
Lecture 3

Resemblance Between Relatives

The heritability of a trait, a central concept in quantitative genetics, is the
proportion of variation among individuals in a population that is due to
variation in the additive genetic (i.e., breeding) values of individuals:

h2 =
VA

VP
=

Variance of breeding values
Phenotypic Variance

Since an individual’s phenotype can be directly scored, the phenotypic
variance VP can be estimated from measurements made directly on the
random breeding population.

In contrast, an individual’s breeding value cannot be observed directly,
but rather must be inferred from the mean value of its offspring (or more
generally using the phenotypic values of other known relatives). Thus
estimates of VA require known collections of relatives. The most common
situations (which we focus on here) are comparisons between parents and
their offspring or comparisons among sibs. We can classify relatives as
either ancestral or collateral, and we focus here on designs with just one
type of relative. In a more general pedigree, information from both kinds
of relatives is present.

Ancestral relatives: e.g., parent and offspring
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* Measure phenotypes of one or both parents, +k offspring of each

Collateral relatives:

Full Sibs have both parents in common

*Measure k offspring in each family, but not the parents.
Half Sibs have one parent in common



* Measure phenotype of k progeny of each family, but not the parents.

Key observation: The amount of phenotypic resemblance among relatives for
the trait provides an indication of the amount of genetic variation for the trait.

Covariances and Regressions

In order to analyze this resemblance, we first digress to discuss some stan-
dard statistical measures of association.

The Covariance:

One of the most useful measures in quantitative genetics is the covariance
between two variables, which is a (linear) measure of association. Formally,
the covariance, Cov(x, y), of two random variables x and y is defined by

Cov(x, y) = E[( x− µx ) ∗ ( y − µy )]

= E( xy )− µxµy

= mean of the product− product of the means (1)

Here E() denotes the expected value or population mean of the quantity
of interest.

As the figure (below) shows, if x and y are positively associated, then
Cov(x, y) > 0, while if they are negatively associated, then Cov(x, y) < 0.
Note that the covariance is a measure of the linear association between two
variables — even though x perfectly predicts y is the far right panel, there
is no linear trend, so that Cov(x, y) = 0. While Cov(x, y) = 0 when x and
y are independent, the converse is NOT true, as Cov(x, y) = 0 does not
necessarily imply that x and y are independent (again, as evidenced by the
last panel).
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The covariance is estimated for a sample of n paired observations (xi, yi)
by

Cov(x, y) =
1

n− 1

n∑
i=1

( xi − x )( yi − y )

=
1

n− 1

(
n∑

i=1

xi yi − n x y

)
(2)

[In the literature, σ(x, y) = σxy is often used to denote the population co-
variance (Equation 1), while Cov(x) denotes its estimated value (Equation
2). In these notes, we will use Cov interchangeably for both.]

The correlation, r(x, y) [ the notation ρ(x, y) and ρxy is also used ] is a scaled
measure of the covariance, where

r(x, y) =
Cov(x, y)√

V ar(x) V ar(y)

Since the range of correlation is restricted between to−1 and +1, it provides
a standard metric for comparing the amount of association between pairs of
variables that show different levels of variation. For example, a covariance
of 10 implies a relatively small association if both variables have a variance
of 100 (r = 10/100 = 0.1), but complete association if both variables have
a variance of 10 (r = 10/10 = 1).



Covariance and Regressions:

There is a very close connection between the regression of one variable on
another and the covariance between the two variables. The slope by | x for
the best linear fit of y given an observed value of x, is given by

by | x =
Cov(x, y)
V ar(x)

The predicted value ŷ for y given we know x is

ŷ = y + by | x( x− x )

Useful Properties of Variances and Covariances:

• The covariance function is symmetric, Cov(x, y) = Cov(y, x)

•The covariance of a variable with itself is the variance, e.g., Cov(x, x) =
V ar(x)

• If a is a constant, then Cov(ax, y) = a · Cov(x, y)

• V ar(ax) = a2V ar(x). This follows since
V ar(ax) = Cov(ax, ax) = a2Cov(x, x) = a2V ar(x)

• Cov(x + y, z) = Cov(x, z) + Cov(y, z), i.e., the covariance of a sum is
the sum of covariances. More generally,

Cov

 n∑
i=1

xi,
m∑

j=1

yj

 =
n∑

i=1

m∑
j=1

Cov(xi, yj)

• V ar(x + y) = V ar(x) + V ar(y) + 2Cov(x, y). Hence, the variance of
a sum, V ar(x + y), equals the sum of the variances, V ar(x) + V ar(y),
only when the variables have a covariance of zero.



Phenotypic Resemblance Between Relatives

We now will use the covariance (and the related measures of correlations
and regression slopes) to quantify the phenotypic resemblance between
relatives. Quantitative genetics as a field traces back to R. A. Fisher’s
1918 paper showing how to use the phenotypic covariances to estimate
genetic variances, whereby the phenotypic covariance between relatives is
expressed in terms of genetic variances, as we detail below.

1. Parent-offspring regressions

There are three types of parent-offspring regressions: two single parent -
offspring regressions (plotting offspring mean versus either the trait value
in their father Pf or their mother Pm), and the midparent-offspring re-
gression (the offspring mean regressed on the mean of their parents, the
midparent MP = (Pf + Pm)/2).

The slope of the (single) parent-offspring regression is estimated by

bOP =
Cov(O, P )
V ar(P )

, where Cov(O, P ) =
1

n− 1

(
n∑

i=1

Oi Pi − n O · P
)

where Oi is the mean trait value in the offspring of parent i and we exam-
ine n pairs of parent-offspring. One could compute separate regressions
using males (Pm) and females (Pf ), although the later potentially includes
maternal effect contributions and hence single-parent regressions usually
restricted to fathers.

The midparent-offspring regression slope is estimated by

bOMP =
Cov(O, MP )
V ar(MP )



where

Cov(O, MP ) =
1

n− 1

(
n∑

i=1

Oi Pmp,i − n O ·MP

)

where Oi is the mean trait value in the offspring of parents in pair i, where
these parents have an average trait value MPi and we examine n parent-
offspring pairs .

Notice that all of the three regressions involve the covariance between
parents and their offspring.

2. Collateral relationships: ANOVA

With collateral relatives, the above formulae for the sample covariance is
not appropriate, for two reasons. First, there are usually more than two
collateral relatives per family. Second, even if families consist of only two
relatives, the order of the two is arbitrary — i.e., there is no natural distinc-
tion between ”X” and ”Y ”, as exists in the case of parents and offspring.

Another way of stating the second point is that collateral relatives belong
to the same class or category. In contrast, parents and offspring belong to
different classes. The covariance between parents and offspring is an inter-
class (between-class) covariance, while the covariance between collateral
relatives is an intraclass (within-class) covariance. The analysis of vari-
ance (ANOVA), first proposed in Fisher’s 1918 paper, is used to estimated
intraclass covariances.

Under the simplest ANOVA framework, we can consider the total variance
of a trait to consist of two components: a between-group (also called the
among-group) component (for example, differences in the mean value of
different families) and a within-group component (the variation in trait



value within each family). The total variance is the sum of the between
and within group variances,

V ar(T ) = V ar(B) + V ar(W )

A key feature of ANOVA is that the between-group variance equals the within-
group covariance. Thus, the larger the covariance between members of a
family, the larger the fraction of total variation that is attributed to differ-
ences between family means.

To see this point, consider the following extreme patterns of phenotypes in
full sib families:

Situation 1



Here the between group variance V ar(B) = 2.5, and the within-group
variance V ar(W ) = 0.2. This gives a total phenotypic variance of VP =
V ar(T ) = V ar(B) + V ar(W ) = 2.7. Here:

• members of a family resemble each other more closely than they do
members of other families

• there are large differences in average phenotype between families

The resulting intraclass correlation t is

t =
Cov(full sibs)

VP
=

V ar(B)
VP

= 0.93

where we have used the ANOVA identity that the between-group variance
equals the within-group covariance (here, the covariance between full sibs).

Situation 2

Suppose the total (phenotypic) variance is the same as in situation 1, with
V ar(T ) = VP = 2.7. However, suppose there is no between-group variance
(V ar(B) = 0), implying that V ar(W ) = 2.7 and the intraclass correlation
is t = 0. Here:

•members of a family resemble each other no more than they do mem-
bers of other families

• there are no significant differences in average phenotype between fam-
ilies

• phenotypic resemblance is low, so genetic variation is low

Note that phenotypic resemblance among relatives can equivalently be
consider as a measure of the similiary among a group of relatives for the
phenotype of a quantitative trait (the covariance of family members), or



the difference in phenotype between different families (the between-group
variance).

Causes of Phenotypic Covariance Among Relatives

Relatives resemble each other for quantitative traits more than they do
unrelated members of the population for two potential reasons:

• relatives share genes. The closer the relationship, the higher the pro-
portion of shared genes

• relatives share the same environment

The Genetic Covariance Between Relatives

The Genetic Covariance Cov(Gx, Gy) = covariance of the genotypic values
(Gx, Gy) of the related individuals x and y.

We will first show how the genetic covariances between parent and off-
spring, full sibs, and half sibs depend on the genetic variances VA and VD.
We will then discuss how the covariances are estimated in practice.

Genetic covariances arise because two related individuals are more likely
to share alleles than are two unrelated individuals. Sharing alleles means
having alleles that are identical by descent (IBD): both are copies of the
same allele in a recent common ancestor. Alleles can also be identical in
state but not identical by descent.

For example, consider the offspring of two parents and label the four allelic
copies in the parents by 1 - 4, independent of whether or not any are identical
in state.



Parents: A1A2 ×A3A4

Offspring: o1 = A1A3 o2 = A1A4 o3 = A1A3 o4 = A2A4

Here, o1 and o2 share one allele IBD, o1 and o3 share two alleles IBD, o1 and
o4 share no alleles IBD.

1. Offspring and one parent.

What is the covariance of genotypic values of an offspring (Go) and its par-
ent (Gp)? Denoting the two parental alleles at a given locus by A1A2, since
a parent and its offspring share exactly one allele, one allele in the offspring
came from the parent (say A1), while the other offspring allele (denoted
A3) came from the other parent. To consider the genetic contributions
from a parent to its offspring, write the genotypic value of the parent as
Gp = A+D. We can further decompose this by considering the contribution
from each parental allele to the overall breeding value, with A = α1 + α2,
and we can write the genotypic value of the parent as Gp = α1 + α2 + D12

where D12 denotes the dominance deviation for an A1A2 genotype. Like-
wise, the genotypic value of its offspring is Go = α1 + α3 + D13, giving

Cov(Go, Gp) = Cov(α1 + α2 + D12, α1 + α3 + D13)

We can use the rules of covariances to expand this into nine covariance
terms,

Cov(Go, Gp) =Cov(α1, α1) + Cov(α1, α3) + Cov(α1, D13)

+ Cov(α2, α1) + Cov(α2, α3) + Cov(α2, D13)

+ Cov(D12, α1) + Cov(D12, α3) + Cov(D12, D13)

From the construction of the α and D,

Cov(αx, αy) =
{

0 if x 6= y, i.e., not IBD
V ar(A)/2 if x = y, i.e., IBD

(3a)
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The last identity follows since V ar(A) = V ar(α1 +α2) = 2V ar(α1), so that

V ar(α1) = Cov(α1, α1) = V ar(A)/2

Hence, when individuals share one allele, they share half the additive ge-
netic variance. Likewise,

Cov(Dxy, Dwz) =
{

0 if xy 6= wz, i.e., both alleles are not IBD
V ar(D) if xy = wz, both alleles are IBD

(3b)
Two individuals only share the dominance variance when they share both
alleles. Using the above identities (3a and 3b), eight of the above nine
covariances are zero, leaving

Cov(Go, Gp) = Cov(α1, α1) = V ar(A)/2

2. Half-sibs.

Here, one parent is shared, the other is drawn at random from the popula-
tion;

The genetic covariance between half-sibs is the covariance of the genetic
values between o1 and o2.

To compute this, consider a single locus. First note that o1 and o1 share
either one allele IBD (from the father) or no alleles IBD (since the mothers



o
1

o2

are assumed unrelated, these sibs cannot share both alleles IBD as they
share no maternal alleles IBD). The probability that o1 and o2 both receive
the same allele from the male is one-half (because whichever allele the male
passes to o1, the probability that he passes the same allele to o2 is one-half).
In this case, the two offspring have one allele IBD, and the contribution to
the genetic covariance when this occurs is Cov(α1, α1) = V ar(A)/2. When
o1 and o2 share no alleles IBD, they have no genetic covariance.

Summarizing:

Case Probability Contribution
o1 and o2 have 0 alleles IBD 1/2 0
o1 and o2 have 1 allele IBD 1/2 V ar(A)/2

giving the genetic covariance between half sibs as

Cov(Go1 , Go2) = V ar(A)/4

3. Full-Sibs.

Both parents are in common,

What is the covariance of genotypic values of two full sibs?

As illustrated previously, three cases are possible when considering pairs
of full sibs: they can share either 0, 1, or 2 alleles IBD. Applying the same
approach as for half sibs, if we can compute: 1) the probability of each case;
and 2) the contribution to the genetic covariance for each case.



Each full sib receives one paternal and one maternal allele. The probability
that each sib receives the same paternal allele is 1/2, which is also the
probability each sib receives the same maternal allele. Hence,

Pr(2 alleles IBD) =

Pr( paternal allele IBD) Pr( maternal allele IBD) =
1
2
· 1
2

=
1
4

Pr(0 alleles IBD) =

Pr( paternal allele not IBD) Pr( maternal allele not IBD) =
1
2
· 1
2

=
1
4

Pr(1 allele IBD) = 1− Pr(2 alleles IBD)− Pr(0 alleles IBD) =
1
2

We saw above that when two relatives share one allele IBD, the contribution
to the genetic covariance is V ar(A)/2. When two relatives share both alleles
IBD, each has the same genotype at the locus being considered, and the
contribution is

Cov(α1+α2+D12, α1+α2+D12) = V ar(α1+α2+D12) = V ar(A)+V ar(D)

Putting these results together gives

Case Probability Contribution
o1 and o2 have 0 alleles IBD 1/4 0
o1 and o2 have 1 allele IBD 1/2 V ar(A)/2
o1 and o2 have 2 allele IBD 1/4 V ar(A) + V ar(D)

This results in a genetic covariance between full sibs of

Cov(Go1 , Go2) =
1
2

V ar(A)
2

+
1
4

(V ar(A) + V ar(D)) =
V ar(A)

2
+

V ar(D)
4

4. General degree of relationship.



The above results for the contribution when relatives share one and two
alleles IBD suggests the general expression for the covariance between
(noninbred) relatives.

If rxy = (1/2) Prob(relatives x and y have one allele IBD) + Prob(relatives x

and y have both alleles IBD), and uxy = Prob( relatives x and y have both
alleles IBD ), then the genetic covariance between x and y is given by

Cov(Gx, Gy) = rxyVA + uxyVD

If epistatic genetic variance is present, this can be generalized to

Cov(Gx, gy) = rxyVA + uxyVD + r2
xyVAA + rxyuxyVAD + u2

xyVDD + · · ·

Environmental Causes of Relationship Between Relatives

Shared environmental effects (such as a common maternal environment)
also contribute to the covariance between relatives, and care must be taken
to distinguish these environmental covariances from genetic covariances.

If members of a family are reared together they share a common environ-
ment. If the common environmental circumstances are different for each
family, the variance due to common environmental effects, VEc, causes
greater similarity among members of a family, and greater differences
among families, than would be expected from the proportion of genes
they share. Thus, VEc inflates the phenotypic covariance of sibs over what
is expected from their genotypic covariance.

Just as we decomposed the total genotypic value into components, some
shared, others not transmitted between relatives, we can do the same for
environmental effects. In particular, we can write the total environmen-
tal effect E as the sum of a common environmental effect shared by the



relatives Ec, a general environmental effect Eg , and a specific environmen-
tal effect Es. Hence, we can write E = Ec + Eg + Es, partitioning the
environmental variance as

VE = VEc + VEg + VEs

We can further consider different possible sources of the common environ-
mental effect Ec:

•EcS or EcL: Shared effects due to sharing the space/location (different
farms, cages)

• EcT : Temporal (changes in climactic or nutritional conditions over
time)

• EcM Maternal (pre- and post-natal nutrition)

Thus, we can partition the environmental variance as

VE = VEc + VEg + VEs

= VEcS + VEcT + VEcM + VEc + VEg + VEs

Common environment effects mainly contribute to resemblance of sibs,
but maternal environment effects can contribute to resemblance between
mother and offspring as well.

VEcS and VEcT can be eliminated, or estimated, by using the correct experi-
mental design, but it is very difficult (except by cross-fostering) to eliminate
or estimate VEcM from the covariance of full sibs. Further, cross-fostering
only removes post-natal (past birth) maternal effects, it does not remove
shared pre-natal maternal effects.

Phenotypic Covariance Among Relatives and h2

Summarizing the above results,



Relative Pair Cov t or b h2

Parent-offspring (P -O) VA/2 bOP = 1
2 VA/VP 2bOP

Midparent-offspring (MP -O) VA/2 *bOMP = VA/VP bOMP

Half-sibs (HS) VA/4 tHS = (1/4)VA/VP 4tHS

Full-sibs (FS) VA/2 tFS =
VA/2 + VD/4 + VEcm

VP
2tFS > h2

+VD/4 + VEcm

*The midparent-offspring slope is computed as follows: using the proper-
ties of covariances,

Cov(O, MP ) = Cov(0, [Pf + Pm]/2) =
Cov(0, Pf )

2
+

Cov(0, Pm)
2

=
VA/2

2
+

VA/2
2

= VA/2

The variance of the midparent values also follows from the properties of
covariances, with

V ar(MP ) = V ar

(
Pf + Pm

2

)
=

V ar(Pf )
4

+
V ar(Pm)

4
= VP /2

The last equality assumes equal trait variances in both parents and that
parental values are uncorrelated (i.e., no assortative mating). The regres-
sion slope equals the covariance between midparent and offspring divided
by the midparent variance,

bOPmp =
Cov(O, MP )
V ar(MP )

=
VA/2
VP /2

=
VA

VP


