
Multivariate Selection Response and

Estimation of Fitness Surfaces

2nd Annual NSF short course on Statistical Genetics, Honolulu

This lecture serves as a brief introduction to two rather large topics: multivariate selection response
(response when selection is acting on a vector of traits) and fitness surface estimation (what is the
nature of selection acting on a vector of traits). These lecture notes are much more detailed that what
I will actually cover in my 90 minutes, but are designed to be self-contained for future reference.

Review: Breeding Values and the Breeders’ Equation

As way of background, we remind the reader of a couple of key concepts from single-trait quanti-
tative genetics. The first that the idea of a breeding value for an individual (this is also called its
additive-genetic value). An individual has a specific phenotypic value, say 200, but (by itself) this
tells us nothing about what their offspring will look like. Given a specific population, each indi-
vidual also has a breeding value, which tells us what fraction of their phenotype is transmitted to
their offspring. In particular, the predicted mean value of offspring is simply the overall population
mean plus the average breeding value of its two parents. Thus, breeding value is something that,
in theory, can be directly measured. Indeed, this is extensively done in animal breeding.

The additive genetic variance σ2
A is the variance in breeding values in a population, and the

heritability h2 is defined as the fraction of total (phenotypic) variation that is due to variation in
breeding values,

h2 =
σ2
A

σ2
z

The importance of h2 for our purposes is the Breeders’ equation,

R = h2S (1)

which relates the between-generation change in mean (the response R = µ(t+ 1)− µ(t)) with the
within-generation change in the mean from selection (the selection differential S = µ∗(t) − µ(t),
where µ∗ is the trait mean among selected individuals). Thus, we can have extensive selection
(non-zero S) and yet no evolution (a zero response) when there is very little variation in breeding
values.

Multitrait Selection: Background

Now suppose we are interested in the joint response of (say) two traits: height and weight. Suppose
h2 for height is 0.8 and 0.4 for weight, while S is 5 for height and 10 for weight. At first glance, one
might simply think that the joint response is 0.8 · 5 = 4 for weight and 0.4 · 10 = 4 for weight. This
is only correct if height and weight are uncorrelated for both phenotypic and breeding values.

For example, an unselected trait can have a non-zero S (within-generation change in mean)
due to selection on a phenotypically-correlated trait. Likewise, if breeding values are correlated, we
can see a correlated selection response where an unselected trait changes its mean over the next
generation (nonzero R) do to selection on another, genetically correlated, trait. Much of this lecture
deal with how to decouple these effects. Finally, a nonzero S for a particualr traits does not always
imply a nonzero R, even if that trait has a positive heritability – the univariate breeders equation (1)
breaks down when selection occurs on multiple traits.
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Key Concept: Phenotypic correlations influence within-generations changes, genetic correlations
influence between-generation changes.

When selection is applied to character X , character Y will show a correlated selection differential
when Y is phenotypically correlated with X . The figure below shows the change in the bivariate
mean before (+) and after (∗) selection. In this case, there is truncation selection only on trait X ,
but there is a correlated within-generation change in Y , with the mean of Y in the selected parents
differing from the mean before selection.

Note that the correlated selection differential simply measures the within-generation change. Whether
this translates into a between-generation change (i.e., a response to selection) depends on whether
there is any genetic correlation between the characters. The reason for this can be illustrated by a
hypothetical example, with truncation selection only on X . Suppose that rA = 0 and rE > 0 (i.e.,
no correlation in breeding values, but environmental values within an individual are correlated);
therefore rP and SY will be > 0. The selected individuals, however, will not have higher than
average breeding values for Y , in spite of their higher than average phenotypic values. Therefore
the correlated response will be zero, regardless of the magnitude of h2

Y and SY .

Basic Matrix Algebra

The response to selection of several traits is best handled using matrix notation, which we briefly
introduce here. A matrix is an array of elements, e.g.

A =
(
a b
c d

)
, B =

(
e f
g h

)
, C =

(
i
j

)
When the matrix consists of only a single row or a single column, it is called a vector, whereas A
and B are square matrices. C above is a column vector (consisting of a single column of entries).

Matrix multiplication is defined in such a fashion that the order of multiplication of the matrices is
critical. For the above matrices,

AB =
(
ae+ bg af + bh
ce+ dg cf + dh

)
, BA =

(
ae+ cf eb+ df
ga+ ch gd+ dh

)
and

AC =
(
ai+ bj
ci+ dj

)
, BC =

(
ei+ fj
gi+ hj

)
while the matrix products CA and CB are not defined. The identity matrix, I, which serves a role
similar to 1 in scaler multiplication/division, is given by (for the 2 x 2 cases),

I =
(

1 0
0 1

)
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Note that AI = IA = A. Finally, the Inverse A−1 of a square matrix A is defined as satisfying

A-1A = AA-1 = I (2a)

For a 2 x 2 matrix,

A−1 =
1

ad− bc

(
d −b
−c a

)
(2b)

The role of the inverse and identity matrix is in solving systems of equations. Suppose we are trying
to solve for x in AX = C. Premultiplying both sides by the inverse of A gives

A-1Ax = A-1C

noting that A-1Ax = Ix = x gives x = A-1C

The Multivariate Breeders’ Equation

We now have all the pieces in place to express the response in matrix form. Suppose there are n
traits under selection and we place the n selection differentials into a column vector S,

S =


S1

S2
...
Sn


Likewise, define the phenotypic and additive genetic covariance matrices, P and G, respectively,
as matrices whose element in the ith row and j column is the covariance (phenotype or additive
genetic) between traits i and j. Note that the diagonal elements are the variances. For example, for
two characters

P =
(

σ2(P1) σ(P1, P2)
σ(P1, P2) σ2(P2)

)
, and G =

(
σ2(A1) σ(A1, A2)
σ(A1, A2) σ2(A2)

)
Let R denote the column vector of selection responses, so that the ith element in the list is Ri, the
change in the mean of character i following one generation of selection. The response to selection
becomes

R = GP−1S (3)

This isthe multivariate breeders’ equation. Recall that the response for a single character under
selection is R = h2S = σ2

A(σ2
P )−1S. In the multivariate case, the genetic and phenotypic variance

are replaced by variance-covariance matrices and we use matrix inversion and multiplication.

The Directional Selection Gradient

The multivariate breeder’s equation can also be written as

R = Gβ (4a)

where
β = P−1S (4b)

is called the directional selection gradient. The ith element of β, βi, measures the amount of direct
selection on traitXi (i.e., the effects of correlated selection differentials are removed). From the rules
of matrix multiplication, the response in trait j can be written as

Rj = σ2(Aj)βj +
∑
i6=j

σ(Aj , Ai)βi (5a)
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where the first term is the change due to direct selection on trait j and the sum is the indirect
contribution to the response due to the correlated response of selection on other traits. Likewise
note that Pβ = S, so that the selection differential on trait j can be written as

Sj = σ2(Pj)βj +
∑
i6=j

σ(Pj , Pi)βi (5b)

where the first term represents the contribution from direct selection on trait j and the sum term the
contribution to the within-generation change due to direct selection on phenotypically correlated
traits.

Realized Selection Gradients

The normal use of the multivariate breeder’s equation is to predict response R= Gβ given the vector
of directional selection gradients β and the additive-genetic covariance matrix G. However, we can
also use this equation to estimate the long-term selection gradient on a trait given some observed
amount of population differentation, with R = µ1 − µ2, where µi is the mean of population i.
Pre-multiplying both sides of the breeder’s equation by G−1 recovers

β = G−1R (6)

Equation 6 requires the strong assumption of constancy of G over long periods of time.

Example 1. Suppose you are looking at nose lenght (z1) and head size (z2) between a population of
mice on the mainland and a divergent population on a nearby island. On the mainland, µ1 = 20 and
µ2 = 30, while on the island µ1 = 10 and µ2 = 35, so that

R =
(

20− 10
30− 35

)
=
(

10
−5

)
Suppose the genetic covariance matrix for these two traits has been stable over time and is

G =
(

20 −10
−10 40

)
The realized selection gradient to obtain this response is estimated as

β =
(

20 −10
−10 40

)−1( 10
−5

)
=
(

0.5
0

)
Thus, even though character 2 decreased on the island, there was no direct selection on this trait, rather
this change is entirely due to a correlated response to direct selection to increase trait 1.

Evolutionary Constraints Imposed by Genetic Correlations

One immediate consequence of the multivariate Breeders’ Equation (5a) is that a character under
selection need not necessarily change in the direction most favored by natural selection if the corre-
lated response on other characters under selection is stronger. For example, fitness may maximally
increase if µ2 decreases, so that β2 < 0. However, if the sum of correlated responses is positive, then
µ2 may increase. Thus, a character may be dragged off its optimal value by correlated responses
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on other traits. However, once these responses (driven by strong directional selection) reach their
equilibrium, then βi ' 0, at which point the response from β2 dominates.

In general, R 6= β, the direction of change that results in the largest increase in mean population
fitness. Thus, the effect of the additive-genetic covariance matrix G is to constrain the selection
response from its optimal value. The mean vector changes in the direction most favored by selection
if and only if

Gβ = λβ (7)

which only occurs when β is an eigenvector of G (eigenvalues/eigenvectors are reviewed below).
Note that even if G is a diagonal matrix (there is no correlation between the additive genetic values
of the characters under selection) Equation 7 is usually not satisfied. In fact, only when we can write
G = σ2

AI is Equation 7 satisfied for arbitrary β. Thus, only when both (i) all characters have the
same additive genetic variance and (ii) there no additive genetic covariance between characters is
the response to selection always in the direction (β) most favored by natural selection. Differences
in the amounts of additive genetic variances between characters, and/or non-zero additive-genetic
covariances, both impose constraints on character evolution.

Example 2. Consider the following phenotypic and genetic covariance matrices and vector of selec-
tion differentials,

S =
(

10
−10

)
, P =

(
20 −10
−10 40

)
, G =

(
20 5
5 10

)
First, assuming no selection on other traits, what is the true nature of selection on these two traits?

β = P−1S = P =
(

20 −10
−10 40

)−1( 10
−10

)
=
(

0.43
−0.14

)
Thus, mean population fitness is maximized by increasing trait one and decreasing trait two. What
does the actual response look like?

R = Gβ =
(

20 5
5 10

)(
0.43
−0.14

)
=
(

7.86
0.71

)
Thus, the actual response to selection is to increase both traits. The figure below shows the directions
of the vectors of optimal response β and the actual response R.

Is There Genetic Variation in the Multivariate Direction of Selection?

One subtle, but extremely important, feature of multivariate response is that there can be genetic
variation (i.e., non-zero heritabilities) in all traits under selection, but little or no genetics variation
along direction that selection is trying to move the population. To see this point, consider the
following example.
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Example 3. Suppose the G matrix is:

G =
(

10 20
20 40

)
Suppose that selection is optimized by increasing trait one by two units for every unit trait two is
decreased, so that

β =
(

2
−1

)
The resulting response is

R = Gβ =
(

0
0

)
Thus, even though there is considerable additive genetic variation in both traits 1 and 2, there is no
response. This occurs because G as a zero eigenvalue, with corresponding eigenvector that exactly
corresponds to ourβ. Hence, there is NO additive genetic variance along this particular direction, and
hence no response. Likewise, if ourβwas only a few degress away from the eigenvector, the resulting
response would be very small.

Example 4. Blows et al. (2004) examined 8 cuticular hydrocarbons (CHCs) in the fly Drosophila serata,
which are important cues in mate choice. The first two eigenvalues account for 78% of the original
additive genetic variation. Blows also estimated the selection gradient on these traits, which play a
role in sexual selection. The resulting two leading eigenvectors and β were as follows:

e1 =



0.232
0.132
0.255
0.536
0.449
0.363
0.430
0.239


, e2 =



0.319
0.182
0.213
−0.436

0.642
−0.362
−0.014
−0.293


, β =



−0.099
−0.055

0.133
−0.186
−0.133

0.779
0.306
−0.465


Let’s look at the angle θ between the direction of maximal genetic variation (e1) and and the optimal
direction favored by selection (β). Recalling that the angle between two vectors is given by (see
Equation 11 below),

cos(θ) =
eT1 β

||e1|| ||β ||
=

eT1 β√
eT1 e1

√
βTβ

=
0.147496√

0.99896 · 0.999502
= 0.1476

Giving θ = cos−1(0.1476) = 81.5 degrees. Thus, the vector of maximal genetic variation and the
vector of optimal response are almost at right angles. Likewise, the angle betweene2 andβ isθ = 99.65
degrees. Very little of the standing additive genetic variation is in the direction of the optimal selection
response. While all of the CHC traits showed significant variation, and indeed responded to artifical
selection, there is very little useable genetic variation in the direction that sexual selection is trying to
move the population.
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Schluter’s Genetic Line of Least Resistance, gmax

The notion of multivariate constraints to response, even when all of the component traits show
additive variation, traces back to Dickerson (1955). It is somewhat surprising then that it took over
forty years for the first attempts to describe the potential geometry of these constraints. Schluter
(1996) defined the genetic line of least resistance gmax as the eigenvector corresponding to the
lead (largest) eigenvalue of G (this is just the first principal component of G). Schluter looked at
morphological divergence data in a small set of vertebrates (stickleback fish, mice, and three species
of birds). Let d denote the vector of differences between the species means, which we can scale to
unit length by

d′ =
d√
dTd

(8)

Using this scaled divergence vector, we can look at the angle θ between d and gmax, namely the
angle between the vector of divergence and the vector (or direction) of maximal additive genetic
variation, where

θ = cos−1(gTmaxd
′) (9)

Schluter observed the following in his (small) data set

(i). The smallest values of θ (departures from the direction of maximal genetic variation) occurred
between the most recently diverged species.

(ii). The greater the value of θ (angle between the maximal genetic variation and direction of
actual divergence), the smaller the total amount of divergence.

(iii). The effect gmax on the absolute amount of divergence showed no tendency to weaken with
time (out to at least 4 million years).

Thus there is strong empirical evidence that populations tend to evolve along lines of least genetic
resistance (i.e., lines of maximal genetic variance). There are two ways to interpret this observation.
The first is that such lines constraint selection. The second is that such lines are also the lines
upon which maximal genetic drift occurs (the between-mean variance being proportion to the total
amount of genetic variation).

McGuigan et al. (2005) offered a very interesting study that offered both some support and
some counterexamples to Schulter’s general findings. They looked at divergence in two species of
Australian rainbow fish (genus Melanotaenia) that each have populations differentially adapted to
lake vs. stream hydrodynamic environments. Divergence between species, as well as divergence
within replicate hydrodynamic populations within each species, followed Schluter’s results (small
angular departures from d and gmax). However, hydrodynamic divergence between lake vs. stream
populations in each species were along directions that we quite removed from gmax (as well as the
other eigenvectors of G that described most of the genetic variation). Thus, the between- and
within-species divergence within the same hydrodynamic environment are consistent with drift,
while hydrodynamic divergence had to occur against a gradient of very little genetic variation. Of
course, one cannot rule out that the adaptation to these environments resulted in a depletion of
genetic variation along these directions.

*Quantifying Multivariate Constraints to Response

Due to time constraints, most of the material in this section will not be covered my formal lecture.
Here, we provide some of the background on the geometry of matrices and then use this to quantify
constraints to selection response.
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The Geometry of a Matrix

As many of the above examples highlight, we can think about the response to selection in terms of
geometry. For example, constraints can be measured by the difference between the optimal vector
and the actual response. Hence, we start with a slight digression on the geometry of matrices and
vectors.

Comparing Vectors: Lengths and Angles

Figure 1. Some basic geometric concepts of vectors. While we use examples from two dimensions, these
concepts easily extend to n dimensions. A: A vector x can be thought of as an arrow from the origin to a point
in space whose coordinates are given by the elements of x. B: Multiplying a vector by−1 results in a reflection
about the origin. C: One measure of the difference in direction between two vectors is the angle θ between
them. D: Proj(b on a) is the vector resulting from the projection of b on a. Note that the resulting projection
vector is either in the same direction as a or in the direction of the reflection of a, as seen for Proj(c on a).

As Figure 1 shows, a vector x can be treated as a geometric object, an arrow leading from the
origin to the n dimensional point whose coordinates are given by the elements of x. By changing
coordinate systems, we change the resulting vector, potentially changing both its direction (rotating
the vector) and length (scaling the vector). This geometric interpretation suggests several ways
for comparing vectors, such as the angle between two vectors (FIgure 1C) and the projection of one
vector onto another (Figure 1D).

Consider first the length (or norm) of a vector. The most common length measure is the
Euclidean distance of the vector from the origin, ||x||, which is defined by

||x|| =
√
x2

1 + x2
2 + · · ·+ x2

n =
√

xTx (10a)

Hence for any scalar a, ||ax|| = |a| ||x||. If a < 0, the vector ax is scaled by |a| and reflected about
the origin as is shown in Figure 1. Similarly, the Euclidean distance between x and y is

||x− y||2 =
n∑
i=1

(xi − yi)2 = (x− y)T (x− y) = (y− x)T (y− x) (10b)

Vectors can differ by length, direction, or both. The angle θ between two vectors x and y
provides a measure of how much they differ in direction (Figure 1C). If the vectors satisfy ax = y
(where a > 0) they point in exactly the same direction, and they are defined to be zero degrees apart.
If a < 0, they are exactly 180 degrees apart and differ in direction only by a reflection of the axes
about the origin. At the other extreme, two vectors can be at right angles to each other (θ = 90◦ or
270◦), in which case the vectors are said to be orthogonal. Orthogonal vectors of unit length are
further said to be orthonormal. For any two n dimensional vectors, θ satisfies

cos(θ) =
xTy
||x|| ||y|| =

yTx
||x|| ||y|| (11)
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Note that since cos(90◦) = cos(270◦) = 0, two vectors are orthogonal if and only if their inner
product is zero, xTy = 0.

Another way to compare vectors, illustrated in Figure 1D, is to consider the projection of one
vector on another. For any two n dimensional vectors, the projection of x on y generates a vector
defined by

Proj(x on y) =
xTy
yTy

y =
xTy
||y||2 y =

(
cos(θ)

||x||
||y||

)
y (12a)

If ||y|| = 1, then
Proj(x on y) = (xTy) y = (cos(θ) ||x|| ) y (12b)

Note that since the term involving cosines in Equations 12a/b is a scalar, the vector resulting from
the projection of x on y is in the same direction as y, unless 90◦ < θ < 270◦ in which case cos(θ) < 0
and the projection vector is in exactly the opposite direction (the reflection of y about the origin).
The length of the projection vector is

||Proj(x on y)|| = | cos(θ)| ||x|| (12c)

If two vectors lie in exactly the same direction, the projection of one on the other just recovers the
original vector (as Proj(x on y) = x). Conversely, if two vectors are orthogonal, then the projection
of one on the other yields a vector of length zero. An important use of projection vectors is that
if y1,y2, · · · ,yn is any set of mutually orthogonal n dimensional vectors, then any n dimensional
vector x can be represented as the sum of projections of x onto the members of this set,

x =
n∑
i=1

Proj(x on yi) (13)

Matrices Describe Vector Transformations

When we multiply a vector x by a matrix A to create a new vector y = Ax, A rotates and scales the
original vector x to give y. Thus A describes a transformation of the original coordinate system of x
into a new coordinate system y (which has different dimensions from x unless A is square).

Example 5. Suppose

G =
(

4 −2
−2 2

)
β =

(
1
3

)
hence

R = Gβ =
(
−2

4

)
The resulting change in character means are different from those most favored by natural selection.
Selection favors an increase in z1, but when the genetic variance-covariance structure is taken into
account, the resulting change in z1 is negative. Taking the appropriate inner products, we find ||β|| =√

10, ||R|| =
√

20, and βTR = 10. Applying Equation 11,

cos θ =
βTR
||R|| ||β|| =

1√
2

Thus the response vector is cos−1(1/
√

2) = 45◦ from the selection gradient, implying that the con-
straints introduced by the genetic variance-covariance matrix moves the response vector considerably
away from the direction most favored by natural selection, as the following figure shows :
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Eigenvalues and Eigenvectors

The eigenvalues and their associated eigenvectors of a square matrix describe the geometry of the
transformation induced by that matrix. Eigenvalues describe how the original coordinate axes are
scaled in the new coordinate system while eigenvectors describe how the original axes are rotated.

Suppose that the vector y satisfies the matrix equation

Ay = λy (14)

for some scalar valueλ. Geometrically, this means that the new vector resulting from transformation
of y by A points in the same direction (or is exactly reflected about the origin if λ < 0) as y. For such
vectors, the only action of the matrix transformation is to scale them by some amount λ. Hence, it is
natural that the system of such vectors along with their corresponding scalar multipliers completely
describes the geometry of the transformation associated with A. Vectors satisfying Equation 14 are
referred to as eigenvectors and their associated scaling factors are eigenvalues. If y is an eigenvector,
then ay is also an eigenvector as A(ay) = a(Ay) = λ(ay). Note, however, that the associated
eigenvalue remains unchanged. Hence, we typically scale eigenvectors to be of unit length to
give unit or normalized eigenvectors. In particular, if ui is the eigenvector associated with the ith
eigenvalue, then the associated normalized eigenvector is ei = ui/||ui||.

The eigenvalues of square matrix A of dimension n are solutions of Equation 14, which is
usually expressed as the characteristic equation |A− λI| = 0. This can be also be expressed using
the Laplace expansion as

|A− λI| = (−λ)n + S1(−λ)n−1 + · · ·+ Sn−1(−λ)1 + Sn = 0 (15)

where Si is the sum of all principal minors (minors including diagonal elements of the original
matrix) of order i (minors are defined in Chapter 8 of Lynch and Walsh). Finding the eigenvalues
thus requires solving a polynominal equation of order n. In practice, for n > 2 this is usually done
numerically, and most statistical and numerical analysis packages offer routines to accomplish this
task.

Two of these principal minors are easily obtained and provide some information on the nature
of the eigenvalues. The only principal minor having the same order of the matrix is the full matrix
itself, so that Sn = |A |, the determinant of A. S1 is also related to an important matrix quantity,
the trace. This is denoted by tr(A) and is the sum of the diagonal elements of the matrix,

tr(A) =
n∑
i=1

aii

Observe that S1 = tr(A) as the only principal minors of order one are the diagonal elements
themselves, the sum of which equals the trace. The trace and determinant can be expressed as
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functions of the eigenvalues,

tr(A) =
n∑
i=1

λi and |A| =
n∏
i=1

λi (16)

Hence A is singular (|A| = 0) if and only if at least one eigenvalue is zero.
Let ei be the (unit-length) eigenvector associated with eigenvalue λi. If the eigenvectors of A

can be chosen to be mutually orthogonal, e.g., eTi ej = 0 for i 6= j, we can express A as

A = λ1e1eT1 + λ2e2eT2 + · · ·+ λneneTn (17a)

This decomposition is called the spectral decomposition of A. Hence,

Ax = λ1e1eT1 x+ λ2e2eT2 x+ · · ·+ λneneTnx

= λ1Proj(x on e1) + λ2Proj(x on e2) + · · ·+ λnProj(x on en) (17b)

The last equality follows since ei(eTi x) = (eTi x)ei as eiTx is a scalar.

Example 6. Determine the eigenstructure (the set of eigenvalues and their associated unit eigen-
vectors) of the genetic variance-covariance matrix G given in Example 5. Writing the characteristic
equation,

|G− λI| =
∣∣∣∣( 4− λ −2
−2 2− λ

)∣∣∣∣
= (4− λ)(2− λ)− (−2)2 = λ2 − 6λ+ 4 = 0

Alternatively, using the Laplace expansion, tr(G) = 4 + 2 = 6 and |G| = 4 ∗ 2 − (−2)2 = 4 also
recovers the characteristic equation, which has solutions

λ1 = 3 +
√

5 ' 5.236 λ2 = 3−
√

5 ' 0.764

The associated unit eigenvectors are

e1 '
(
−0.851

0.526

)
e2 '

(
0.526
0.851

)
These are orthogonal as e1

T e2 = 0. From Example 5, ||β|| =
√

10, while e1
Tβ ' 0.727 and

e2
Tβ ' 3.079. Since ||e1|| = ||e2|| = 1,

cos(θ|e1,β) ' 0.727√
10
' 0.201 and cos(θ|e2,β) ' 3.079√

10
' 0.974

giving the angle between e1 and β as θ(e1,β) ' 78.4◦, while θ(e2,β) ' 13.2◦. The corresponding
scaled projections of β on these eigenvectors are

λ1Proj(β on e1) '
(
−3.236

2

)
and λ2Proj(β on e2) '

(
1.236

2

)
From Equation 17b, β is the sum of these two projections. As Figure 2 shows, the eigenstructure of
G explains the unusual behavior of response seen in Example 5. The eigenvector associated with
the leading eigenvalue λ1 accounts for most of the variation inherent in G, and this eigenvector
corresponds to a strong negative correlation between the additive genetic values of z1 and z2. Hence,

Multivariate Selection Response and Estimation of Fitness Surfaces, pg. 11



even thoughβ points in very much the same direction as e2, because λ1 >> λ2 the projection ofβ on
e1 gives a vector of greater length than the projection on e2, and it is this projection vector that results
in the decrease in µz1 .

Figure 2. Left: The scaled eigenvectors associated with the variance-covariance matrix G from Example 5.
Note that e1 and e2 are orthogonal and hence can be thought of as describing a new coordinate system. Right:
Since λ1 >> λ2, the leading eigenvector largely dominates the transformation. This is shown by taking the
projections of β on each of these eigenvectors. Even though β is nearly orthogonal to e2, the projection of
β on e1 yields a vector of greater length than the projection of β on e2. From Equation 17b, the response to
selection R is the sum of these two projections.

Blow’s Matrix Subspace Projection

Schluter’s approach only deals with the leading eigenvector of G. If the leading eigenvector dom-
inates all of the others (and hence accounts for most of the variance), then this makes sense. (The
fraction of variation accounted from along the direction of the k-th eigenvalue is just λk/

∑
λi =

λk/trace(G)). However, in many cases the first few eigenvalues together may account for most
of the variation, so that focusing only on the largest may miss a significant fraction of the varia-
tion. Blows et al. (2004) suggested a matrix subspace projection approach to consider more of the
eigenvectors of G.

A common problem is that the G matrix is ill-conditioned, in that λmax/λmin is large. In such
cases (as well as others!) estimation of the G matrix may result in estimates of eigenvalues that are
very close to zero or even negative. Negative estimates arise due to sampling, but values near zero
may reflect the true biology in that although n traits may be measured, there is very little variation in
certain dimensions. In such cases, one might extract a subset of G, for example by taking the leading
k eigenvectors. This set forms a subspace of the full genetic variance described by G. It is usually
the case the G contains several (perhaps most!) eigenvalues that account for almost no variation
(i.e, λi/tr(G) ' 0). In such cases, most of the genetic variation residues on a lower-dimensional
subspace.

We can examine the genetic constraints on this subspace by looking at the projection of the full
space into this subspace (this is just the matrix extension to the projection of one vector onto another
that was discussed earlier). Suppose we have included the first k eigenvectors in our analysis. We
can use these to form a projection matrix by first defining the matrix A, where

A = ( e1, e2, · · · , ek ) (18)

so that the A matrix consists of the first k eigenvectors of G. The resulting projection matrix becomes

Proj = A
(
ATA

)−1
AT (19a)
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and in particular, the projection of the optimal vector of selection response β onto this subspace of
G (the subspace that essentially contains all of the useable additive variation) is given by

p = Projβ = A
(
ATA

)−1
ATβ (19b)

Example 7. Let’s reconsider Blow’s CHC data. The first two eigenvalues account for roughly 80%
of the total variation in G, i.e., (λ1 + λ2)/

∑
λi = 0.78. The resulting A matrix becomes

A = ( e1, e2 ) =



0.232 0.319
0.132 0.182
0.255 0.213
0.536 −0.436
0.449 0.642
0.363 −0.362
0.430 −0.014
0.239 −0.293


Applying Equation 19a gives an 8 ×8 projection matrix (not show here), and Equation 19b gives the
projection vector b of β onto the subspace given by A as

p = Projβ =



−0.0192
−0.0110

0.0019
0.1522
−0.0413

0.1142
0.0658
0.0844


The angle θ between β and the projection of β into the subspace of the genetic variance is given by

θ = cos−1

 pTβ√
pTp

√
βTβ

 = cos−1 (0.223) = 77.1degrees

Thus the direction of optimal response is 77 degrees away from the total genetic variation (78%)
described by this subspace.

Describing Phenotypic Selection: Introductory Remarks

How do particular character values influence the fitness of an individual? Our interest in a particular
character may be in predicting how selection changes it over time, which requires knowledge of the
genetics of that character. Alternately, we may simply wish to explore the ecological implications
of a character by examining how expected fitness changes with character value.

One general way of detecting selection on a character is to compare the (fitness-weighted)
phenotypic distribution before and after some episode of selection. One important caveat is that
growth or other ontogenetic changes, immigration, and environmental changes can also change the
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phenotypic distribution. We must take great care to account for these factors. Typically, selection on
a character is measured by considering changes in the mean and variance, rather than changes in the
entire distribution. In many cases the entire selection response following a generation of selection
can be reasonably predicted from the within-generation change in the mean and variance. As we
will see below, there are a number of subtle issues in assigning fitnesses to phenotypes. Again,
we remind the reader of the most important caveat, that of dealing with the effects of selection on
correlated characters, which will be considered in shortly.

Figure 3. Selection is usually classified into three basic forms depending on the local geometry of W (z):
stabilizing (A), directional (B), and disruptive (C). As D illustrates, populations can simultaneously experience
multiple forms of selection.

Fitness Surfaces

W (z), the expected fitness of an individual with phenotype z, describes a fitness surface (or
equivalently a fitness function), relating fitness and character value. The relative fitness surface
w(z) = W (z)/W is often more convenient thanW (z), and we use these two somewhat interchange-
ably. The nature of selection on a character in a particular population is determined by the local
geometry of the individual fitness surface over that part of the surface spanned by the population
(Figure 3). If fitness is increasing (decreasing) over some range of phenotypes, a population having
its mean value in this interval experiences directional selection. IfW (z) contains a local maximum,
a population with members within that interval experiences stabilizing selection. If the population
is distributed around a local minimum, disruptive selection occurs. As is illustrated in Figure 4D,
when the local geometry of the fitness surface is complicated (e.g., multimodal) the simplicity of
description offered by these three types of selection breaks down, as the population can experience
all three simultaneously.

Mean population fitness W is also a fitness surface, describing the expected fitness of the
population as a function of the distribution of phenotypes in that population,

W (θ) =
∫
W (z) p(z, θ) dz

Hence, mean fitness can be thought of as a function of the parametersθ of the phenotypic distribution.
For example, if z is normally distributed, mean fitness is a function of the mean µz and variance σ2

z

for that population.
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To stress the distinction between the W (z) and W fitness surfaces, we call the former the
individual fitness surface, latter as the mean fitness surface. Knowing the individual fitness
surface allows us to compute the mean fitness surface for any specified distribution of phenotypes
p(z), but the converse is not true. The importance of the mean fitness surface is that it provides one
way of describing how the population changes under selection. When the breeders’ equation holds,
the first two partial derivatives of W with respect to µz describe the change in mean and variance.
Mean fitness surfaces are considerably smoother than the individual fitness surfaces that generate
them (Figure 4). The individual fitness surface may have discontinuities and rough spots — regions
where very small changes in phenotypic value result in large changes in individual fitness. Mean
population fitness averages over W (z), smoothing out these rough spots.

Figure 4. In this example, a small change in z can result in a large change in the individual fitness surface
W (z). However, since the mean population fitness W (µz) averages individual fitnesses over the phenotypic
distribution, shown as the stippled curve, small changes in µz result in only small changes in W (µz).

Describing Phenotypic Selection: Changes In Phenotypic Moments

Selection for particular phenotypes changes in the phenotypic distribution (although it need not
change all moments, for example, the mean may be unchanged). Thus, selection is detected by
testing for differences between the distribution of phenotypes before and after some episode of
selection. Nonparametric tests such as the Kolmogorov-Smirnov test have the advantage of making
no assumptions about the form of the distribution, but suffer from low power. While complete
distributions can be compared, the most common procedure for detecting selection is to test for
changes in phenotypic moments. Standard statistical tests for differences in means (t-tests) and
variances (F -tests) can be used, but these tests rely on normality assumptions that are often violated,
and nonparametric tests are often more appropriate. Differences in means can be tested using the
Wilcoxon-Mann-Whitney test, while Conover’s squared rank test (Conover 1980) can be used to
test for changes in variances. Other nonparametric tests for changes in variance exist, but care must
be exercised, as some (e.g., the Siegel-Tukey test) are quite sensitive to differences in means. While
these issues are important, the main problem in detecting selection on a character is that changes
in the moments may be due entirely to selection on phenotypically correlated characters (to be
discussed shortly). Keeping this important caveat in mind, we now examine measures of selection
for single characters.

The Robertson-Price Identity

If p(z) is the density of phenotype z before selection, then the density after selection is

ps(z) =
W (z) p(z)∫
W (z) p(z) dz

=
W (z) p(z)

W
= w(z) p(z) (20a)

The mean trait value following selection becomes

µs =
∫
z ps(z) dz =

∫
z w(z) p(z) dz = E[ z w(z) ] (20b)
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Note also that
w =

∫
w(z) p(z) dz =

1
W

∫
W (z) p(z) dz = W/W = 1

i.e., the mean relative fitness in a population is always equal to one, and that since µ = E(z) ·E(w) =
E(z) · 1, the directional selection differential may be rewritten as

S = µs − µ = E[ z w(z) ]− E(z)E(w) = σ[ z, w(z) ] (21)

Thus, the directional selection differential is equivalent to the covariance of phenotype and relative fitness.
This relationship, first noted by Robertson (1966), was greatly elaborated on by Price (1970, 1972).
We refer to this very useful result as the Robertson-Price identity.

Directional Selection: Differentials (S) and Gradients (β)

We have extensively discussed the standard measure of selection on the mean, the directional
selection differential, S = µ∗ − µ, the within-generation change in the mean. An alternative
measure for the change in the mean follows from the Robertson-Price identity. Define the directional
selection differential β by

β =
S

σ2
z

=
σ(z, w)
σ2
z

(22)

Recall that the slope of the regression of y given x is σ(x, y)/σ2
x. Thus, β is the slope of the least-

squares linear regression of relative fitness (w) on phenotypic value (z), w(z) = 1 + β(z − µz) + e.
Substituting S = σ2

z β into R = h2S gives

R = σ2
A β (23a)

Noting that σ2
A = h2σ2

z , we can rearrange 23a to give

R

σ2
z

= h2β (23b)

so that h2β is the expected response in units of phenotypic variance. The importance of the selection
gradient is that under appropriate conditions it relates how a change in the trait mean maps into a
change in the mean fitness of a population. In particular, if w(z) denotes the expected fitness of an
individual with character value z, then when phenotypes are normally distributed, and fitness is
frequency-independent (individual fitnesses are not a function of the mean of the character), Lande
(1976) showed that the directional selection gradient statisfies

β =
∂ lnW
∂µ

(24a)

Hence we can express the breeders equation as

R = σ2
A

(
∂ lnW
∂ µ

)
(24b)

Quadratic Selection: Differentials (C) and Gradients (γ)

Analogous measures to S and β can be defined to quantify the change in variance. At first glance
this seems best described by σ2

z∗ − σ2
z , where σ2

z∗ is the phenotypic variance following selection.
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The problem with this measure is that directional selection reduces the variance. Lande and Arnold
(1983) showed (see Example 10) that

σ2
z∗ − σ2

z = σ
[
w, (z − µz)2

]
− S2 (25a)

Hence, directional selection decreases the phenotypic variance by S2. With this in mind, Lande and
Arnold suggest a corrected measure, the stabilizing selection differential

C = σ2
z∗ − σ2

z + S2 (25b)

that describes selection acting directly on the variance. As we will see below, the term stabilizing
selection differential may be slightly misleading, so following Phillips and Arnold (1989) we refer
to C as the quadratic selection differential. Correction for the effects of directional selection is
important, as claims of stabilizing selection based on a reduction in variance following selection
can be due entirely to reduction in variance caused by directional selection. Similarly, disruptive
selection can be masked by directional selection (e.g., Example 8).

Example 8. Boag and Grant (1981) observed intense natural selection in Geospiza fortis (Darwin’s
medium ground finch) during a severe drought on Daphne Major Island in the Galápagos. The
estimated mean weight and variance of 642 adults before the drought were respectively, 15.79 and
2.37, while the estimated mean and variance of 85 surviving adults after the drought was 16.85 and
2.43. Thus Ŝ = 16.85− 15.79 = 1.06 (with a standard error of 0.180), implying that the directional
selection differential on body size is significantly positive. There appears to be very little selection on
the variance when the uncorrected change in variance Var(z∗) − Var(z) = 2.43 − 2.37 = 0.06 is
used. However,

Ĉ = 0.06 + 1.062 = 1.14

consistent with disruptive selection in addition to directional selection. The standard error for Ĉ is
0.549. Thus Ĉ is 2.08 standard errors above zero, suggesting that it is also significant.

Provided that selection does not act on characters phenotypically correlated with the one under
study, C provides information on the nature of selection on the variance. Positive C indicates
selection to increase the variance (as would occur with disruptive selection), while negative C
indicates selection to reduce the variance (as would occur with stabilizing selection). As we discuss
shortly, C < 0 (C > 0) is consistent with stabilizing (disruptive) selection, but not sufficient. A
further complication in interpreting C is that if the phenotypic distribution is skewed, selection on
the variance changes the mean. This causes a non-zero value of S that in turn inflates C (Figure 5).

Multivariate Selection Response and Estimation of Fitness Surfaces, pg. 17



Figure 5. Even when a population is under strict stabilizing selection, the mean can change if the phenotypic
distribution is skewed. A standard fitness function for stabilizing selection isW (z) = 1−b(θ−z)2. O’Donald
(1968) found that, even if the population mean is at the optimum value (µz = θ), S is nonnegative if the skew
is nonzero (µ3,z 6= 0) as S = −(bµ3,z)/(1 − bσ2

z). Left: If phenotypes are distributed symmetrically about
the mean (µ3,z = 0), the distribution after selection (stippled) has the same mean when µz = θ. Right: If,
however, the distribution is skewed, more of the distribution lies on one side of the mean than the other. Since
the distribution is unbalanced, the longer tail experiences more selection than the shorter tail, changing the
mean.

Analogous to S equaling the covariance between z and relative fitness, Equation 25 implies C
is the covariance between relative fitness and the squared deviation of a character from its mean

C = σ
[
w, (z − µ)2

]
(26)

The quadratic analogue of β, the quadratic (stabilizing) selection gradient γ, was suggested
by Lande and Arnold (1983),

γ =
σ
[
w, (z − µ)2

]
σ4
z

=
C

σ4
z

(27)

β and γ Measure the Geometry of the Fitness Surface

A conceptual advantage of β and γ is that they describe the average local geometry of the fitness
surface when phenotypes are normally distributed. When z is normal and individual fitness are
not frequency-dependent, Equation 24a implies that β can be expressed in terms of the geometry of
the mean fitness surface,

β =
∂ lnW
∂µz

=
1
W

∂W

∂µz

the slope of theW surface with respect to population mean. β can also be expressed as a function of
the individual fitness surface. Lande and Arnold (1983) showed, provided z is normally distributed,
that

β =
∫
∂w(z)
∂z

p(z) dz (28a)

implying that β is the average slope of the individual fitness surface, the average being taken over
the population being studied. Likewise, if z is normally distributed,

γ =
∫
∂2w(z)
∂z2

p(z) dz (28b)

which is the average curvature of the individual fitness surface (Lande and Arnold 1983). Thus,
β and γ provide a measure of the geometry of the individual fitness surface averaged over the
population being considered.

β and γ Describe the Selection Dynamics

A final advantage of β and γ is that they appear as the only measures of phenotypic selection
in equations describing selection response. We have already seen (Equation 23a) that under the
constraints of the breeders’ equation, ∆µ = σ2

Aβ, which is independent of any other measure of
the phenotype (note that σ2

z is missing). Similarly, for predicting changes in variance under the
infinitesimal model, the expected change in variance from a single generation of selection is

∆σ2
A =

σ4
A

2
(
γ − β2

)
(29)
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While the distinction between differentials and gradients seems almost trivial in the univariate
case (only a scale difference), the multivariate versions are considerably different. As we will see in
later lectures, gradients have the extremely important feature of removing the effects of phenotypic
correlations.

Describing Phenotypic Selection: Individual Fitness Surfaces

We can decompose the fitnessW of an individual with character value z into the sum of its expected
fitness W (z) plus a residual deviation e,

W = W (z) + e

The residual variance for a given z, σ2
e(z), measures the variance in fitness among individuals with

phenotypic value z. Estimation of the individual fitness surface is thus a generalized regression
problem, the goal being to choose a candidate function forW (z) that miminizes the average residual
variance Ez[σ2

e(z) ]. Since the total variance in fitness σ2
W equals the sum of the within-group

(phenotype) and between-group variance in fitness,

σ2
W − Ez[σ2

e(z) ]
σ2
W

is the fraction of individual fitness variation accounted for by a particular estimate of W (z), and
this provides a measure for comparing different estimates. In the limiting case where fitness is
independent of z (and any characters phenotypically correlated with z), W (z) = W , so that the
between-phenotypic variance is zero while σ2

e(z) = σ2
W .

There are at least two sources of error contributing to e. First, there can be errors in measuring
the actual fitness of an individual (these are almost always ignored). Second, the actual fitness of
a particular individual can deviate considerably from the expected value for its phenotype due to
chance effects and selection on other characters besides those being considered. Generally, these
residual deviations are heteroscedastic. To see how this arises naturally, suppose fitness is measured
by survival to a particular age. While W (z) = pz is the probability of survival for an individual
with character value z, the fitness for a particular individual is either 0 (does not survive) or 1
(survives). Thus the residual has only two possible values, e = 1 − pz with probability pz and
e = −pz with probability 1−pz , giving σ2

e(z) = pz(1−pz). Unless pz is constant over z, the residuals
are heteroscedastic. Note in this case that even after removing the effects attributable to differences
in phenotypes, there still is substantial variance in individual fitness.

Inferences about the individual fitness surface are limited by the range of phenotypes in the
population. Unless this range is very large, only a small region of the fitness surface can be es-
timated with any precision. Estimates of the fitness surface at the tails of the current phenotypic
distribution are extremely imprecise, yet potentially very informative, suggesting what selection
pressures populations at the margin of the observed range of phenotypes may be under. A further
complication is that the fitness surface changes as the environment changes so that year to year
estimates can differ and cannot be lumped together to increase sample size.

Linear and Quadratic Approximations of W (z)

The individual fitness surface W (z) can be very complex and a wide variety of functions may be
chosen to approximate it. The simplest and most straightforward approach is to use a low-order
polynomial (typically linear or quadratic).

Consider first the simple linear regression of relative fitness w as a function of phenotypic value
z. Since the directional selection gradient β = S/σ2

z = σ(w, z)/σ2
z , it follows from regression theory

that β is the slope of the least-squares linear regression of relative fitness on z,

w = a+ βz + e (30a)
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Hence the best linear predictor of relative fitness is w(z) = a + βz. Since the regression passes
through the expected values of w and z, this can be written as

w = 1 + β(z − µz) + e (30b)

givingw(z) = 1+β(z−µz). Assuming the fitness function is well described by a linear regression, β
is the expected change in relative fitness given a unit change in z. From standard regression theory,
the fraction of variance in individual fitness accounted for by this regression is

r2
z,w =

Cov2(z, w)
Var(z) · Var(w)

= β̂ 2 Var(z)

Î
(31)

If the fitness surface shows curvature, as might be expected if there is stabilizing selection
and/or disruptive selection, a quadratic regression is more appropriate,

w = a+ b1z + b2z
2 + e (32a)

We can also express this as
w = α+ b1z + b2(z − µ)2 + e (32b)

The regression coefficents are the same in 32a and 32b, while the intercepts differ.
The regression coefficients b1 and b2 nicely summarize the local geometry of the fitness surface.

Evaluating the derivative of Equation 32 at z = µz gives

∂w(z)
∂z

∣∣∣∣
z=µz

= b1 and
∂2w(z)
∂z2

∣∣∣∣
z=µz

= 2b2 (33)

Hence b1 is the slope and 2b2 the second derivative (curvature) of the best quadratic fitness surface
around the population mean. b2 > 0 indicates that the best-fitting quadratic of the individual fitness
surface has an upward (positive) curvature (concave selection), while b2 < 0 implies the curvature is
downward (negative, for convex selection). Lande and Arnold (1983) suggest that b2 > 0 indicates
disruptive selection, while b2 < 0 indicates stabilizing selection. Their reasoning follows from
elementary geometry in that a necessary condition for a local minimum is that a function curves
upward in some interval, while a necessary condition for a local maximum is that the function
curves downward. Mitchell-Olds and Shaw (1987) and Schluter (1988) argue that this condition is
not sufficient. Stabilizing selection is generally defined as the presence of a local maximum in w(z)
and disruptive selection by the presence of a local minimum, while b2 indicates curvature, rather
than the presence of local extrema. Hence, we use concave and convex selection to describe the sign
of curvative (i.e., the sign of the second derivative of the individual fitness surface).

We solve for the regression coefficients b1 and b2 by transforming Equation 32 into a standard
multiple regression problem by setting x1 = z and x2 = (z − µz)2. To proceed, we need expres-
sions for σ(x1, x2), σ(x1, w), and σ(x2, w). From Lynch and Walsh’s Equation A1.14, σ(x1, x2) =
σ
(
z, (z − µz)2

)
= µ3,z , the skew of the phenotypic distribution before selection. Likewise, from

Equations 21 and 25a, σ(x1, w) = σ(z, w) = S and σ(x2, w) = σ( (z − µz)2, w) = C. Substituting
these into standard expressions for a bivariate regression (Lynch and Walsh Example 8.3), and noting
that σ2( (z − µz)2 ) = µ4,z − σ4

z , gives

b1 =
σ2(x2) · σ(x1, w)− σ(x1, x2) · σ(x2, w)

σ2(x1) · σ2(x2)− σ2(x1, x2)
=

(µ4,z − σ4
z) · S − µ3,z · C

σ2
z · (µ4,z − σ4

z)− µ2
3,z

(34a)

b2 =
σ2(x1) · σ(x2, w)− σ(x1, x2) · σ(x2, w)

σ2(x1) · σ2(x2)− σ2(x1, x2)
=

σ2
z · C − µ3,z · S

σ2
z · (µ4,z − σ4

z)− µ2
3,z

(34b)
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The estimators of b1 and b2 are obtained by replacing µk,z with their sample estimates and using Ĉ
and Ŝ.

Provided z is normally distributed before selection, µ3,z = 0 and µ4,z − σ4
z = 2σ4

z . In this case,
Equations 22 and 27 imply, respectively, that b1 = β and b2 = γ/2, giving the univariate version of
the Lande-Arnold regression,

w = α+ βz +
γ

2
z2 + e (35)

developed by Lande and Arnold (1983), motivated by Pearson (1903). The Lande-Arnold regression
thus provides a connection between selection differentials (directional and stabilizing) and quadratic
approximations of the individual fitness surface.

An important point from Equation 34a is that if skew is present (µ3,z 6= 0), b1 6= β and the slope
term in the linear regression (the best linear fit) of w(z) differs from the slope term in the quadratic
regression (the best quadratic fit) of w(z). This arises because the presence of skew generates a
covariance between z and (z−µz)2. The biological significance of this can be seen by reconsidering
Figure 5, wherein the presence of skew in the phenotypic distribution results in a change in the mean
of a population under strict stabilizing selection (as measured by the population mean being at the
optimum of the individual fitness surface). Skew generates a correlation between z and (z − µz)2

so that selection acting only (z − µz)2 generates a correlated change in z. From the Robertson-
Price identity (Equation 21), the within-generation change in mean equals the covariance between
phenotypic value and relative fitness. Since covariances measure the amount of linear association
between variables, in describing the change in mean, the correct measure is the slope of the best
linear fit of the individual fitness surface (Equation 30b). If skew is present, b1 from the quadratic
regression (Equation 32) is a biased estimator of β.

Complications from Unmeasured Correlated Variables

A major complication with the estimation of both linear and quadratic gradients are correlated traits
(or other factors) not included in the analysis. For example, selection might be entirely based on
height, while we measure body weight. The two traits are correlated, and hence we would observe
a relationship between relative fitness and body weight. Shortly, we show that by including all
traits under selection, unbiased estimates of β and γ are obtained. For our hypothetical example,
using this approach we would obtain a non-zero estimate of the gradient associated with height,
but not with weight.

A more interesting complication is when the environment influences both fitness and the trait
of interest. For example, suppose that plants growing in rich solid leave more seed and also are
able to generate more plant secondary compounds. If we were simply focused on the secondary
compounds, we might find an association between them and fitness, entirely due to the shared
environmental effect. As with phenotypically-correlated traits, if we knew these environmental
factors, we could include them in the model, which would result in unbiased estimates of gradients.
In reality, we are unlikely to know critical environmental factors.

Example 9. Kruuk et al. (2002) examined antler size in red deer on the Inner Hebrides Isle of Rum in
Scotland. The found that males with larger antlers enjoy increased lifetime breeding success (antlers
being involved in male- male competition), resulting in a β = 0.44± 0.18. Further, antler size is also
heritable, h2 = 0.22±0.12, so that one would expect a significant response to natural selection, given
both heritability in the trait and strong selective pressure for change. However, despite selection and
heritability, no significant changes were observed response over 30 years of study. The authors suggest
that antler size and male fighting ability is heavily dependent upon an individual’s nutritional state,
and hence selection is on this environmental component, rather than any genetic component. As a
result, there is no response to selection.
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Strenght of Selection in Natural Populations

Just how strong is selection in natural populations? Attempts at measuring selection on quantitative
traits in nature trace back to Bumpus (1899) and Weldon (1901). Endler (1986) was the first to attempt
to summarize the average strength of selection, while more recently Kingsolver (Kingsolver et al.
2001, Hoekstra et al. 2001) summarized over 2,500 estimates of β and γ from natural populations
(Figure 6).

Figure 6. Summary of estimates of directional and quadratic selection in the wild. All estimates are scaled
in terms of phenotypic standard deviations (β∗ = β/σz ,γ∗ = γ/σz). Data from the summary by Kingsolver
et al. 2001. Left: Plot of roughly 1,000 estimated directional selection gradients in natural populations. The
distribution of |β∗ | was not significantly different from an exponential distribution. The medium value for
|β∗ | was 0.16. Right: Plot of roughly 470 estimates of γ∗ from natural populations. The medium value of
| γ∗ | was 0.10.

A couple of surprising results emerge from this meta-analysis by Kingsolver. First, the distribu-
tion of the absolve value of (scaled) directional selection gradients essentially follows an exponential
distribution with a medium (50% value) of 0.16. Note that a β∗ of 0.16 implies at a one standard de-
viation change in the trait changes relative fitness by 16%. Thus, most directional selection in nature
is fairly weak, although (due to the long tail of the exponential), there are a few large estimates of
|β∗ | (10% of the estimates in Kingsolver’s summary exceeded 0.5). Kingsolver notes that most of the
large estimates for |β∗ |occur in studies with small sample sizes, with most estimates below 0.1 when
the sample size was 1,000 or greater. Hence, it is possible that some of the large β∗ value are simply
a consequence of sampling error due to small sample size. Second, the wide-spread belief is that
stabilizing selection is far more common than disruptive selection. However, Kingsolver observed
an essentially symmetric distribution of γ∗ values, mean positively- and negatively-curved fitness
surfaces were equally common. Further, the average strength of quadratic selection was weak,
with | γ∗ |. However, Blows and Brooks (2003) point out that the univariate estimators of γ likely
significantly understimate the strenght of quadratic selection when multiple traits are considered.
We discuss this point shortly.

As pointed out by Connner (2001), even “weak” selection can be very efficient. Consider the
medium value of β∗ = 0.16, or β = 0.16 · σz . From Equation 23b, the single-generation change
in phenotypic standard deviations is h2 · 0.16. Hence, with a typically heritability of 0.4, only 16
generations of selection are required to shift the population mean by one standard deviation.

Selection On Multivariate Phenotypes: Differentials And Gradients

Above we described a variety of measures of univariate selection, with an emphasis on approxi-
mating the individual fitness function. In extending these methods to multiple characters, our main
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concern is the effect of phenotypic correlations (we have previously examined the consequences
of genetic correlations on the selection response). The phenotype of an individual is now a vector
z = (z1, z2, · · · , zn)T ofn character values. Denote the mean vector and covariance matrix of z before
selection by µ and P, and by µ∗ and P∗ after selection (but before reproduction).

Changes in the Mean Vector: The Directional Selection Differential, S

The multivariate extension of the directional selection differential S is the vector

S = µ∗ − µ (36)

whose ith element is Si, the differential for character zi. As with the univariate case, the Robertson-
Price identity (Equation 21) holds, so that the elements of S represent the covariance between
character value and relative fitness, Si = σ(zi, w).

As is illustrated in Figure 7, S confounds the direct effects of selection on a character with the
indirect effects due to selection on phenotypically correlated characters. Suppose character 1 is un-
der direct selection to increase in value while character 2 is not directly selected. As Figure 7 shows,
if z1 and z2 are uncorrelated, there is no within-generation change in µ2 (the mean of z2). However,
if z1 and z2 are positively correlated, individuals with large values of z1 also tend to have large
values of z2, resulting in a within-generation increase in µ2. Conversely, if z1 and z2 are negatively
correlated, selection to increase z1 results in a within-generation decrease in µ2. Hence, a character
not under selection can still experience a within-generation change in its phenotypic distribution
due to selection on a phenotypically correlated character (indirect selection). Fortunately, the direc-
tional selection gradient β = P−1S accounts for indirect selection due to phenotypic correlations,
providing a less biased picture of the nature of directional selection acting on z.

Figure 7. Selection on a character can result in a within-generation change in the mean of other phenotypically
correlated characters not themselves under direct selection. Assume that character 1 is under simple truncation
selection so that only individuals with z1 > T reproduce. Left: When z1 and z2 are uncorrelated, S2 = 0.
Center: When z1 and z2 are negatively correlated, S2 < 0. Right: When z1 and z2 are positively correlated,
S2 > 0.

The Directional Selection Gradient β

As we discuss shortly, the directional selection gradient β removes the effects of phenotypic corre-
lations because it is a vector of partial regression coefficients. From multiple regression theory, the
vector of partial regression coefficients for predicting the value of y given a vector of observations z
is P−1 σ(z, y), where P is the covariance matrix of z, andσ(z, y) is the vector of covariances between
the elements of z and the variable y. Since S = σ(z, w), it immediately follows that

P−1 σ(z, w) = P−1 S = β (37)
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is the vector of partial regression for the best linear regression of relative fitness w on phenotypic
value z, viz.,

w(z) = a+
n∑
j=1

βjzj = a+ βT z (38a)

Our main interest in this equation is the vector β of partial regression coefficients – the slopes for the
individual zi. There are several equivalent ways writing this expression and these various forms
interchangeably appear in the literature. First, noting that the regression passes through the mean
of w and the mean of z, namely (1,µ),

w(z) = 1 +
n∑
j=1

βj(zj − µj) = 1 + βT (z− µ) (38b)

We can also translate the z values before the analysis to set µ = 0, in which case

w(z) = 1 +
n∑
j=1

βjzj = 1 + βT z (38c)

Since βj is a partial regression coefficient, it represents the change generated in relative fitness
by changing zj while holding all other character values in z constant — a one unit increase in zj
(holding all other characters constant) increases the expected relative fitness by βj . Provided we
can exclude the possibility of unmeasured characters influencing fitness that are phenotypically
correlated with z, a character under no directional selection has βj = 0 — when all other characters
are held constant, the best linear regression predicts no change in expected fitness as we change the
value of zj . Thus, β accounts for the effects of phenotypic correlations only among the measured
characters. Unmeasured traits under selection that are phenotypically correlated with those we
measure and/or unmeasured environmental factors that influence both fitness and the values of
our measured traits result in β being biased measure of the amount of directional selection acting
on each measured character.

Since S = Pβ, we have

Si =
n∑
j=1

βj Pij = βi Pii +
n∑
j 6=i

βj Pij (39)

illustrating that the directional selection differential confounds direct selection on that character
with indirect contributions due to selection on phenotypically correlated characters. Equation 39
implies that if two characters are phenotypically uncorrelated (Pij = 0), selection on one has no
within-generation effect on the phenotypic mean of the other. However, recall that if i and j are
genetically correlated (non-zero additive genetic covariance), then selection on one trait results in a
correlated response in the other, even if there is no phenotypic within-generation change in the mean.

Directional Gradients, Fitness Surface Geometry and Selection Response

When phenotypes are multivariate normal, β provides a convenient descriptor of the geometry
of both the individual and mean population fitness surfaces. Recall from vector calculus that the
gradient vector ∇xf(x) is defined at

∇xf(x) =


∂f/∂x1

∂f/∂x2

...
∂f/∂xn
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Further recall that the gradient vector of a function points to the direction of change in the variables
that will give the greatest (local) increase in the function. Lande (1976, 1979) showed that

β = ∇µ[ lnW (µ) ] = W
−1 · ∇µ[W (µ) ] (40)

which holds provided fitnesses are frequency-independent (Lande 1976, 1979). In this case β is the
gradient of mean population fitness with respect to the mean vector µ. Since β gives the direction
of steepest increase in the mean population fitness surface, mean population fitness increases most
rapidly when R = β, i.e., when the between-generation change in means is in the same direction as
the selection gradient.

Finally, while our focus has been on the role β plays in measuring phenotypic selection, it also
plays an important role in the response to selection. If we can assume the breeders’ equation holds,
β is the only measure of phenotypic selection required to predict the response in mean as R = Gβ.
Cheverud (1984) makes the important point that although it is often assumed a set of phenotypically
correlated traits responses to selection in a coordinated fashion, this is not necessarily the case. Since
β removes the effects of phenotypic correlations, phenotypic characters will only respond as a group
if they are all under direct selection or if they are genetically correlated.

Changes in the Covariance Matrix: The Quadratic Selection Differential C

Motivated by the univariate case whereinC = σ[w, (z−µ)(z−µ) ], define the multivariate quadratic
selection differential to be a square (n× n) matrix C whose elements are the covariances between
all pairs of quadratic deviations (zi − µzi)(zj − µzj ) and relative fitness w, viz.,

Cij = σ[w, (zi − µzi)(zj − µzj ) ] (41a)

As is derived below (Example 10), Lande and Arnold (1983) showed that

C = σ[w, (z− µ)(z− µ)T ] = P∗ −P + SST (41b)

If no quadratic selection is acting, the covariance between each quadratic deviation and fitness is
zero and C = 0. In this case Equation 41b gives

P ∗ij − Pij = −SiSj (42)

demonstrating that the SiSj term corrects Cij for the change in covariance caused by directional
selection alone.

Example 10. We wish to show P∗ −P = σ[w, (z−µ)(z−µ)T ]− SST , which implies Equation
41b. From the definition of the variance-covariance matrix,

P = E
[

(z− µ) (z− µ)T
]

=
∫

(z− µ)(z− µ)T p(z) dz

P∗ = E
[

(z∗ − µ∗) (z∗ − µ∗)T
]

=
∫

(z− µ∗)(z− µ∗)T p∗(z) dz

where p∗(z) = w(z) p(z) is the distribution of z after selection (but before reproduction). Noting that
µ∗ = µ+ S,

(z− µ∗)(z− µ∗)T = (z− µ− S)(z− µ− S)T

= (z− µ− S)( (z− µ)T − ST )

= (z− µ) (z− µ)T − (z− µ) ST − S (z− µ)T + S ST
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Since
∫

z p∗(z) dz = µ∗ and
∫
p∗(z) dz = 1, we have that

∫
S ST p∗(z) dz = S ST ,∫

(z− µ) ST p∗(z) dz = (µ∗ − µ)ST = SST , and∫
S(z− µ)T p∗(z) dz = S(µ∗)T − SµT = S(µ∗ − µ)T = SST

Combining these results,

P∗ =
∫

(z− µ) (z− µ)T w(z) p(z) dz− SST − SST + SST

= E
[
w(z) · (z− µ) (z− µ)T

]
− SST

Since E[w(z) ] = 1, we can write P = E[w(z) ] ·P. Using the definition of P then gives

P∗ −P = E
[
w(z) · (z− µ) (z− µ)T

]
− SST − E[w(z) ] · E

[
(z− µ) (z− µ)T

]
= σ

[
w(z), (z− µ)(z− µ)T

]
− SST

with the last equality following from σ(x, y) = E(x · y)− E(x)E(y).

The Quadratic Selection Gradient, γ

Like S, C confounds the effects of direct selection with selection on phenotypically correlated
characters. However, as was true for S, these indirect effects can also be removed by a regression.
Consider the best quadratic regression of relative fitness as a function of phenotypic value,

w(z) = a+
n∑
j=1

bj zj +
1
2

n∑
j=1

n∑
k=1

γjk (zj − µj)(zk − µk) (43a)

= a+ bT z +
1
2

(z− µ)T γ (z− µ) (43b)

Where the ij-th element of the matrix γ is γij . Again, we can expression this in a simpler form by
translating z so all traits have mean zero, in which case

w(z) = 1 + bT z +
1
2
zTγz (43c)

Using multiple regression theory (Lande and Arnold 1983), the matrix γ of quadratic partial
regression coefficients is given by

γ = P−1 σ[w, (z− µ)(z− µ)T ] P−1 = P−1 C P−1 (44)

This is the quadratic selection gradient and (like β) removes the effects of phenotypic correlations,
providing a more accurate picture of how selection is operating on the multivariate phenotype.

The vector of linear coefficients b for the quadratic regression need not equal the vector of partial
regression coefficients β obtained by assuming only a linear regression. Equation 34 shows (for the
univariate case) that if the phenotypic distribution is skewed, b is a function of both S and C, while
β is only a function of S. When phenotypes are multivariate normal, skew is absent and Lande and
Arnold (1983) show that b = β, recovering the multivariate version of the Pearson-Lande-Arnold
regression,

w(z) = 1 + βT z +
1
2
zT γ z (45)
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Since the γij are partial regression coefficients, they predict the change in expected fitness
caused by changing the associated quadratic deviation while holding all other variables constant.
Increasing (zj − µj)(zk − µk) by one unit in such a way as to hold all other variables and pairwise
combinations of characters constant, relative fitness is expected to increase by γjk for j 6= k and by
γjj/2 if j = k (the difference arises because γjk = γkj , so that γjk appears twice in the regression
unless j = k). The coefficients ofγ thus describe the nature of selection on quadratic deviations from
the mean for both single characters and pairwise combinations of characters. γii < 0 implies fitness
is expected to decrease as zi moves away (in either direction) from its mean. As was discussed
previously, this is a necessary, but not sufficient, condition for stabilizing selection on character i. As
a result, the term convex selection or convex fitness surface is often used, with the term stabilizing
selection restricted for when the fitness surface is both convex and the population distribution is
under a peak in the fitness surface. Similarly, γii > 0 implies fitness is expected to increase as i
moves away from its mean (concave selection), again a necessary, but not sufficient conditional for
disruptive selection. Turning to combinations of characters, non-zero values of γjk (j 6= k) suggests
the presence of correlational selection — γjk > 0 suggests selection for a positive correlation
between characters j and k, while γjk < 0 suggests selection for a negative correlation.

Example 11. Brodie (1992) examined one-year survivorship in the garter snake Thamnophis ordi-
noides in a population in Oregon. Over a three year period, 646 snakes were marked, 101 of which
were eventually recaptured. Four morphological and behavior characters were measured — overall
stripedness of the body color pattern (stripes), sprint speed, distance moved until an antipredator dis-
play performed, and number of reversals of direction during flight from predators (reversals). None of
the βi or γii were significant. However, there was a significant quadratic association between striping
pattern and number of reversals, with γij = −0.268 ± 0.097. As is shown below, the best-fitting
quadratic regression of individual fitness has a saddle point. Brodie suggests a biological explana-
tion for selection favoring a negative correlation between these two characters. The presence of body
stripes makes it difficult for predators to judge the speed of the snake, so frequent reversals would
be disadvantageous. Conversely, when the body pattern is banded, blotched or spotted, detection
of movement by visual predators is enhanced. In such individuals, frequent reversals can disrupt a
visual search.

The fitness surface. There is a significant correlational gradient between these two characters, with
all other directional and quadratic gradients being nonsignificant. Left: Plotting lines of equal fitness,
with peaks represented by a + and valleys by a− shows the best-fitting quadratic fitness surface has
a saddle point. Right: Three-dimensional representation of the best-fitting quadratic fitness surface.
The eigenvalues of γ are 0.256 and −0.290, indicating roughly equal amounts of convex selection
along one canonical axis (given by the index 0.77 ·z1−0.64 ·z2) and concave selection along the other
(0.64 · z1 + 0.77 · z2).
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Although it seems straightforward to infer the overall nature of selection by looking at these
various pairwise combinations, this can give a very misleading picture about the geometry of the fitness
surface. We discuss this problem and its solution shortly.

Finally, we can see the effects of phenotypic correlations in the quadratic selection differential.
Solving for C by post- and pre-multiplying γ by P gives C = PγP, or

Cij =
n∑
k=1

n∑
`=1

γk` Pik P`j (46)

showing that within-generation changes in phenotypic covariance, as measured by C, are influenced
by quadratic selection on phenotypically-correlated characters.

Quadratic Gradients, Fitness Surface Geometry and Selection Response

When phenotypes are multivariate-normally distributed, γ provides a measure of the average cur-
vature of the individual fitness surface, as

γ =
∫

Hz[W (z) ]φ(z) dz (47a)

where Hz[ f ] denotes the Hessian matrix with respect to z and is a multivariate measure of the
quadratic curvature of a function (the ij-th element of Hz[ f ] is ∂2f/∂zi ∂zj). This result, due to
Lande and Arnold (1983), can be obtained by an integration by parts. When fitnesses are frequency-
independent (again provided z ∼MVN), γ provides a description of the curvature of the log mean
population fitness surface, with

Hµ[ lnW (µ) ] = γ− ββT (47b)

In particular,
∂ lnW (µ)
∂µi ∂µj

= γij − βiβj (47c)

This result is due to Lande (cited in Phillips and Arnold 1989) and points out that there are
two sources for curvature in the mean fitness surface: −ββT from directional selection and γ from
quadratic selection.

Finally, when the breeders’ equation holds, γ and β are sufficient to describe phenotypic se-
lection on the additive-genetic covariance matrix. The difference between the additive genetic co-
variance G∗ after selection (but before reproduction) and the covariance matrix G before selection
is

G∗ −G = GP−1 (P∗ −P) P−1G (48a)

We can express this in terms of gradients as follows:

G∗ −G = GP−1 (P∗ −P) P−1G

= GP−1(C− SST )P−1G

= G(P−1CP−1 − (P−1S)(P−1S)T )G
= G(γ− ββT )G (48b)

Hence, the within-generation change in G has a component from directional selection (β) and a
second due from quadratic selection (γ),

G∗ −G = −GββTG + GγG

= −R RT + GγG (48c)
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In terms of the change in covariance for two particular characters, this can be factored as

G∗ij −Gij = −
(

n∑
k=1

βk Gik

)(
n∑
k=1

βk Gjk

)
+

n∑
k=1

n∑
`=1

γk`GikG`j

= −Ri ·Rj +
n∑
k=1

n∑
`=1

γk`GikG`j (48d)

Thus the within-generation change in the additive genetic variance of character i is given by

G∗ii −Gii = − (Ri)
2 +

n∑
k=1

n∑
`=1

γk`GikGi` (48e)

Summary

Table 1 (next page) summarizes the main features of differentials and gradients.

Multidimensional Quadratic Fitness Regressions

In many cases approximating the individual fitness function by a quadratic may give a very distorted
view of the true fitness surface (e.g., when multiple fitness peaks are present). With this caveat in
mind, quadratic fitness surfaces are still quite useful. One advantage is that a quadratic is the
simplest surface allowing for curvature. Further, when phenotypes are gaussian-distributed, the
coefficients in the quadratic regression also appear as the coefficients of equations for predicting
evolutionary change (Table 1). We briefly review some statistical issues of fitting such regressions
before examining the geometry of multivariate quadratic regressions, which can get rather involved.

Estimation, Hypothesis Testing and Confidence Intervals

Even if we can assume that a best-fit quadratic is a reasonable approximation of the individual
fitness surface, we are still faced with a number of statistical problems. Unless we test for, and
confirm, multivariate normality, β and γmust be estimated from separate regressions — β from the
best linear regression, γ from the best quadratic regression. In either case, there are a large number
of parameters to estimate — γ has n(n+ 1)/2 terms and β has n terms, for a total n(n+ 3)/2. With
5, 10, and 25 characters, this corresponds to 20, 65 and 350 parameters. The number of observations
should greatly exceed n(n+ 3)/2 in order estimate these parameters with any precision.

A second problem is multicollinearity — if many of the characters being measured are highly
correlated with each other, the phenotypic covariance matrix P can be nearly singular, so that small
errors in estimating P result in large differences in P−1, which in turn gives a very large sampling
variance for the estimate of β and γ. One possibility is to use principal components to extract a
subset of the characters (measured as PCs, linear combinations of the characters) that explains most
of the phenotypic variance of P, and the perform fitness regressions using the first few PCs as the
characters (Lande and Arnold 1983). This approach also reduces the problem of the number of
parameters to estimate, but some have exprssed concern that it risks the real possibility of removing
the most important characters and PCs are often difficult to interpret biologically. While the first
PC for morphological characters generally corresponds to a general measure of size, the others are
often much more problematic. Finally, using PCs can spread the effects of selection on one character
over several PCs, further complicating interpretation.

An alternative opinion is that most traits we measure are themselves artificial, and we are naive
to assume that they neatly correspond to the actual characters under selection. In such cases, a lower
dimensional subspace of P may contain most of the variation. As was the case for G, by considering
such a subspace we are likely to gain a much better (and less biased) perspective on the nature of
selection. We return to this point shortly.
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Table 1. Analogous features of directional and quadratic differentials and gradients.

Changes in Means Changes in Covariances
(Directional Selection) (Quadratic Selection)

Differentials measure the covariance between relative fitness and phenotype

Si = σ [w, zi ] Cij = σ [w, (zi − µi)(zj − µj) ]

Differentials confound direct and indirect selection

S = µ∗ − µ = Pβ C = P∗ −P + SST = PγP

Gradients measure the amount of direct selection

β = P−1S γ = P−1CP−1

Gradients describe the slope and curvature of the mean population fitness

surface, provided z ∼MVN and fitnesses are frequency-independent

βi =
∂ lnW (µ)

∂µi
γij =

∂2 lnW (µ)
∂µi ∂µj

+ βiβj

Gradients describe the average slope and average curvature of the individual fitness surface,
provided z ∼MVN

βi =
∫
∂ w(z)
∂zi

φ(z) dz γij =
∫
∂2 w(z)
∂zi ∂zj

φ(z) dz

Gradients appear as coefficients in fitness regressions

w(z) = a+ βT (z− µ) w(z) = a+ bT (z− µ) + 1
2 (z− µ)Tγ (z− µ)

β = slope of best linear fit γ = the quadratic coefficient of the best

quadratic fit. b = βwhen z ∼MVN

Gradients appear as coefficients in evolutionary equations when (z,g) ∼MVN

R = Gβ G∗ −G = G
(
γ− ββT

)
G

Geometric Aspects

In spite of their apparent simplicity, multivariate quadratic fitness regressions have a rather rich
geometric structure. Scaling characters so that they have mean zero, the general quadratic fitness
regression can be written as

w(z) = 1 +
n∑
i=1

b1zi +
1
2

n∑
i=1

n∑
j=1

γijzizj = 1 + bT z +
1
2

zT γ z (49)

If z ∼ MVN, then b = β (the vector of coefficients of the best linear fit). As an aside, if we regard
Equation 49 as a second-order Taylor series approximation of w(z), b and γ can be interpreted as
the gradient and hessian of individual fitness evaluated at the population mean (here µ = 0 by
construction). The nature of curvature of Equation 49 is determined by the matrix γ. Even though
a quadratic is the simplest curved surface, its geometry can still be very difficult to visualize.
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We start our exploration of this geometry by considering the gradient of this best-fit quadratic
fitness surface. Taking the gradient of Equation 49 gives

∇z[w(z) ] = b + γ z (50)

Thus, at the point z the direction of steepest ascent on the fitness surface (the direction in which to
move in phenotype space to maximally increase individual fitness) is given by the vector b + γ z
(when µ = 0).

Solving ∇z[w(z) ] = 0, a point zo is a candidate for a local extremum (stationary point) if
γ zo = −b. When γ is nonsingular,

zo = −γ−1b (51a)

is the unique stationary point of this quadratic surface. Substituting into Equation 49, the expected
individual fitness at this point is

wo = a+
1
2

bT z0 (51b)

as obtained by Phillips and Arnold (1989). Since ∂2w(z)/∂zi ∂zj = γij , the hessian of w(z) is just γ.
Thus z0 is a local minimum if γ is positive-definite (all eigenvalues are positive), a local maximum
if γ is negative-definite (all eigenvalues are negative), or a saddle point if the eigenvalues differ in
sign. If γ is singular (has at least one zero eigenvalue) then there is no unique stationary point. An
example of this is seen in Figure 8 where there is a ridge (rather than a single point) of phenotypic
values having the highest fitness value. The consequence of a zero eigenvalue is that the fitness
surface has no curvature along the axis defined by the associated eigenvector. If γ has k zero
eigenvalues, then the fitness surface has no curvature along k dimensions. Ignoring fitness change
along these dimensions, the remaining fitness space has only a single stationary point, which is
given by Equation 51a for γ and b reduced to the n− k dimensions showing curvature.

A Brief Digression: Orthonormal and Diagonalized Matrices

We need some additional matrix machinery at this point to further our discussion of the geometry
of the quadratic fitness surface, which is defined by the geometry of the matrix γ.

Matrix transformations consist of two basic operations, rotations (changes in the direction of a
vector) and scalings (changes in its length). We can partition a matrix transformation into these two
basic operations by using orthonormal matrices. Writing a square matrix U as U = (u1,u2, · · · ,un)
where each ui is an n dimensional column vector, U is orthonormal if

uiTuj =
{

1 if i = j

0 if i 6= j

In other words, each column of U is independent from every other column and has unit length.
Matrices with this property are also referred to as unitary, or orthogonal and satisfy

UT U = U UT = I (52a)

Hence, the inverse of U is its inverse,
UT = U−1 (52b)

The coordinate transformation induced by an orthonormal matrix has a very simple geometric
interpretation in that it is a rigid rotation of the original coordinate system — all axes of the original
coordinate are simply rotated by the same angle to create the new coordinate system. To see this,
note first that orthonormal matrices preserve all inner products. Taking y1 = Ux1 and y2 = Ux2,

y1
Ty2 = x1

T (UTU)x2 = x1
Tx2
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A special case of this is that orthonormal matrices do not change the length of vectors, as ||y1|| =
y1

Ty1 = x1
Tx1 = ||x1||. If θ is the angle between vectors x1 and x2, then following transformation

by an orthonormal matrix,

cos(θ |y1,y2) =
y1
Ty2√

||y1|| ||y2||
=

x1
Tx2√

||x1|| ||x2||
= cos(θ |x1,x2)

and the angle between any two vectors remains unchanged following their transformation by the
same orthonormal matrix.

A symmetric matrix A (such as a variance-covariance matrix) can be diagonalized as

A = UΛUT (53a)

where Λ is a diagonal matrix, and U is an orthonormal matrix (U−1 = UT ). If λi and ei are the ith
eigenvalue and its associated unit eigenvector of A, then

Λ = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · · · · λn

 (53b)

and
U = ( e1, e2, · · · , en ) (53c)

Geometrically, U describes a rigid rotation of the original coordinate system whileΛ is the amount
by which unit lengths in the original coordinate system are scaled in the transformed system. Using
Equation 53a, it is easy to show that

A−1 = UΛ−1UT (54a)

A1/2 = UΛ1/2UT (54b)

where the square root matrix A1/2 (which is also symmetric) satisfies A1/2A1/2 = A. Since Λ is
diagonal, the ith diagonal elements ofΛ−1 andΛ1/2 are λ−1

i and λ1/2
i respectively, implying that if

λi is an eigenvalue of A, then λ−1
i and

√
λi are eigenvalues of A−1 and A1/2. Note that Equations

54a/b imply that A, A−1 and A1/2 all have the same eigenvectors. Finally, using Equation 53a we
see that premultiplying A by UT and then postmultiplying by U gives a diagonal matrix whose
elements are the eigenvalues of A,

UTAU = UT (UΛUT )U = (UTU)Λ(UTU)
= Λ (54)

As we will shortly see, the effect of using such a transformation is that (on this new scale) we remove
all cross-product terms. Put another way, on this new scale, there is no correlational selection.

Canonical Transformation of γ

While the (quadratic) fitness surface curvature is completely determined by γ, it is easy to be misled
about the actual nature of the fitness surface if one simply tries to infer it by inspection of γ, as the
following example illustrates.

Example 12. Consider selection acting on two characters z1 and z2. Suppose we find that γ11 = −2
and γ22 = −1, suggesting that the individual fitness surface has negative curvature in both z1 and
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z2. At first glance the picture this evokes is convex (stabilizing) selection on both z1 and z2, with the
convex selection surface perhaps rotated due to selection for correlations between z1 and z2. The first
caveat is that negative curvature, by itself, does not imply a local maximum. Even if γ is negative
definite, the equilibrium point z0 may be outside of the observed range of population values and hence
not currently applicable to the population being studied. A much more subtle point is that, as Figure
8 shows, the nature of the fitness surface is very dependent on the amount of selection for correlations
between z1 and z2. Figure 8 considers the surfaces associated with three different values of γ12 under
the assumption that b = 0. Note that although in all three casesγ12 > 0 (i.e., selection favors increased
correlations between the phenotypic values of z1 and z2), the fitness surfaces are qualitatively very
different. When γ12 = 0.25 (Figure 8A), the individual fitness surface indeed shows convex selection
in both characters. However, when γ12 =

√
2 ' 1.42 (Figure 8B), the fitness surface has a ridge in one

direction, with convex selection in the other. When γ12 = 4 (Figure 8C), the fitness surface is a saddle,
with convex selection along one axis and concave selection along the other. An especially troubling
point is that if the standard error ofγ12 is sufficiently large we would not be able to distinguish between
these very different types of selection even if we could show that γ11, γ22 < 0, and γ12 > 0.

Figure 8. Three quadratic fitness surfaces, all of which have γ11 = −2 and γ22 = −1 and b = 0 (i.e., no
directional selection). On the left are curves of equal fitness values, with peaks being represented by a +, and
valleys by a−. Axes of symmetry of the surface (the canonical or principal axes of γ) are denoted by the thick
lines. These axes correspond to the eigenvectors of γ. On the right are three dimensional plots of individual
fitness as a function of the phenotypic values of the characters z1 and z2. Top: γ12 = 0.25. This corresponds to
convex selection on both characters, with fitness falling off more rapidly (as indicated by the shorter distance
between contour lines) along the z1 axis than along the z2 axis. Middle: γ12 =

√
2 ' 1.41, in which case γ is

singular. The resulting fitness surface shows a ridge in one direction with strong convex selection in the other.
Bottom: When γ12 = 4, the fitness surface now shows a saddle point, with convex selection along one of the
canonical axes of the fitness surface and concave selection along the other.
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Thus, even for two characters, visualizing the individual fitness surface is not trivial and can
easily be downright misleading. The problem is that the cross-product terms (γij for i 6= j) make the
quadratic form difficult to interpret geometrically. Removing these terms by a change of variables so
that the axes of new variables coincide with the axes of symmetry of the quadratic form (its canonical
axes) greatly facilitates visualization of the fitness surface. From Equation 54, if we consider the
matrix U whose columns are the eigenvalues of γ, the transformation y = UT z (hence z = Uy since
U−1 = UT as U is orthonormal) removes all cross-product terms in the quadratic form, as

w(z) = a+ bTU y +
1
2

(Uy)Tγ(Uy)

= a+ bTU y +
1
2

yT
(
UTγU

)
y

= a+ bTU y +
1
2

yT Λy

= a+
n∑
i=1

θi yi +
1
2

n∑
i=1

λi y
2
i (55)

where θi = bT ei, yi = eiT z, with λi and ei the eigenvalues and associated unit eigenvectors of
γ. Alternatively, if a stationary point z0 exists (e.g., γ is nonsingular), the change of variables
y = UT (z− z0) further removes all linear terms (Box and Draper 1987), so that

w(z) = wo +
1
2

yT Λy = wo +
1
2

n∑
i=1

λi y
2
i (56)

where yi = eiT (z− z0) and wo is given by Equation 51b. Equation 55 is called the A canonical form
and Equation 56 the B canonical form (Box and Draper 1987). Both forms represent a rotation of the
original axis to the new set of axes (the canonical axes of γ) that align them with axes of symmetry
of the quadratic surface. The B canonical form further shifts the origin to the stationary point zo.
Since the contribution to individual fitness from bT z is a hyperplane, its effect is to tilt the fitness
surface. The B canonical form “levels” this tilting, allowing us to focus entirely on the curvature
(quadratic) aspects of the fitness surface.

The orientation of the quadratic surface is determined by the eigenvectors of γwhile the eigen-
values of γ determine the nature and amount of curvature of the surface along each canonical axis.
Along the axis defined by yi, the individual fitness function has positive curvature (is concave) if
λi > 0, has negative curvature (is convex) if λi < 0, or has no curvature (is a plane) if λi = 0.
The amount of curvature is indicated by the magnitude of λi, the larger |λi| the more extreme the
curvature.

An alternative way to think about this canonical transformation is that the original vector z
of n characters is transformed into a vector y of n independent selection indices (Simms 1990).
Directional selection on the index yi is measured by θi, while quadratic selection is measured by λi.

Returning to Figure 8, we see that the axes of symmetry of the quadratic surface are the canonical
axes of γ. For γ12 = 0.25, λ1 = −2.06 and λ2 = −0.94 so that the fitness surface is convex along
each canonical axis, with more extreme curvature along the y1 axis. When γ =

√
2, one eigenvalue

is zero while the other is −3, so that the surface shows no curvature along one axis (it is a plane),
but is strongly convex along the other. Finally, when γ12 = 4, the two eigenvalues differ in sign,
being −5.53 and 2.53. This generates a saddle point with the surface being concave along one axis
and convex along with other, with the convex curvature being more extreme.

If λi = 0, the fitness surface along yi has no curvature, so that the fitness surface is a ridge along
this axis. If θi = bT ei > 0 this is a rising ridge (fitness increases as yi increases), it is a falling ridge
(fitness decrease as yi increase) if θi < 0, and is flat if θi = 0. Returning to Figure 8B, the effect of
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b is to tilt the fitness surface. Denoting values on the axis running along the ridge by y1, if θ1 > 0
the ridge rises so that fitness increases as y1 increases. Even if γ is not singular, it may be nearly so,
with some of the eigenvalues being very close to zero. In this case, the fitness surface shows little
curvature along the axes given by the eigenvectors associated with these near-zero eigenvalues.
From Equation 55, the fitness change along a particular axis (here given by ei) is θi yi + (λi/2) y2

i . If
|θi| >> |λi|, the curvature of the fitness surface along this axis is dominated by the effects of linear
(as opposed to quadratic) selection. Phillips and Arnold (1989) present a nice discussion of several
other issues relating to the visualization of multivariate fitness surfaces, while Box and Draper (1987)
review the statistical foundations of this approach.

Strength of Selection: γii Versus λ

We have seen that the γii can potentially give a very misleading picture of the nature of quadratic
selection, while the eigenvalues λ of γ provide an exact description of the true nature of selection.
Blows and Brooks stress this point, noting that in an analysis of 19 studies that | γii |max < |λ |max.
Thus, studies (such as Kingsolver et al. 2001) that report weak values for quadratic selection are
potentially biased, as they simply used γii values, rather than the full geometry of γ, as described
by the eigenvectors.

Example 13. Brooks and Endler (2001) examined four color traits in male guppies associated with
sexual selection. The estimated γmatrix was

γ =


0.016 −0.016 −0.028 0.103
−0.016 0.00003 0.066 −0.131
−0.028 0.066 −0.011 −0.099

0.103 −0.131 −0.099 0.030


Just considering the diagonal elements suggests evidence for weak concave selection (γ44 = 0.030,
γ11 = 0.016), and some evidence for very weak convex selection (γ33 = −0.011). However, the
eigenvalues of γ are 0.132, 0.006, -0.038, and -0.064. Of these only the leading eigenvalue is significant,
with the amount of concave selection being over four times that suggested from the largest γii value.
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