenotypic variance can be partitioned into two components, the
variance within- and among- full-sib families. Since the variance among groups is equivalent to the
covariance of members within groups, the variance among full-sib families equals the phenotypic
covariance of full sibs, σ(FS). Thus, the variance within full-sib families (the residual variance in
the model) is simply

σ2
w = σ2

z − σ(FS) (4.12a)
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Similarly, the variance among sires is equivalent to the covariance of individuals with the same
father but different mothers, i.e., the covariance of paternal half sibs,

σ2
s = σ(PHS) (4.12b)

Since the three components of variance must sum to the phenotypic variance σ2
z , the dam variance

is found to be

σ2
d = σ2

z − σ2
s − σ2

w

= σ(FS)− σ(PHS) (4.12c)

Recalling covariances σ(PHS) and σ(FS) among half- and full-sibs gives

σ2
s =

σ2
A

4
(4.13a)

σ2
d =

σ2
A

4
+

σ2
D

4
+ σ2

Ec
(4.13b)

σ2
w =

σ2
A

2
+

3σ2
D

4
+ σ2

Es
(4.13c)

where σ2
Ec

is the component of variance due to common family environmental effects, and σ2
Es

the
remaining environmental variation. An obvious problem with this set of equations is that they
are overdetermined — there are four causal sources of variance (σ2

A, σ2
D, σ2

Ec
, σ2

Ec
) but only three

observable variance components (σ2
s , σ2

d, σ2
w). We will deal with this in the worked example below.

The variance-component estimators are given by,

Var(s) =
MSs −MSd

Mn
(4.14a)

Var(d) =
MSd −MSw

n
(4.14b)

Var(e) = MSw (4.14c)

while the intraclass correlations for paternal half sibs and full sibs are

tPHS =
Cov(PHS)

Var(z)
=

Var(s)
Var(z)

(4.15a)

tFS =
Cov(FS)
Var(z)

=
Var(s) + Var(d)

Var(z)
(4.15b)

4tPHS provides the best estimate of h2 since it is not inflated by dominance and/or common environ-
mental effects. If, however, Var(s) and Var(d) are found to be approximately equal, then dominance
and maternal effects can be ruled out as significant causal sources of covariance.
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Table 4.3. Summary of a (balanced) nested analysis of variance involving N sires, M dams per sire and and
n offspring per dam. T = MNn is the total number of sibs in the design.

Factor df Sums of Squares MS E(MS)

Sires N − 1 Mn
N∑

i=1

Mi∑
j=1

(zi − z)2 SSs/dfs σ2
w + nσ2

d + Mnσ2
s

Dams (sires) N(M − 1) n
N∑

i=1

M∑
j=1

(zij − zi)2 SSd/dfd σ2
w + nσ2

d

Sibs (dams) T −NM
N∑

i=1

M∑
j=1

n∑
k=1

(zijk − zij)2 SSw/dfe σ2
w

Worked Example of a Nested Design

Table 4.4. Suppose N = 10 sires are each crossed to M = 3 dams and n = 10 offspring are measured in
each full-sib family, with resulting ANOVA table

Factor df SS MS E(MS)

Sires 9 SSs = 4, 230 470 σ2
w + 10σ2

d + 30σ2
s

Dams (sires) 20 SSd = 3, 400 170 σ2
w + 10σ2

d

Within Dams 270 SSw = 5, 400 20 σ2
w

σ2
w = MSw = 20

σ2
d =

MSd −MSw

n
=

170− 20
10

= 15

σ2
s =

MSs −MSd

Nn
=

470− 170
30

= 10

σ2
P = σ2

s + σ2
d + σ2

w = 45

Hence
σ2

A = 4σ2
s = 40

and

h2 =
σ2

A

σ2
z

=
40
45

= 0.89

Likewise, since
σ2

d = 15 = (1/4)σ2
A + (1/4)σ2

D + σ2
Ec

= 10 + (1/4)σ2
D + σ2

Ec

we are left with the estimate of the linear combination

σ2
D + 4σ2

Ec
= 20

Hence, if σ2
D = 0, then σ2

Ec
= 5, while if σ2

Ec
= 0, then σ2

D = 20. These represent the extreme values
of these two variance components consistent with the ANOVA.
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Estimation: Parent-Offspring Regressions

In some sense the simplest design is the parent-offspring regression, the regression of offspring
phenotype zo on the phenotypic value of one of its parents, zp. Here the linear model is

zoi = α + bo|pzpi + ei = µ + bo|p(zpi − µ) + ei

The second expression follows from the first since the regression passes through the mean of both
variables (offspring and parental phenotypes).

The expected regression slope bo|p is

E(bo|p) =
σ(zo, zp)
σ2(zp)

' (σ2
A/2) + σ(Eo, Ep)

σ2
z

(4.16)

For males, it is generally expected that the covariance between parent and offspring environmental
values is zero and the regression slope is h2/2. This is not necessarily the case for females, as one can
imagine how a larger female could better provision her offspring, leading to larger offspring, creating
a positive environmental covariance. For this reason, single parent-offspring regressions usually
involve fathers, although if the regression slopes for father-offspring and mother-offspring are the
same, we can rule out shared mother-offspring environmental values. Thus a simple (possibly
biased) estimate of h2 = σ2

A/σ2
z is twice the (single) parent-offspring regression, 2bo|p.

Greater precision is possible when both parents can be measured, in which case one can regress
offspring phenotypes on the mean phenotypes of their parents (also known as the midparent values).
The linear model is now

zoi = µ + bo|MP

(
zmi + zfi

2
− µ

)
+ ei

where zmi and zfi refer to the phenotypes of mothers and fathers. The slope bo|MP is a direct estimate
of the heritability. To see this, note that

bo|MP =
Cov[zo, (zm + zf )/2]

Var[(zm + zf )/2]

=
[Cov(zo, zm) + Cov(zo, zf )]/2

[Var(z) + Var(z)]/4

=
2Cov(zo, zp)

Var(z)
= 2bo|p (4.17)

What happens when multiple (n) offspring are measured in each family? The expected phe-
notypic covariance of a parent i and the average of its j = 1, · · · , n offspring may be written
σ[(

∑n
j=1 zoij/n), zp]. Since all n of the covariance terms have the same expected value, this re-

duces to nσ(zo, zp)/n = σ(zo, zp), the same as the expectation for single offspring. Thus, provided
family sizes are equal, the interpretation of a single parent-offspring regression is the same whether
individual offspring data or the progeny means are used in the analysis.

The sampling variance of the regression of a single parent on its (n) offspring is approximately

Var(bo|p) '
n(t− b2

o|p) + (1− t)

Nn
(4.18a)

where N is the number of parent-offspring pairs and t is the covariance between sibs. Since sibs in
a single-parent regression can potentially be either full- or half-sibs,

t =


tHS = h2/4 for half-sibs

tFS = h2/2 +
σ2

D + σ2
Ec

σ2
z

for full sibs
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Since h2 is estimated as 2bo|p,

Var(h2) = Var(2bo|p) = 4Var(bo|p)

Likewise, the sampling variance for a midparent-offspring regression with N parent-offspring
pairs and n offspring per set of parents is approximately

Var(bo|MP ) '
2[n(tFS − b2

o|MP /2) + (1− tFS)])

Nn
(4.18b)

Since h2 is estimated by bo|MP , Var(h2) is given by Equation 4.18b.

Estimating Heritability in Natural Populations from Lab-reared Offspring

A lower bound, h2
min, to the heritability in the field can be estimated by regressing the phenotypes

of lab-reared progeny on their field-reared parents. Let the regression coefficient involving wild
midparents and lab-reared offspring be b′o|MP , the phenotypic variance of the natural population
be Varn(z), and the additive genetic variance in the laboratory environment (obtained either from
the covariance of lab-reared sibs or of lab-reared parents and offspring) be Varl(A). Then,

h2
min = (b′o|MP )2

Varn(z)
Varl(A)

=
[

Covl,n(A)
Varn(z)

]2 Varn(z)
Varl(A)

(4.19a)

where Covl,n(A) is the additive genetic covariance between the trait as expressed in the wild and
in the lab. To see that this provides a lower bound, define

γ =
Covl,n(A)√

Varn(A)Varl(A)
(4.19b)

to be the additive genetic correlation between environments. The expected value of h2
min is then

γ2h2
n, which is necessarily ≤ h2

n (as γ2 ≤ 1), the heritability in nature. h2
min is an unbiased estimate

of h2
n only if the genetic correlation across environments is equal to one, i.e., there is no G× E.

Estimating Variances Under General Pedigree Structures

All of the above designs are special cases of local analysis on just parts of a fuller pedigree that
an investigator might have in hand. A general solution is offered by the method of Restricted
Maximum Likelihood, or REML to estimate variances, and the associated method of best linear
unbiased predictor, or BLUP to estimate breeding values. These approaches allow us to simul-
taneously exploit all the information in a complex pedigree as well as estimate other fixed factors
such as effects of sex, age, etc. These methods, while fairly straightforward, require a fair amount
of background information to be presented. In a sentence, they use a general linear model with a
variance-covariance matrix specified by the matrix of known relationships. The interested reader
is referred to Lynch and Walsh for a full treatment.

Defining H2 for in Plant Populations

Our last point about heritability deals with how plant breeders define the board-sense heritability
H2. Our key point is that identical populations may have different H2 values, depending on the
unit of analysis chosen by the investigator.

In plant breeding, pure lines are often used, and instead of measuring individuals directly
for trait values (such as yield), one often measures a block or plot of individuals as the sampling
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unit. Suppose our design is to measure each line in r plots, each consisting of n individuals,
over e environments. The resulting linear model for the `th individual of i genotype in plot k in
environment j

zijk` = Gi + Ej + G× Eij + pijk + eijk` (4.20)

where pijk is the plot effect for the kth replicate of the plot for genotype i in environment j, and eijk`

the residual value for the `th individual. If we simply take zi = zi···· (the average value of genotype
i over all plots, environments, and individuals) as our measurement then σ2

G is unchanged, but the
phenotypic variances of the zi becomes

σ2(zi) = σ2
G + σ2

E +
σ2

G×E

e
+

σ2
p

e r
+

σ2
e

e r n

here σ2
p is the between-plot environmental variance and σ2

e the within-plot individual variance. The
problem with defining H2 in a consistent fashion is that different investigators may chose different
values of r, e and n to measure the trait, and hence (even with identical variance components) get
different values for the phenotypic variance, and hence for H2.
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Heritability Problems

1. Consider a simple full-sib design. Suppose σ2
A = 30, σ2

D = 10, σ2
Ec = 5 and σ2

E − σ2
Ec = 5.

a: What are σ2
f ? σ2

w?

b: Now consider a nested full-sib design. What are the sire (σ2
s ) and dam (σ2

d) variances?

2. Recalling Equation 4.9b, what is the variance of our estimate of σ2
A for the worked

full-sib problem?

3. Create your own ANOVA! Consider a strictly half-sib analysis, wherein each of N sires
are mated to n dams, each of which leaves exactly one offspring (an example of this is beef
or dairy cattle). Under this model, the ijth observation is the jth offspring from sire i and
is the sum of a sire effect si and a within (half-sib) family deviation from the sire effect.

a: What is the linear model for this design?

b: Express the sire σ2
s and within-family σ2

w(HS) variance in terms of the genetic and
environmental variance components.

c: What would the resulting ANOVA table look like? (i.e., what are the required sums of
squares, the associated degrees of freedom, the mean squares, and the expected value
of the mean squares expressed in terms of the genetic and environmental variance
components).
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Solution to Heritability Problems

1: a: σ2
f = σ2

A/2 + σ2
D/4 + σ2

Ec
= 30/2 + 10/4 + 5 = 22.5 σ2

w = σ2
z − σ2

f . Here σ2
z =

30 + 10 + 5 + 5 = 50, giving σ2
w = 50− 22.5 = 27.5

b: The within-sire variance σ2
s = σ2

A/4 = 30/4 = 7.5, while (Equation 4.12a) σ2
d =

Cov(FS)− σ2
s = σ2

f − σ2
s = 22.5− 7.5 = 15.

2:

Var[ Var(A) ] = Var[ 2Var(f) ] ' 22 2
n2

(
(MSf )2

N + 1
+

(MSw)2

T −N + 2

)
= 4 · 2

52

(
(45)2

11
+

(20)2

42

)
= 61.96

Giving an standard error (
√

V ar) of 7.87.

3:

a: zij = µ + si + wij

b: σ2
s = Cov(half-sibs) = σ2

A/4, σ2
w = σ2

z − σ2
s = (3/4)σ2

A + σ2
D + σ2

E

c:

Factor df SS MS E(MS)

Between-sires N − 1 SSs = n
N∑

i=1

(zi − z)2 SSs/(N − 1) σ2
w + nσ2

s

Within-sire families T −N SSw =
N∑

i=1

n∑
j=1

(zij − zi)2 SSw/(T −N) σ2
w

where T = Nn
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