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Almost any trait that can be defined shows variation, both within and between

populations. Quantitative genetics is concerned with the analysis of the genetic and

environmental basis of this variation. Classical genetics typically deals with single genes of

large effect, while quantitative genetics often assumes a large number of genes, each with

small effects, influence trait variation.

Introduction

Essentially all characters show some phenotypic variation,
either between individuals within a population and/or
between populations. Such variation is probably due to
both genetic and environmental differences. Sorting out
the nature of these genetic differences, the relative
importance of genetic versus environmental factors, and
how this phenotypic variation translates into evolutionary
change is the domain of quantitative genetics. As such, this
branch of genetics provides the theoretical foundations for
plant and animal breeding and for much of human and
evolutionary genetics.

It is generally impossible to determine the genotypes at
all relevant loci influencing a trait simply from an
individual’s phenotype. Fortunately, the relative impor-
tance of genetic and environmental factors for a particular
trait can be estimated from the phenotypic resemblance
between relatives. While quantitative genetics has histori-
cally relied entirely on phenotypic information, more
recently the tools of molecular biology are being applied in
attempts to locate quantitative trait loci (QTLs), loci at
which segregation contributes to the observed character
variance. Identifying QTLs will augment, rather than
supplant, phenotypic measures, and it is straightforward to
incorporate such genotypic information into a quantitative
genetic analysis.

Quantitative traits

Most often, quantitative genetic analysis is performed on
traits showing a continuous range of values, such as height
and weight. However, traits displaying a discrete number
of values (such as number of offspring) and even binary
traits (such as disease presence or absence) are all amenable
to quantitative genetic analysis.

Historical roots of quantitative genetics

The roots of quantitative genetics trace back to the work of
Galton and Pearson in 1880–1900, who developed many of
the basic statistical tools (such as regression and correla-
tion) used in quantitative genetics. The formal beginning of

the field starts with R. A. Fisher’s 1918 treatment of the
inheritance of quantitative characters, which showed how
explicit mendelian genetic models of inheritance could
account for the resemblance in continuous traits between
relatives. Fisher’s treatment introduced the powerful
statistical method of analysis of variance, which is now
applied widely outside the field of quantitative genetics.
Indeed, many of the basic statistical tools now commonly
in use were first introduced and developed in the context of
quantitative genetics.

Genetic and environmental values

One of the fundamental ideas of quantitative genetics is
that the phenotypic value P of an individual is the sum of
that individual’s genotypic value G plus its environmental
value E:

P = G + E [1]

Given a large number of clones of a particular genotype,
the value of G could be estimated from the average value of
the clones, while the environmental value E is estimated by
the difference between the observed phenotype and
estimated value of G. Since clones are rare in most
organisms, other types of relatives are much more
commonly used to make inferences about G and E. Unless
individuals are clones (such as monozygotic twins), the G
values of even close relatives are different, and different
types of relatives share different aspects of G. To account
for this, the genotypic value is decomposed into additive
(A), dominance (D) and epistatic (I) values:

G = A + D + I [2]

As detailed below, A accounts for the average effects of
individual alleles, D for the interaction between alleles at
each locus (dominance), and I for the interaction between
genotypes at different loci (epistasis). The G values from
different types of relatives share different amounts of these
components, and it is these differences that allow for
inferences about the amount of variation contributed by
each of these components. Before proceeding, a few
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remarks are in order on the basic statistical measures of
variation and association which are widely used in
quantitative genetics.

Variances: measures of variation

The standard measure of variation is the variance, Var,
which quantifies how much the distribution of character
values is spread around the mean m. As such, the variance
provides a measure of the amount of uncertainty in the
data. A small variance implies that most values are close to
the mean, and hence the mean provides a good predictor of
the character value for a randomly chosen individual.
Conversely, a large variance implies that there is consider-
able uncertainty in the value of a randomly chosen
individual and the mean is a poor predictor.

If x represents the value of a character whose mean is mx,
the variance of x is given by the average of the squared
deviations about the mean:

Var(x) = Ave[(x2mx)2] [3]

Note that Var� 0, with the variance being zero only if all
individuals have exactly the same value. An important
property of variances is that, if two variables are
uncorrelated, the variance of their sum equals the sum of
their variances:

Var(x + y) = Var(x) + Var(y) [4]

In particular, since P5G1E, then (provided G and E are
uncorrelated) the phenotypic variance is the sum of the
genetic and environmental variances:

Var(P) = Var(G) + Var(E) [5]

and the fraction of variation in trait values due to
differences in the genetic values of individuals is Var(G)/
Var(P). Recalling eqn [2], the genetic variance can be
further decomposed into the variances associated with the
additive, dominance and epistatic components:

Var(G) = Var(A) + Var(D) + Var(I) [6]

As we will see shortly, it is these variance components,
rather than Var(G) itself, that appear in the expressions for
the resemblance between relatives.

Covariances: Measures of Association

While the variance provides a measure of variation, the
covariance Cov(x,y) provides a measure of association (or
covariation) between two traits (x and y) in the same
individual, where:

Cov(x,y) = Ave[(x2mx)(y2my)] [7]

Thus the covariance is the average value of the product of
the deviations of x and y from their respective means. If

Cov(x,y)4 0, individuals with a large value for character x
also tend to have a large value for y, and likewise
individuals with small values of x tend to have small
values of y. A negative covariance, Cov(x,y)5 0, implies
small values of x are associated with large values of y, and
vice versa. A covariance of zero implies there is no (linear)
association between the two variables, and the variables
are said to be uncorrelated.

The covariance and variance are very closely related.
Comparing eqns [3] and [7] shows that the covariance of a
variable with itself is its variance:

Cov(x,x) = Var(x) [8]

Likewise, the covariance of a sum is the sum of the
covariances:

Cov(x + y,z) = Cov(x,z) + Cov(y,z) [9]

Resemblance Between Relatives

Consider two relatives, such as a parent and its offspring,
two full sibs, or identical twins. The phenotypic values P1

and P2 of the two relatives are expected to be more similar
to each other than either is to a random individual from the
population, as relatives share genes and may also share
similar environments. If trait variation has a large genetic
component, the resemblance between relatives should
increase as ever-closer pairs of relatives are considered, as
these share more and more genes.

The resemblance between relatives is measured formally
by the covariance between the phenotypic values of the two
relatives, Cov(P1,P2). Recalling eqns [2] and [9], and
assuming G and E are uncorrelated:

Cov(P1,P2) = Cov(G1 + E1,G2 + E2)
= Cov(G1,G2) + Cov(E1,E2) [10]

showing that the phenotypic resemblance between rela-
tives can be due to shared genes, Cov(G1,G2) and/or shared
environmental values, Cov(E1, E2).

Similarity due to shared environmental
factors

Resemblance between relatives due to an association
between environmental values (Cov(E1, E2)6¼0) can arise
in several ways. Shared maternal effects can generate a
significant environmental covariance, as can shared family
environments (beyond maternal effects). Full sibs are thus
especially susceptible to having the phenotypic resem-
blance inflated by shared environmental factors. Similarly,
an offspring and its mother may also have shared
environmental values, owing to the environment influen-
cing both the maternal contribution to the offspring and
the mother’s phenotype.

Quantitative Genetics
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In controlled breeding programmes, individuals can be
randomized across environments, reducing or eliminating
shared environmental values. Human geneticists use a
different (but related) approach, looking at twins separated
at birth and adopted to different households. While both of
these approaches can remove shared environmental effects
following birth, there may still be a significant environ-
mental covariance because of shared neonatal maternal
effects.

Similarity due to shared genes

Since G5A1D1 I, the covariance between genetic
values can be further decomposed as:

CovðG1;G2Þ ¼ CovðA1 þ D1 þ I1; A2 þ D2 þ I2Þ
¼ CovðA1;A2Þ þ CovðD1;D2Þ þ CovðI1; I2Þ

[11]

The last step follows since A, D and I are (by construction)
uncorrelated. Covariances between genotypic values are
generated because relatives share genes (alleles shared by
both relatives that descend from a single ancestral copy).
At a given locus, two relatives can share zero, one or two
alleles, with different sets of relatives having different
probabilities of these events. For example, a parent and its
offspring share exactly one allele (unless there is a history of
inbreeding), as a parent contributes only a single allele to its
offspring. Identical (monozygotic) twins share exactly two
alleles, as they are genetically identical. Full sibs have
probabilities of 1/4, 1/2 and 1/4 of sharing zero, one or two
common alleles (as there is a 50% chance that two sibs
share the same allele from their father, and likewise the
same probabilities of sharing maternal alleles).

As we will see shortly, the additive (A) values are due to
the effects of individual alleles, whereas the dominance (D)
values are the residual values generated by interactions
between the two particular alleles at a locus. Thus, if the
relatives share only one allele at a locus, they share only
half the additive variance (as the additive variance
contributed by a locus is the sum of both allelic effects).
If relatives share both alleles at this locus, they share
Var(A)1Var(D). Ignoring epistasis and letting pi denote
the probability that a relative pair shares i (5 0, 1 or 2)
alleles at a random locus, the covariance due to shared

genetic effects is given by:
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The appropriate values for some common relative pairs,
are given in Table 1.

With estimates of variance components in hand,
prediction may be made of how similar relatives should
be to one another. For example, what is the chance that a
grandchild displays a disease that was seen in one of its
grandparents? The predicted covariance in this case is
Var(A)/4, which translates into a probability of
K1Var(A)/(4K), where K is the disease frequency in a
random individual.

Since different pairs of relatives weight the genetic
variance components differently, combinations of relatives
can be used to estimate genetic variance components; for
example:

4[Cov(parent, offspring)2 2 Cov(half-sibs)] = Var(A)
[13]

Similarly, the dominance variance can be estimated by:

4[Cov(full sibs)2 2 Cov(parent, offspring)] = Var(D)
[14]

As mentioned above, a complication with using full sibs is
that shared environmental values can inflate the resem-
blance between relatives. With shared environmental
values between full sibs, eqn [14] becomes Var(D)1 4 -
Cov(E1,E2). Likewise, fathers (rather than mothers) are
preferred for single parent–offspring covariances, as this
avoids potential inflation due to maternal environmental
effects.

Epistasis

The epistatic component I can be decomposed into
separate (and uncorrelated) factors, representing different
levels of interactions between multiple loci. If only
two-locus interactions are considered, then I5
AA1AD1DD, and each of these epistatic variance terms
itself has a different coefficient for the resemblance between
different sets of relatives. For example, the shared
covariance between parent–offspring due to shared

Table 1 Genetic variance components in relative pairs

Relative pair p
0

p
1

p
2

Var(A) Var(D)

Parent–offspring 0 1 0 1/2 0
Grandparent–grandchild 1/2 1/2 0 1/4 0
Full sibs 1/4 1/2 1/4 1/2 1/4
Half-sibs 1/2 1/2 0 1/4 0
Monozygotic twins 0 0 1 1 1
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epistatic effects is Var(AA)/4, while it is Var(AA)/
41Var(AD)/81Var(DD)/16 for full sibs.

Generally, epistatic variances are smaller than the
additive and dominance variances, as even in the presence
of very strong epistasis much of the genetic variation is still
loaded into Var(A) and Var(D). Further, the coefficients
associated with epistatic variances becomes smaller and
smaller as higher-order epistatic interactions are consid-
ered.

Components of the Genetic Variance

As mentioned, A represents the contribution to the
character from the effects of individual alleles, while D is
the contribution from the interaction between these alleles.
Likewise, I (which will not be considered further)
represents the contribution from interactions between
different loci.

To develop A and D formally, consider the genotypic
valueGkj for an individual with alleles k and j at a particular
locus. Assuming no epistasis, an individual’s total geno-
typic value G is the sum of the genotypic values at all
relevant loci. Fisher’s insight was that the genotypic value
for a given locus can be written as:

Gkj =m+ ak + aj + dkj [15]

Under random mating ak (the average effect of allele k) is
the average character value of an individual with a copy of
allele k over and above the population mean m. In the
absence of dominance, the value of Gkj equals the sum of
both allelic effects, ak1 aj. The a values are determined by
least-squares (best-fit) criteria and hence they can change
as the frequencies of the genotypes change. If dominance is
present, the genotypic value may differ from that predicted
by the sum of the individual allelic effects. The amount of
dominance for a particular genotype is measured by the
dominance deviation, dkj5Gkj2 (ak1 aj.). The least-
squares fit ensures that a and d are uncorrelated. As an
example of a and d, suppose the average character value
(over and above the population mean m) in an individual
carrying allele Q3 in the population of interest is 5, and the
average value of an individual carrying allele Q1 is 7,
implying a35 5 and a15 7, and giving the predicted value
of a Q1Q3 heterozygote as 12. However, if the actual
character value of a Q1Q3 heterozygote is 10, then the
dominance deviation for this genotype is d135

102 (51 7)5 2 2.
The sum of the average effects over all loci contributing

to the character gives the additive value A, while D is the
sum of dominance deviations over all loci. Thus, the
additive variance contributed by this locus is the variance
of the allelic effects, Var(ak1 aj)5 2 Var(ak), and the

additive variance is the sum over all loci:
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Likewise, the contribution from this locus to the dom-
inance variance is given by Var(dkj), with the dominance
variance being the sum over all loci:
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As mentioned above, the a and d values, and hence the
additive and dominance genetic variances, depend on the
frequencies of the various genotypes in the population. To
see this, consider the contribution from a single QTL with
two alleles (Q1 and Q2) whose frequencies are p and 12 p,
respectively. Suppose the contributions to the character
value from each the three genotypes at this locus are:
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Thus, the difference in character value between Q1 Q1 and
Q2 Q2 individuals is 2a, while the amount of dominance
between these two alleles is measured by d. If d5 0, the
mean phenotype of the heterozygote is exactly intermedi-
ate to the two homozygotes, while d5 2 1 implies Q1 is
completely dominant to Q2 and d5 1 implies Q2 is
completely dominant over Q1. The additive variance
contributed by this locus becomes:

Var(A) = 2p(12 p)a2(1 + d[2p2 1])2 [18]

showing that the additive variance is a function of not only
a, but also the allele frequency (p) and the amount of
dominance (d). The dominance variance for this locus is:

Var(D) = [2p(12 p)ad]2 [19]

If there is no dominance (d5 0), the dominance variance is
zero. However, even when there is considerable domi-
nance, Var(A) is usually larger than Var(D).

Heritability

The most common summary statistic in quantitative
genetics is the heritability, h2, of a character:

h2 = Var(A)/Var(P) [20]

which is the fraction of the total variance due to additive
genetic effects. A heritability close to 1 indicates that most
of the observed variation is due to variation in the average
effects of different alleles. Conversely, while a small
heritability implies that Var(A) is small, it tells us little
about Var(G), as genetic effects could be largely in
nonadditive terms (D and I). Thus a character with
h25 0 can still have very considerable genetic variation at
loci contributing to the observed character variation. A
zero heritability simply means that all individual alleles at a

Quantitative Genetics

4 ENCYCLOPEDIA OF LIFE SCIENCES / & 2001 Nature Publishing Group / www.els.net



locus have the same average effect on a character.
Interactions between alleles (either at the same locus or
between different loci) can still generate considerable
variance. Note that a character can be entirely genetically
determined but show no genetic variation within a
population. Hence, Var(G)5 0 does not imply that the
character lacks a genetic basis; it implies only that the
observed trait variation within the population being
considered is entirely environmental.

Heritabilities, being a function of the additive variance
(and hence the particular allele frequencies), apply only to
the population and environment in which they were
measured. The same character measured in different
populations thus can have rather different heritabilities.
Typically, estimated h2 values are much lower for
characters thought to be closely associated with fitness
(such as viability, fertility, fecundity) than for morpholo-
gical characters thought to be less closely associated with
fitness (such as bristle number or wing size). The likely
explanation for this observation is that selection tends to
reduce heritability, and selection is stronger on characters
more closely associated with fitness.

While many sets of relatives can be used to estimate
Var(A), and hence h2, heritability is most commonly
estimated from a parent–offspring regression. Here, the
midparent value (the average value of both parents) is
plotted against the mean value of their offspring. The
resulting points scatter around a straight line whose
expected slope is h2. Mathematically, this implies that the
expected offspring value O, given the average value of both
its parents (MP), is given by the equation for a straight line:

O = m+ h2(MP2 m) [21]

where m is the population mean of the character. Thus,
knowledge of h2 is sufficient to predict the offspring mean,
given the phenotypes of its parents. The actual value for
any particular offspring is distributed around this pre-
dicted value, with variance:

Var(O | MP) = (12 h4/2) Var(P) [22]

For a character with h25 1, the variance in offspring value
about the expected value is Var(P)/2. Thus, even if all the
character variance is due to Var(A), the uncertainty in an
offspring’s value, given we know its parents, is reduced by
only 50% relative to an individual whose parents are
unknown.

An example of a midparent–offspring regression is
Galton’s original 1889 analysis of adult height in the
English population. As shown in Figure 1, Galton plotted
the average height of parents against the average height of
their offspring. Rather than plotting each family sepa-
rately, Galton lumped together all offspring whose parents
had the same midparental height (using one-inch cate-
gories). The resulting data fell along a straight line, whose
slope was 0.65. Thus, h25 0.65, implying that 65% of the
observed variation in height is due to variation in the

average effects of individual alleles. Since h4/25 0.652/
25 0.211, eqn [22] implies that knowing the midparent
value reduces the variance (and hence the uncertainty) in
the offspring height by 21% relative to the variance
associated with a random individual whose parental
heights are unknown.

Selection of Quantitative Characters

Knowledge of the heritability is sufficient to predict the
response to a single generation of selection. Defining the
response R as the change in mean over one generation, and
the selection differential S as the difference between the
mean of selected parents and the population mean before
selection, it follows from eqn [21] that:

R = h2S [23]

This is often referred to as the Breeders’ equation. If
heritability is close to zero, the population will show very
little response to selection, no matter how strong the
selection. For example, suppose the average value of a
character in the population is 100, but only individuals
with large values are allowed to reproduce, so that among
the reproducing adults the average trait value is 120. This
gives S5 1202 1005 20, and an expected mean in the next
generation of 1001 20h2. If h25 0.5, the mean increases by
10, while if h25 0.05 the mean increases by only 1.

Eqn [23] implies that the response to selection depends
on only a part of the total genetic variation, namely Var(A).
The reason for this is that parents pass on single alleles,
rather than whole genotypes, to their offspring. Only the
average effects of alleles influence the response: any
dominance contributions due to interaction between alleles
in a parent are not passed on to the next generation, as only
a single parental allele is passed to its offspring.
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Figure 1 Galton’s 1889 plot of average parental height versus average
height of offspring.
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The Breeders’ equation (and its rather sophisticated
modifications) form the basis for much of plant and animal
breeding. One complication is that, since the heritability is
a function of allele frequencies, h2 changes as selection
proceeds. While h2 often declines throughout the course of
selection, if rare alleles of large effect are favoured by
selection h2 may increase over several generations before
ultimately declining. Eventually (in the absence of new
variation), heritability approaches zero as alleles favoured
by selection are fixed. Hence, while the short-term response
to selection (that over five to ten generations) can be
predicted fairly accurately by iterating the Breeders’
equation using the original value of h2, the long-term
response is not predictable from the original variance
components.

While directional selection (selection to increase the
mean) is commonly the goal of plant and animal breeding,
it is thought that stabilizing selection may be equally (or
more) important than directional selection in natural
populations. Under stabilizing selection, individuals with
extreme (very large or very small) values are selected
against, while individuals with intermediate values have
the highest fitness. The net result is little change in the
mean, but a decrease in the variance, especially Var(A). As
with directional selection, stabilizing selection tends to
drive the heritability to zero.

What Maintains Quantitative Variation?

Most characters examined in natural populations show
nonzero heritabilities, with h2 often around 0.2–0.5.
Hence, most characters have the intrinsic variation to
respond to directional selection. This is an extremely
important observation, as in the absence of sufficient
variation a population can go extinct if it is not able to
respond quickly enough to an environmental change.

What maintains such high levels of additive variance?
Mutation is one possibility. The input from new mutation
can be substantial, increasing heritability by around 0.1%
per generation (for a population with a heritability near
zero). If the character is not under selection, the balance
between mutation introducing variation and genetic drift
removing it can maintain a substantial level of Var(A). If
the character is under selection, reasonable levels of Var(A)
can still be maintained by the balance between selection
and mutation. As mentioned above, characters more
closely related to fitness appear to show lower levels of
additive variance. This is expected under the mutation–
selection balance argument, as the stronger the amount of
selection, the lower the equilibrium value of Var(A), and
hence h2.

A second hypothesis is that the nature of selection on the
character is shifting over time and/or space. This could
occur by frequency-dependent selection, spatial differences

in fitness, or genotype–environment interactions. Under
certain conditions, this can generate overdominance in
fitness (heterozygotes having the highest fitness). Such loci
have no additive variance in fitness at equilibrium, but still
are segregating genetic variation and hence can have a
significant effect on the Var(A) of a character.

The final hypothesis is that variation is maintained by
pleiotropy (loci having effects of several characters at
once). Under this hypothesis, while the character of
interest may not itself be under direct selection, it is
influenced by a number of pleiotropic loci under selection
for other traits. For example, selection may be acting on
some biochemical pathway in such a manner as to maintain
variation. If loci in this pathway also influence the
character of interest through pleiotropic interactions,
variation in the character is maintained.

How Many Loci Underlie a Quantitative
Character?

There are several related questions concerning the number
of loci. How many loci are responsible for genetic
differences between populations and for the variation in
genotypes within a population? How many loci can
potentially influence a character? The first question deals
with the standing variation within (or between) popula-
tions, while the second concerns the appearance of new
variation by mutation at QTLs. We have very little
information on the latter.

Most studies examining the number of QTLs have
involved crosses between distinct lines (usually inbred),
and thus address only between-population differences. The
logic behind such line-cross analysis using only phenotypic
information is as follows: if the lines are fixed for alternate
alleles at a given QTL (say QQ in one, qq in the other), then
all F1 individuals are Qq. In the F2, however, 1/4 are QQ, 1/
2 are Qq and 1/4 are qq. This F2 segregation increases the
phenotypic variance relative to the F1, and this increase can
be used to estimate a lower bound for the average number
of loci contributing to the genetic differences between lines.
Use of this approach generally yields lower-bound
estimates of around 1–10 factors (single loci or groups of
linked loci) accounting for the differences between inbred
lines.

While phenotypic line-cross analysis can provide only
crude estimates of the number of loci, if marker informa-
tion is also available a greatly improved strategy is to use F2

(or related) populations for QTL mapping by looking for
associations between trait values and random marker loci
(see below). This approach provides direct estimates of
QTL positions and their effects. For results using line
crosses (mostly involving crosses of different cultivars), a
typical character shows about 5–20 detected QTLs, which
together account for around 30–50% of the trait variance.
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Often a few factors account for the majority of the detected
variance.

Crosses between inbred lines do not directly address how
many loci are responsible for the observed variation within
a population. With an inbred line cross, all segregating loci
in the F1 and F2 populations have two alleles, each with
frequency 1/2. Loci in outbred populations have no such
restrictions on either the number or frequency of alleles.
Because of this, the number of segregating loci in an
outbred population is much less important than the
fraction of variation contributed by each. However, since
the variance at each locus is a function of both the allelic
frequencies and their effects, the contribution from any
given locus can change substantially over time. For
example, a locus may have a small effect on the character
variance even if it is segregating an allele with a large effect,
provided the allele is rare. As the rare allele increases, the
variance contribution from this loci can increase drama-
tically. While there are very few studies of the QTLs
underlying within-population variation, the general pat-
tern is that many loci appear to have a small effect on the
character, while just a few loci account for a significant
fraction of the genetic variation.

Searching for Quantitative Trait Loci

An exciting development in quantitative genetics is the use
of random deoxyribonucleic acid (DNA) polymorphisms
to search for QTLs. It is a fairly routine matter to locate
highly polymorphic marker loci, and, by choosing a set of
these that span the genome, a search can be undertaken for
marker–trait associations, indicating the presence of a
QTL linked to the marker. The most straightforward
approach is to cross two inbred lines. In the F2 from such a
cross, only those loci fixed for different alleles between the
lines will be segregating. Let M/m and Q/q denote alternate
marker and QTL alleles fixed in the two lines (say MQ/MQ
in one line and mq/mq in the other). Provided that the
marker and QTL are linked, M-bearing individuals are
more likely to carry a Q allele at the QTL, and m-bearing
individuals are more likely to contain a q allele. This results
in a difference in the mean trait value between different
marker genotypes. If the marker and QTL are separated by
a recombination fraction of c, the strength of the marker–
trait association scales as (12 2c). Thus, a weak associa-
tion can be generated by tight linkage to a QTL of small
effect or loose linkage to a QTL of major effect. Using this
basic idea, a variety of statistical approaches (such as
analysis of variance and maximum likelihood) have been

used not only to detect QTLs but also to estimate their
effects and to map positions.

A similar approach applies to outbred populations, but
with the restriction that marker–trait association analysis
must be performed separately on each parent, as opposed
to lumping all individuals together in a single analysis (as is
done with line crosses). This restriction arises because the
linkage phase can vary over parents. For example, one
family might have a MQ/mq parent, another a Mq/mQ
parent. If the offspring from both families are combined
together in a single analysis, an M-bearing offspring has an
equal chance of being associated with either Q or q, and no
marker–trait association is observed. The analysis for each
parent proceeds as follows. Suppose the father has
genotype Mm at a particular marker locus. The presence
of a linked QTL is indicated if offspring bearing the
paternal M allele have a different mean from offspring
bearing the paternal m allele. Since a parent must be a
double (marker–QTL) heterozygote in order to observe a
marker–trait association, only some parents show a
marker–trait association. Because of the separate analyses
required for each parent (only some of which will be
informative), QTL mapping is far more powerful in inbred
line crosses than in outbred populations. In spite of these
limitations, a variety of tests for marker–trait association
has proven quite successful in mapping QTLs for human
diseases.
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