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Lecture 3

Resemblance Between Relatives

The heritability of a trait, a central concept in quantitative genetics, is the proportion of variation
among individuals in a population that is due to variation in the additive genetic (i.e., breeding)
values of individuals:

h2 =
VA
VP

=
Variance of breeding values

Phenotypic Variance

Since an individual’s phenotype can be directly scored, the phenotypic variance VP can be estimated
from measurements made directly on the random breeding population.

In contrast, an individual’s breeding value cannot be observed directly, but rather must be inferred
from the mean value of its offspring (or more generally using the phenotypic values of other known
relatives). Thus estimates of VA require known collections of relatives. The most common situations
(which we focus on here) are comparisons between parents and their offspring or comparisons
among sibs. We can classify relatives as either ancestral or collateral, and we focus here on designs
with just one type of relative. In a more general pedigree, information from both kinds of relatives
is present.

Ancestral relatives: e.g., parent and offspring

* Measure phenotypes of one or both parents, +k offspring of each

Collateral relatives:

Full Sibs have both parents in common

*Measure k offspring in each family, but not the parents.
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cov(X,Y) = 0

Half Sibs have one parent in common

* Measure phenotype of k progeny of each family, but not the parents.

Key observation: The amount of phenotypic resemblance among relatives for the trait provides an indication
of the amount of genetic variation for the trait.

Covariances and Regressions

In order to analyze this resemblance, we first digress to discuss some standard statistical measures
of association.

The Covariance:

One of the most useful measures in quantitative genetics is the covariance between two variables,
which is a (linear) measure of association. Formally, the covariance, Cov(x, y), of two random
variables x and y is defined by

Cov(x, y) = E[(x− µx ) ∗ ( y − µy )]
= E(xy )− µxµy
= mean of the product− product of the means (1)

Here E() denotes the expected value or population mean of the quantity of interest.

As the figure (below) shows, if x and y are positively associated, then Cov(x, y) > 0, while if they
are negatively associated, then Cov(x, y) < 0. Note that the covariance is a measure of the linear
association between two variables — even though x perfectly predicts y is the far right panel, there
is no linear trend, so that Cov(x, y) = 0. While Cov(x, y) = 0 when x and y are independent, the
converse is NOT true, as Cov(x, y) = 0 does not necessarily imply that x and y are independent
(again, as evidenced by the last panel).



The covariance is estimated for a sample of n paired observations (xi, yi) by

Cov(x, y) =
1

n− 1

n∑
i=1

(xi − x )( yi − y )

=
1

n− 1

(
n∑
i=1

xi yi − nx y
)

(2)

[In the literature, σ(x, y) = σxy is often used to denote the population covariance (Equation 1), while
Cov(x) denotes its estimated value (Equation 2). In these notes, we will use Cov interchangeably
for both.]

The correlation, r(x, y) [ the notation ρ(x, y) and ρxy is also used ] is a scaled measure of the
covariance, where

r(x, y) =
Cov(x, y)√

V ar(x)V ar(y)

Since the range of correlation is restricted between to −1 and +1, it provides a standard metric
for comparing the amount of association between pairs of variables that show different levels of
variation. For example, a covariance of 10 implies a relatively small association if both variables
have a variance of 100 (r = 10/100 = 0.1), but complete association if both variables have a variance
of 10 (r = 10/10 = 1).

Covariance and Regressions:

There is a very close connection between the regression of one variable on another and the covariance
between the two variables. The slope by | x for the best linear fit of y given an observed value of x,
is given by

by | x =
Cov(x, y)
V ar(x)

The predicted value ŷ for y given we know x is

ŷ = y + by | x(x− x )

Useful Properties of Variances and Covariances:

• The covariance function is symmetric, Cov(x, y) = Cov(y, x)

• The covariance of a variable with itself is the variance, e.g.,Cov(x, x) = V ar(x)

• If a is a constant, then Cov(ax, y) = a · Cov(x, y)

• V ar(ax) = a2V ar(x). This follows since
V ar(ax) = Cov(ax, ax) = a2Cov(x, x) = a2V ar(x)

• Cov(x+ y, z) = Cov(x, z) + Cov(y, z), i.e., the covariance of a sum is the sum
of covariances. More generally,

Cov

 n∑
i=1

xi,
m∑
j=1

yj

 =
n∑
i=1

m∑
j=1

Cov(xi, yj)

• V ar(x + y) = V ar(x) + V ar(y) + 2Cov(x, y). Hence, the variance of a sum,
V ar(x+ y), equals the sum of the variances, V ar(x) + V ar(y), only when the
variables have a covariance of zero.



Phenotypic Resemblance Between Relatives
We now will use the covariance (and the related measures of correlations and regression slopes) to
quantify the phenotypic resemblance between relatives. Quantitative genetics as a field traces back
to R. A. Fisher’s 1918 paper showing how to use the phenotypic covariances to estimate genetic
variances, whereby the phenotypic covariance between relatives is expressed in terms of genetic
variances, as we detail below.

1. Parent-offspring regressions

There are three types of parent-offspring regressions: two single parent - offspring regressions
(plotting offspring mean versus either the trait value in their father Pf or their mother Pm), and the
midparent-offspring regression (the offspring mean regressed on the mean of their parents, the
midparent MP = (Pf + Pm)/2).

The slope of the (single) parent-offspring regression is estimated by

bOP =
Cov(O,P )
V ar(P )

, where Cov(O,P ) =
1

n− 1

(
n∑
i=1

Oi Pi − nO · P
)

where Oi is the mean trait value in the offspring of parent i and we examine n pairs of parent-
offspring. One could compute separate regressions using males (Pm) and females (Pf ), although the
later potentially includes maternal effect contributions and hence single-parent regressions usually
restricted to fathers.

The midparent-offspring regression slope is estimated by

bOMP =
Cov(O,MP )
V ar(MP )

, where Cov(O,MP ) =
1

n− 1

(
n∑
i=1

Oi Pmp,i − nO ·MP

)
where Oi is the mean trait value in the offspring of parents in pair i, where these parents have an
average trait value MPi and we examine n parent-offspring pairs .

Notice that all of the three regressions involve the covariance between parents and their offspring.

2. Collateral relationships: ANOVA

With collateral relatives, the above formulae for the sample covariance is not appropriate, for two
reasons. First, there are usually more than two collateral relatives per family. Second, even if families
consist of only two relatives, the order of the two is arbitrary — i.e., there is no natural distinction
between ”X” and ”Y ”, as exists in the case of parents and offspring.

Another way of stating the second point is that collateral relatives belong to the same class or
category. In contrast, parents and offspring belong to different classes. The covariance between
parents and offspring is an interclass (between-class) covariance, while the covariance between
collateral relatives is an intraclass (within-class) covariance. The analysis of variance (ANOVA),
first proposed in Fisher’s 1918 paper, is used to estimated intraclass covariances.

Under the simplest ANOVA framework, we can consider the total variance of a trait to consist of two
components: a between-group (also called the among-group) component (for example, differences
in the mean value of different families) and a within-group component (the variation in trait value
within each family). The total variance is the sum of the between and within group variances,

V ar(T ) = V ar(B) + V ar(W )

A key feature of ANOVA is that the between-group variance equals the within-group covariance. Thus,
the larger the covariance between members of a family, the larger the fraction of total variation that
is attributed to differences between family means.



To see this point, consider the following extreme patterns of phenotypes in full sib families:

Situation 1

Here the between group variance V ar(B) = 2.5, and the within-group variance V ar(W ) = 0.2.
This gives a total phenotypic variance of VP = V ar(T ) = V ar(B) + V ar(W ) = 2.7. Here:

•members of a family resemble each other more closely than they do members
of other families

• there are large differences in average phenotype between families

The resulting intraclass correlation t is

t =
Cov(full sibs)

VP
=
V ar(B)
VP

= 0.93

where we have used the ANOVA identity that the between-group variance equals the within-group
covariance (here, the covariance between full sibs).

Situation 2

Suppose the total (phenotypic) variance is the same as in situation 1, with V ar(T ) = VP = 2.7.
However, suppose there is no between-group variance (V ar(B) = 0), implying that V ar(W ) = 2.7
and the intraclass correlation is t = 0. Here:

• members of a family resemble each other no more than they do members of
other families

• there are no significant differences in average phenotype between families

• phenotypic resemblance is low, so genetic variation is low

Note that phenotypic resemblance among relatives can equivalently be consider as a measure of
the similiary among a group of relatives for the phenotype of a quantitative trait (the covariance
of family members), or the difference in phenotype between different families (the between-group
variance).



Causes of Phenotypic Covariance Among Relatives

Relatives resemble each other for quantitative traits more than they do unrelated members of the
population for two potential reasons:

• relatives share genes. The closer the relationship, the higher the proportion of
shared genes

• relatives share the same environment

The Genetic Covariance Between Relatives

The Genetic Covariance Cov(Gx, Gy) = covariance of the genotypic values (Gx, Gy) of the related
individuals x and y.

We will first show how the genetic covariances between parent and offspring, full sibs, and half sibs
depend on the genetic variances VA and VD. We will then discuss how the covariances are estimated
in practice.

Genetic covariances arise because two related individuals are more likely to share alleles than are
two unrelated individuals. Sharing alleles means having alleles that are identical by descent (IBD):
both are copies of the same allele in a recent common ancestor. Alleles can also be identical in state
but not identical by descent.

For example, consider the offspring of two parents and label the four allelic copies in the parents by
1 - 4, independent of whether or not any are identical in state.

Parents: A1A2 ×A3A4

Offspring: o1 = A1A3 o2 = A1A4 o3 = A1A3 o4 = A2A4

Here, o1 and o2 share one allele IBD, o1 and o3 share two alleles IBD, o1 and o4 share no alleles IBD.

1. Offspring and one parent.

What is the covariance of genotypic values of an offspring (Go) and its parent (Gp)? Denoting the
two parental alleles at a given locus by A1A2, since a parent and its offspring share exactly one
allele, one allele in the offspring came from the parent (say A1), while the other offspring allele
(denoted A3) came from the other parent. To consider the genetic contributions from a parent to
its offspring, write the genotypic value of the parent as Gp = A + D. We can further decompose
this by considering the contribution from each parental allele to the overall breeding value, with
A = α1 + α2, and we can write the genotypic value of the parent as Gp = α1 + α2 + D12 where
D12 denotes the dominance deviation for an A1A2 genotype. Likewise, the genotypic value of its
offspring is Go = α1 + α3 +D13, giving

Cov(Go, Gp) = Cov(α1 + α2 +D12, α1 + α3 +D13)

We can use the rules of covariances to expand this into nine covariance terms,

Cov(Go, Gp) =Cov(α1, α1) + Cov(α1, α3) + Cov(α1, D13)
+ Cov(α2, α1) + Cov(α2, α3) + Cov(α2, D13)
+ Cov(D12, α1) + Cov(D12, α3) + Cov(D12, D13)

From the construction of the α and D,

Cov(αx, αy) =
{

0 if x 6= y, i.e., not IBD
V ar(A)/2 if x = y, i.e., IBD

(3a)
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The last identity follows since V ar(A) = V ar(α1 + α2) = 2V ar(α1), so that

V ar(α1) = Cov(α1, α1) = V ar(A)/2

Hence, when individuals share one allele, they share half the additive genetic variance. Likewise,

Cov(Dxy, Dwz) =
{

0 if xy 6= wz, i.e., both alleles are not IBD
V ar(D) if xy = wz, both alleles are IBD

(3b)

Two individuals only share the dominance variance when they share both alleles. Using the above
identities (3a and 3b), eight of the above nine covariances are zero, leaving

Cov(Go, Gp) = Cov(α1, α1) = V ar(A)/2

2. Half-sibs.

Here, one parent is shared, the other is drawn at random from the population;

The genetic covariance between half-sibs is the covariance of the genetic values between o1 and o2.

To compute this, consider a single locus. First note that o1 and o1 share either one allele IBD (from
the father) or no alleles IBD (since the mothers are assumed unrelated, these sibs cannot share both
alleles IBD as they share no maternal alleles IBD). The probability that o1 and o2 both receive the
same allele from the male is one-half (because whichever allele the male passes to o1, the probability
that he passes the same allele to o2 is one-half). In this case, the two offspring have one allele IBD,
and the contribution to the genetic covariance when this occurs is Cov(α1, α1) = V ar(A)/2. When
o1 and o2 share no alleles IBD, they have no genetic covariance.

Summarizing:

Case Probability Contribution
o1 and o2 have 0 alleles IBD 1/2 0
o1 and o2 have 1 allele IBD 1/2 V ar(A)/2

giving the genetic covariance between half sibs as

Cov(Go1 , Go2) = V ar(A)/4

3. Full-Sibs.

Both parents are in common,

What is the covariance of genotypic values of two full sibs?



As illustrated previously, three cases are possible when considering pairs of full sibs: they can share
either 0, 1, or 2 alleles IBD. Applying the same approach as for half sibs, if we can compute: 1) the
probability of each case; and 2) the contribution to the genetic covariance for each case.

Each full sib receives one paternal and one maternal allele. The probability that each sib receives
the same paternal allele is 1/2, which is also the probability each sib receives the same maternal
allele. Hence,

Pr(2 alleles IBD) = Pr( paternal allele IBD) Pr( maternal allele IBD) =
1
2
· 1

2
=

1
4

Pr(0 alleles IBD) = Pr( paternal allele not IBD) Pr( maternal allele not IBD) =
1
2
· 1

2
=

1
4

Pr(1 allele IBD) = 1− Pr(2 alleles IBD)− Pr(0 alleles IBD) =
1
2

We saw above that when two relatives share one allele IBD, the contribution to the genetic covariance
is V ar(A)/2. When two relatives share both alleles IBD, each has the same genotype at the locus
being considered, and the contribution is

Cov(α1 + α2 +D12, α1 + α2 +D12) = V ar(α1 + α2 +D12) = V ar(A) + V ar(D)

Putting these results together gives

Case Probability Contribution
o1 and o2 have 0 alleles IBD 1/4 0
o1 and o2 have 1 allele IBD 1/2 V ar(A)/2
o1 and o2 have 2 allele IBD 1/4 V ar(A) + V ar(D)

This results in a genetic covariance between full sibs of

Cov(Go1 , Go2) =
1
2
V ar(A)

2
+

1
4

(V ar(A) + V ar(D)) =
V ar(A)

2
+
V ar(D)

4

4. General degree of relationship.

The above results for the contribution when relatives share one and two alleles IBD suggests the
general expression for the covariance between (noninbred) relatives.

If rxy = (1/2) Prob(relatives x and y have one allele IBD) + Prob(relatives x and y have both alleles
IBD), and uxy = Prob( relatives x and y have both alleles IBD ), then the genetic covariance between
x and y is given by

Cov(Gx, Gy) = rxyVA + uxyVD

If epistatic genetic variance is present, this can be generalized to

Cov(Gx, gy) = rxyVA + uxyVD + r2
xyVAA + rxyuxyVAD + u2

xyVDD + · · ·

Environmental Causes of Relationship Between Relatives

Shared environmental effects (such as a common maternal environment) also contribute to the
covariance between relatives, and care must be taken to distinguish these environmental covariances
from genetic covariances.



If members of a family are reared together they share a common environment. If the common envi-
ronmental circumstances are different for each family, the variance due to common environmental
effects, VEc, causes greater similarity among members of a family, and greater differences among
families, than would be expected from the proportion of genes they share. Thus, VEc inflates the
phenotypic covariance of sibs over what is expected from their genotypic covariance.

Just as we decomposed the total genotypic value into components, some shared, others not trans-
mitted between relatives, we can do the same for environmental effects. In particular, we can write
the total environmental effectE as the sum of a common environmental effect shared by the relatives
Ec, a general environmental effect Eg , and a specific environmental effect Es. Hence, we can write
E = Ec + Eg + Es, partitioning the environmental variance as

VE = VEc + VEg + VEs

We can further consider different possible sources of the common environmental effect Ec:

• EcS or EcL: Shared effects due to sharing the space/location (different farms,
cages)

• EcT : Temporal (changes in climactic or nutritional conditions over time)

• EcM Maternal (pre- and post-natal nutrition)

Thus, we can partition the environmental variance as

VE = VEc + VEg + VEs

= VEcS + VEcT + VEcM + VEc + VEg + VEs

Common environment effects mainly contribute to resemblance of sibs, but maternal environment
effects can contribute to resemblance between mother and offspring as well.

VEcS and VEcT can be eliminated, or estimated, by using the correct experimental design, but it
is very difficult (except by cross-fostering) to eliminate or estimate VEcM from the covariance of
full sibs. Further, cross-fostering only removes post-natal (past birth) maternal effects, it does not
remove shared pre-natal maternal effects.

Phenotypic Covariance Among Relatives and h2

Summarizing the above results,

Relative Pair Cov t or b h2

Parent-offspring (P -O) VA/2 bOP = 1
2 VA/VP 2bOP

Midparent-offspring (MP -O) VA/2 *bOMP = VA/VP bOMP

Half-sibs (HS) VA/4 tHS = (1/4)VA/VP 4tHS

Full-sibs (FS) VA/2 + VD/4 + VEcm tFS =
VA/2 + VD/4 + VEcm

VP
2tFS > h2

*The midparent-offspring slope is computed as follows: using the properties of covariances,

Cov(O,MP ) = Cov(0, [Pf + Pm]/2) =
Cov(0, Pf )

2
+
Cov(0, Pm)

2

=
VA/2

2
+
VA/2

2
= VA/2



The variance of the midparent values also follows from the properties of covariances, with

V ar(MP ) = V ar

(
Pf + Pm

2

)
=
V ar(Pf )

4
+
V ar(Pm)

4
= VP /2

The last equality assumes equal trait variances in both parents and that parental values are uncor-
related (i.e., no assortative mating). The regression slope equals the covariance between midparent
and offspring divided by the midparent variance,

bOPmp =
Cov(O,MP )
V ar(MP )

=
VA/2
VP /2

=
VA
VP



Resemblance Between Relatives Problems

1. Recall that the sm allele affecting Drosophila bristle number that segregates in an Australian
population. The environmental variance of bristle number is 6, and there are no common environ-
mental effects due to maternal environment or rearing families together is vials. Assuming the sm
locus is the only source of genetic variance, compute the regressions or intraclass correlations of
bristle number between the following relatives:

a: Offspring and midparent

b: Half sibs

c: Full sibs

Do the calculations for (i) populations where freq(sm) = 0.1 and (ii) populations where freq(sm) =
0.9.

2. What is the covariance between an individual’s breeding value A and its phenotypic value P ?
Hint, use the properties of the covariance and decompose P into its various genetic and environ-
mental components.

3. Using your result from (2), what is the best linear predictor of an individual’s breeding value
A given that we observe their phenotypic value P (i.e., the regression of A on P ). (Recall that, by
construction, the mean breeding value is zero.)



Solutions to Resemblance Between Relatives Problems

1. Recall for the sm locus that the genotypes ++ : +sm : smsm have values of 44 : 40 : 22.
Rescaling these to a : d : −a gives 11 : 7 : −11, or a = 11, d = 7. Hence, the genetic variances are
given by

VA = 2pq(a+ d(q − p)) = 2pq(11 + 7(q − p))

and
VD = (2pqd)2 = q2p2 196

where q = freq(sm). Hence:
q VA VD VG
0.1 0.97 1.59 2.56
0.9 2.99 1.59 4.58

Here VE = 6, giving VP = VG + 6.

a) Parent-offspring regression: b = VA/Vp, or 0.11 for q = 0.1, 0.28 for q = 0.9.

b) Half-sib correlation: tHS = (1/4)VA/VP , or 0.03 for q = 0.1, 0.07 for q = 0.9.

c) Full-sib correlation: tFS = (VA/2 + VD/4)/VP , or 0.10 for q = 0.1, 0.19 for
q = 0.9.

2.

Cov(P,A) = Cov(G+ E,A) = Cov(A+D + E,A) = Cov(A,A) = V ar(A)

3. The regression is A = µA + bA |P (P − µp). The slope is

bA |P =
Cov(P,A)

VP
=
Cov(A,A)

VP
==

V ar(A)
VP

= h2

Hence, the best predictor of an individual’s breeding value given that we only observe their phe-
notypic value P is

A = h2(P − µp)

as the mean breeding value (by construction) is zero, i.e.., µA = 0


