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Short-term Changes in the Variance:

2. Changes in the Environmental Variance
It is the purpose of this short communication to suggest that recent views on the nature of the
developmental process make it easier to understand how the genotypes of evolving organisms

can respond to the environment in a more co-ordinated fashion — Waddington (1942)

Draft version 13 June 2013

Our assumption to this point has been that the environmental variation is homoscedastic
(constant across genotypes), and hence not subject to modification by selection. However, a
fairly universal (and very striking) observation is that most traits show at least some genetic
variation in an outbred population. One can imagine that sensitivity to the environment, as
measured by the environmental variance, is such a trait (Waddington 1957, Hill 2007), and
thus can potentially respond to selection. If true, selection for (or against) extreme individ-
uals, such as directional and disruptive selection for the former and stabilizing selection for
the later, may also result in selection for increased (or decreased) values of σ2

E in addition to
the changes in σ2

A discussed in Chapter 16. There are also settings that favor direct selection
on σ2

E , such as breeding for more uniformity in an agricultural or laboratory trait. There
can also be fitness consequences for uniformity in domesticated populations. For example,
pre-weaning survival increases as the within-litter variance (a function of σ2

E) in weight de-
creases in both pigs (Milligan et al. 2002) and rabbits (Garreau et al. 2008). Direct selection
on σ2

E likely occurs in natural populations, such as selection on the within-plant variation in
flowering time (Devaus and Lande 2009). Finally, Gibson (2009) and Feinberg and Irizarry
(2010) have argued that selection on the inherent stochasticity of developmental systems may
play an important role in our understanding of human diseases. All of these considerations
have spurred an interest in selection response in σ2

E (reviewed by Hill and Mulder 2010).
One technical comment before proceeding is that simple scale effects can also result in

a change in the variance — if the coefficient of variation of a trait remains constant as its
mean changes, then its variance must also change as well. As discussed in LW Chapter 11, a
suitable transformation (such as working with the log of the trait value) often removes these
scale effects and we assume this has been done previous to any analysis.

BACKGROUND: HERITABLE VARIATION IN σ2
E

Scales of Environmental Sensitivity

The environment an organism experiences can be partitioned into many different scales of
resolution, but operationally we are usually concerned with just two: features shared by
all individuals in some common setting (macroenvironments) and features unique to each
individual (microenvironments). Sensitivity (i.e., differential performance) of genotypes over
any of these scales indicates genotype× environmental interactions (LW Chapter 22). Volume
3 examines selection response in the presence of G × E over macro-scale differences (such
as different growing regions for a crop or different hostplants for an insect), by treating the
trait value in each macroenvironment as a correlated character (Falconer 1952). A related
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topic are norm of reactions, performance curves as one tunes a particular environmental
value (such as temperature). The analysis of response for such function-valued traits is also
deferred until our final volume.

Our focus here is on sensitivity to microenvironmental variation, which itself can occur
over several different scales. The most fundamental is developmental noise, which can be
measured by differences in the trait values of homologous structures within an individual,
such as the amount of fluctuating asymmetry (differences in trait values on the left and right
side of bilaterally-symmetric organisms, LW Chapter 11; see also Leamy and Klingenberg
2005, Dongen 2006, Graham et al. 2010). Presumably this within-individual variation reflects
“noise” in the developmental process — variation in the end product of the same genotype in
the same environment. A related measure of microenvironmental variation is the variance
in the repeated performance (records) of an individual over time, such offspring size in
different litters. This repeated-measures design assumes all records from a single individual
contain a permanent environmental effect (Chapters 13, 19). While this is constant within
the repeated records from an individual, it differs across individuals, offering another level
of microenvironmental variation. While environmental variation at all three of these scales
contributes to σ2

E , it is possible that different pathways may be involved in environmental
sensitivity at each scale.

Environmental vs. Genetic Canalization

The idea that genotypes may vary in their microenvironmental sensitivity has a fairly rich
history, dating back to Waddington’s (1942) notion of canalization (Schmalhausen’s 1949
autoregulation) — developmental buffering against small perturbations (be they environ-
mental or genetic), so that a wide range of genotypes and environments end up at essentially
the same developmental end-product. He also stressed that canalization is an evolved system
(Waddington 1957, 1959), and hence to some extend is a selectable trait. Part of Wadding-
ton’s concern was sensitivity to the environment, with genotypes that show environmental
canalization (or environmental robustness) having lower environmental variances. How-
ever, Waddington was also concerned with the fact that a particular genotype may find itself
in a variety of different genetic environments and that genotypes may also differ in their sen-
sitivities to these backgrounds. Genetic canalization (or genetic robustness) is the stability
of a particular genotype when placed in a variety of different genetic backgrounds, and is a
function of epistasis between a genotype of interest and the universe of genetic backgrounds
in which it may find itself. These two measures of sensitivity can be easily confounded,
yet they are fundamentally different. Environmental robustness does not necessarily imply
genetic robustness, and vise-versa. As reviewed in Flatt (2005) and Hansen (2006), the con-
ditions for the evolution of genetic canalization (an overall reduction in the sensitivity of a
random genotype to its genetic background) are much more restrictive (in part because the
target background is itself continually evolving).

Using an appropriate design, the genetic and environmental sensitivities for a particular
genotype can be separated. Under a repeated-measures design, the genetic background
remains constant and the residual variance is due entirely to environmental sensitivity (plus
measurement error). A second (but obviously more restrictive) design is the use of a series of
inbred lines. For a particular genotype of interest (such as a marker locus tagging a QTL), the
between-line trait variance of a genotype across a series of lines (and hence different genetic
backgrounds) is a measure of its genetic sensitivity, while the within-line variance of the
target genotype is a measure of its environmental sensitivity.

Example 17.1 Fraser and Schadt (2010) considered expression (mRNA) levels for thousands
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of genes over a series of 19 mouse inbred lines. Within each line, roughly 20 individuals were
scored at ∼ 160,000 markers. For a given trait (the expression level at a specified gene), the
within-line variation was contrasted between the two alternative genotypes at each marker.
Since there is essentially no genetic variation within an inbred line, a significant differences in
the within-line variance over marker genotypes indicates linkage to a QTL influencing envi-
ronmental robustness (differences inσ2

E). Conversely, a significant difference in the dispersion
of the mean values of the marker genotypes across inbred lines indicates that the marker is
linked to a QTL influencing genetic robustness. Using this approach, these authors found QTLs
for both types of robustness. QTLs for environmental robustness were largely trans-acting and
sex-specific (different QTLs in the two sexes). In contrast, QTLs for genetic robustness were
often cis-acting and were not sex-specific. There was no overlap between the two classes of
QTLs. More generally, most settings lack this strict control over genetic background and thus
any measure of residual variance confounds these two sources. Our assumption below is that
any heritable variation in the residual variance is due to environmental sensitivity, which does
not rule out nonadditive variation in the residual variance from genetic and/or environmental
sensitivity.

Evidence for Heritable Variation in Environmental Variance

The observation that different genotypes may have different environmental variances is not
new. Robertson and Reeve (1952) and Lerner (1954) noted that inbred lines often have large
environmental variances relative to their outbred counterparts (see Whitlock and Fowler
1999 for a recent example). This led Lerner to propose that genetic homeostasis (develop-
mental buffering across environments) was facilitated by heterozygosity, with environment
sensitivity (σ2

E) increasing with homozygosity. Consistent with this suggestion is the obser-
vation that developmental noise (measured by the amount of fluctuating asymmetry) often
decreases with increasing levels of protein (i.e., isozyme) heterozygosity (reviewed in Mitton
and Grant 1984, Livshits and Kobyliansky 1985, Zouros and Foltz 1987, Chakraborty 1987,
Britten 1996, Vøllestad et al. 1999), a point we return to shortly.

Direct evidence for genetic variation in σ2
E is provided by comparing inbred lines.

Mackay and Lyman (2005) observed different amounts of environmental variation for bristle
number across inbred lines of Drosophila from a common source population. Similar findings
were seen for four maize traits over a series of recombinant inbred lines by Ordas et al. (2008).
While these studies provide direct evidence for genetic variation in σ2

E , our concern is with
heritable variation — additive genetic variation in the trait that can respond to selection. There
is direct evidence for heritable variation at the level of developmental noise in that traits usu-
ally respond to selection to either increase or decrease the amount of fluctuating asymmetry
(LW Chapter 11). However, this is only one potential component of the microenvironmental
variance, so just what evidence is there for a heritable component of σ2

E in general?
Indirect support comes from observations of heritable variation of the within-family

variance in livestock traits. Van Vleck (1968) and Clay et al. (1979) observed significant
sire differences in the variation in milk yield in dairy cattle across half-sib families, while
Rowe et al. (2006) found significant sire variation in the within-family residual variance for
35-day body weight in broiler chickens. While variation between sires is consistent with a
heritable component for within-family variances, it can also arise from genetic segregation.
In particular, heteroscadisticity of family variances is a classic (but weak) test for the presence
of a major gene, with parents heterozygous for the major allele having sibs a larger within-
family variance than homozygous parents. (LW Chapter 13).

A more recent line of evidence comes from a significantly improved fit of statistical
models assuming a heritable component of the residual variance (and hence a correlation in
σ2
E among relatives) over those that assume no such heritable variation. Such an improved
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fit has been seen for fecundity in sheep (SanCristobal-Gaudy et al. 2001), body weight in the
snail Helix aspersa (Ros et al. 2004), and litter size in pigs (Sorensen and Waagepetersen 2003),
with additional examples listed in Table 17.2. The caveat with these results is the concern that
violations of the underling statistical models may lead to an incorrect suggestion that such
genetic variation exists when in fact it is absent. Indeed, Yang et al. (2011) showed that these
analyses are strongly biased by the presence of skew in the data, as the presence of heritable
variation in σ2

E is also manifested as skew (Ros et al. 2004). These authors simultaneously fit a
model along with a general Box-Cox transformation (LW Chapter 11) of their data to remove
any intrinsic skewness. Evidence for genetic variance in σ2

E was reduced in some cases after
accounting for skew, while in others it was strengthened. The bottom line is that there does
appear to be real evidence for heritable variation from the analysis of these models, but
estimating some of its features (in particular the correlation between breeding values for
trait means and residual variances) is very delicate.

The final line of evidence is the mapping of genes involved in either canalization or
trait variances. The classic example of the former is the heat shock protein HSP90, which
has been shown to buffer both genetic and environmental effects (reviewed in Sangster et
al. 2008). The latter are QTLs associated with trait variances (denoted vQTLs by Rönnegård
and Valdar 2011). While early QTL mapping projects noted that some marker genotypes
differed in their trait variances as well as their means (e.g., Edwards et al. 1987), the formal
development of specific methods to map such QTLs is rather recent (Ordas et al. 2008;
Paré et al. 2010; Struchlain et al. 2010; Visscher and Posthuma 2010; Rönnegård and Valdar
2011, 2012; Jimenez-Gomes et al. 2011; Hothorn et al. 2012; Shen et al. 2012). While these
studies have found a number of candidate regions, as with between-sire differences in family
variances, they reflect differences in the residual (as opposed to strictly the environmental)
variance for marker genotypes, and hence can arise from differences in sensitivity to genetic
background. Indeed, Paré et al. (2010) and Deng and Paré (2011) have suggested using
variance heterogeneity across markers as a preliminary scan for potentially epistatic loci.

Collectively, these observations suggest that heritable variation in the environmental
variation likely exists for many traits, and that selection on the phenotypic variance can
result in a response in part due to changes in the overall environmental variance of the
population. Consistent with the view, recall that changes in σ2

E were seen in several of the
stabilizing/disruptive selection experiments reviewed in Chapter 16.

MODELING GENETIC VARATION IN σ2
E

A variety of statistical models have been proposed to account for heritable transmission of
at least part of the environmental variance. The starting point for each is that the phenotypic
value of an individual of genotype i can be written as

zi = µ+Gi + E, where E ∼ (0, σ2
i ) (17.1a)

The notation x ∼ (µ, σ2) denotes that x comes from a distribution with mean µ and variance
σ2. For ease of development, we generally assume that the trait is entirely additive so that
G = Am, the breeding value for the mean. Taking the expectation (to avoid confusion,
we use roman E for expectation and italic E for environmental values), the population
environmental variance is the average of the σ2

i ,

σ2
E = E[σ2

i ] (17.1b)

If working with a series of pure lines, one can estimate σ2
i directly. The more interesting (and

difficult) problem arises when considering an outbred population. In this case we have to
deal with both estimation and the vexing issue of modeling transmission. Models allowing
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for heterogeneity of environmental variance were introduced in the 1990’s (e.g., Foulley et al.
1992, Foulley and Quaas 1995, Cullis et al. 1996), but these ignored the question of selection
(and evolution) of the environmental variance itself. The first formal analyses of the evolution
of the environmental variance were population-genetic models by Gavrilets and Hastings
(1994) and Wagner et al. (1997), and breeding-value based models by SanCristobal-Gaudy
et al. (1998).

The Multiplicative Model

Gavrilets and Hastings (1994) assumed some underlying environmental value e (such as
temperature), with different genotypes having different sensitivity γi, so that

E = γi e, where e ∼ (0, σ2
e) (17.2a)

This multiplicative model is simply the joint regression model for genotype-environment
interactions (LW Equation 22.13b; Volume 3), and was also used by Wagner et al. (1997).
Under Equation 17.2a, the conditional environmental variance (given the genotypic value
and its environmental sensitivity) is

σ2[E |G, γi] = γ2
i σ

2
e (17.2b)

As shown in Example 17.2 (below), taking the expected value over γ ∼ (µγ , σ2
γ) gives the

unconditional environmental variance as

σ2
E =

(
µ2
γ + σ2

γ

)
σ2
e (17.2c)

Under the multiplicative model, the environmental variance for the population decreases
by selecting µγ to zero and/or by decreasing the variance σ2

γ . The problematic issue here is
modeling the change in the distribution of the genotypic-specific sensitivities γ. The simplest
approach is to assume the environmental sensitivity γ is an entirely additive quantitative
trait, so that γ = Av , namely the breeding value for the environmental variance.

Equation 17.2c lead Gavrilets and Hasting to comment on the relationship between
developmental noise and heterozygosity mentioned previously. Lerner assumed this was
causative — higher levels of heterozygosity resulted in decreased environmental variance.
However, Gavrilets and Hastings noted that when µ2

γ = 0, as might occur with selection
to decrease σ2

E , then the environmental variance is proportional to the additive genetic
variance σ2

γ = σ2
Av

. Recalling a result from Chakraborty (1987), namely that for an additive
trait, the genetic variance is a decreasing function of the number of heterozygous loci, they
note that the correlation between heterozygosity and σ2

E simply falls out as a consequence
of their model, rather than from any functional relationship between the two. Conversely,
if Lerner was correct and the relationship between σ2

E and heterozygosity is indeed casual,
Zhivotovsky and Feldman (1992) note that if σ2

E is a decreasing function of heterozygosity,
the equilibrium mean value of a trait under stabilizing selection may not coincide with its
optimal fitness value.

If we allow for dominance in the quantitative-trait formulation of γ, we now have
γ = Av + Dv , where the dominance value Dv is not transmitted from parent to offspring.
Further, by construction Dv has a mean value of zero and under the infinitesimal model,
the dominance variance is not changed by selection (Chapter 15). Under this extension, the
mean environmental variance becomes

σ2
E =

(
µ2
Av + σ2

Av

)
σ2
e + σ2

Dv σ
2
e (17.2d)

While selection can reduce the first component (either by driving the mean breeding value to
zero and/or reducing σ2

Av
by generating negative disequilibrium), the component involving
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non-additive variance remains unchanged. Hence, implicit in assuming a breeding value for
this model (or any of the others discussed below) is that any non-transmissible genetic
variation in σ2

E remains unchanged by selection. Genetic variation in σ2
E , by itself, is not

sufficient for a selection response, as the later requires that at least part of this variation must
be transmissible under the breeding scheme used.

The Exponential Model

While we have presented the multiplicative model within a breeding-value framework, this
was not explicitly done by Gavrilets and Hastings (1994), who (coming from a population-
genetics background) were more concerned with evolution of the environmental variance
than estimating Av . Conversely, SanCristobal-Gaudy et al. (1998), coming from an animal
breeding background, were more concerned with estimation. They did so by modeling E
using an exponential model,

E = exp
(
Av
2

)
· e, where e ∼ N(0, σ2

e) and Av ∼ N(µAv , σ
2
Av ) (17.3a)

The connection with the multiplicative model follows by noting for small |x| that ex ' 1 +x,
so thatE ' (1+Av/2) ·e for small |AV |. By assuming normality and independence (of e,Av ,
and Am), SanCristobal-Gaudy et al. (1998) obtain likelihood estimators for the breeding
values for the environmental variance (Av) and trait mean (Am). They explicitly considered
estimation under either a sire design (using half sib values to estimate Av and Am of the
parent) or using a repeatability model (Chapters 13, 19) where repeated measurements on a
single individual and its relatives are used to estimate breeding values for σ2

E . SanCristobal-
Gaudy et al. (2001) extend this approach to threshold traits (in particular, litter size). Bayesian
estimators under this model were developed by Sorensen and Waagepetersen (2003) and Ros
et al. (2004).

Given Av , the conditional distribution of the environmental variance becomes

σ2(E |Av) = σ2
e exp (Av) , (17.3b)

which follows by recalling (ea)2 = e2a. Hence, the environmental variance is a constant (σ2
e )

multiplied by a scaling factor that is a function of the breeding valueAv for the environmen-
tal variance. Decreasing Av results in an individual with reduced environmental sensitivity
(reduced σ2

E). The constant σ2
e can be interpreted as the environmental variance for an indi-

vidual with an environmental breeding value of zero. The exponential model is also called
the log-additive model, as the breeding value is additive on the log of the variance scale,

ln
[
σ2(E |Av)

]
= ln

(
σ2
e

)
+Av, (17.3c)

As detailed in Example 17.2, the expectation of Equation 17.3b (over the population distri-
bution of Av values) gives the mean environmental variance as

σ2
E = σ2

e exp
(
µAv + σ2

Av/2
)

(17.3d)

Equation 17.3d shows that either decreasing the mean breeding value µAv , or its additive
variance σ2

Av
, decreases the environmental variance. Comparison of Equations 17.2c and

17.3d shows one subtle difference between the multiplicative and exponential models. Under
the former, the minimal population environmental variance occurs when µAv = 0, with any
deviation from this increasing the average environmental variance in the population. By
contrast, under the exponential model, decreasingµAv always decreases the average value of
σ2
E in the population. Thus, under the exponential model, σ2

E can be selected to be arbitrary
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small, while under the multiplicative model, it has a lower bound set by σ2
Av

(and more
generally by the dominance variance as well, see Equation 17.2d).

The Additive Model

Our last formulation for modeling genetic variation in E was suggested by Hill and Zhang
(2004) and Mulder et al. (2007),

E = U ·
√
σ2
e +Av, where U ∼ N(0, 1) and Av ∼ N(µAv , σ

2
Av ) (17.4a)

This is the additive model, as the environmental variance for an individual with breeding
value Av is simply

σ2(E |Av) = σ2
e +Av, (17.4b)

with the constraint on the breeding value that σ2
e + Av > 0. The additive model is a local

analysis around the current mean, as selection to decrease Av can eventually result in this
constraint being violated, generating a negative variance. Under the additive model, the
mean population value for the environmental variance is simply

σ2
E = E

(
σ2
e +Av

)
= σ2

e + µAv (17.4c)

Unlike the multiplicative and exponential models, changes in σ2
E under the additive model

depend only on changes in the mean breeding value, and not its variance (Table 17.1).

Table 17.1. Models for heritable variation in the environmental value E. The basic model is z =
µ+Am +E, where z is the trait value andAm ∼ N(µAm , σ

2
Am

) the breeding value for z. The table
gives the assumed form ofE for different models as a function of the breeding value in varianceAv ∼
N(µAv , σ

2
Av

), some intrinsic environmental value e ∼ N(0, σ2
e), and the unit normal U ∼ N(0, 1).

Model E σ2(E |Av) σ2(E) = E
[
σ2(E |Av)

]
Multiplicative Av · e A2

v σ
2
e

(
µ2
Av

+ σ2
Av

)
σ2
e

Exponential exp (Av/2) · e σ2
e exp (Av) σ2

e exp
(
µAv + σ2

Av
/2
)

(or log-additive)

Additive
√
Av + σ2

e · U Av + σ2
e µAv + σ2

e

The additive model has the advantage of being much more tractable, but the disadvan-
tage that it breaks down when the breeding value becomes sufficiently negative (Av < −σ2

e ).
In contrast, the exponential model has additivity on the log of the variance scale, which is
a nice statistical feature, as log variances are approximately normally-distributed (Box 1953,
Layard 1973). Mulder et al. (2007) discuss additional connections between the additive and
exponential models, while Hill and Mulder (2010) review the different estimation methods.

Example 17.2. Here we derive the unconditional variances for the models summarized in
Table 17.1. Consider the multiplicative model first, where

σ2
E = E[ γ2σ2

e ] = σ2
e E[ γ2 ]

Recalling that E[x2 ] = µ2
x + σ2

x,

σ2
E = σ2

e E[ γ2 ] = σ2
e

(
σ2
γ + µ2

γ

)
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Now consider the exponential model (Equation 17.3a). By construction both E and e have
expected value zero, so that the variances of E and e are simply the expected values of E2

and e2,

σ2
E = E

[ (
e · exp{Av/2}

)2 ] = σ2
e E
[ (

exp{Av/2}
)2 ] = σ2

e E [ exp (Av) ] ,

where the expected value is taken with respect to the distribution of breeding values Av .
The last expectation is computed by noting for a normal x with mean µ and variance σ2,
that E[ex] = exp(µ + σ2/2), which follows using the standard expression for the moment
generating function E(etx) upon setting t = 1 (Johnson and Kotz 1970a). Since we assumed
Av ∼ N(µAv , σ

2
Av

), the average environmental variance for the population becomes

σ2
E = σ2

e exp
(
µAv +

σ2
Av

2

)
.

Table 17.2. Estimates of the heritability h2
v and evolvability CVAv = σAv/σ

2
E (Equation 13.22b)

of the environmental variance, as well as the additive-genetic correlation ρ between Am and Av . For
some of Yang et al. (2011) results, BC denotes a Box-Cox transformation was simultaneously fitted with
the model, while their results without this notation indicate this transformation was not used. In part,
from Mulder et al. (2007) and Hill and Mulder (2010).

Species Trait h2
v CVAv ρ Reference

Pig (Sus) Meat pH 0.039 0.40 0.79 SanCristobal-Gaudy et al. (1998)
Litter size 0.026 0.31 −0.62 Sorensen & Waagepetersen (2003)

0.021 0.27 −0.64 Yang et al. (2011)
0.012 0.19 0.70 Yang et al. (2011), BC

Weight 0.011 0.34 −0.07 Ibáñez-Escriche et al. (2008c)

Sheep (Ovis) Litter size 0.048 0.51 0.19 SanCristobal-Gaudy et al. (2001)

Snail (Helix) Body weight 0.017 0.58 −0.81 Ros et al. (2004)

Chicken Body weight 0.029 0.30 −0.17 Rowe et al. (2006)
(Gallus) (male) 0.046 0.49 −0.45 Mulder et al. (2009)

0.030 0.32 −0.23 Wolc et al. (2009)
Body weight 0.031 0.32 −0.11 Rowe et al. (2006)

(female) 0.047 0.57 −0.41 Mulder et al. (2009)
0.038 0.37 −0.27 Wolc et al. (2009)

Rabbit (Lepus) Litter Size 0.045 0.42 −0.74 Ibáñez-Escriche et al. (2008b)
0.041 0.37 −0.73 Yang et al. (2011)
0.017 0.24 0.28 Yang et al. (2011), BC

Birth weight 0.013 0.25 — Garreau et al. (2008)

Mouse (Mus) Litter size 0.048 0.44 −0.93 Gutierrez et al. (2006)
Litter weight 0.039 0.37 −0.81 Gutierrez et al. (2006)
Birth weight 0.208 1.21 0.97 Gutierrez et al. (2006)
Body weight 0.006 0.36 −0.31 Ibáñez-Escriche et al. (2008a)
Weight gain 0.018 0.47 −0.19 Ibáñez-Escriche et al. (2008a)

Average 0.038 0.41 −0.24
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h2
v , the Heritability of the Environmental Variance

Mulder et al. (2007) suggest a definition for the heritability of the environmental variance as
the slope of the regression of the breeding value of an individual on its phenotype. Under
the additive model framework (Equation 17.4), they show that Av is a linear function of
the square z2 of phenotypic value. From regression theory (LW Chapter 3), the slope of the
regression of Av on z2 is simply their covariance divided by the variance of the predictor
variable,

h2
v =

σ(Av, z2)
σ2 (z2)

(17.5a)

By definition, σ(Av, z2) = σ(Av, Av) = σ2
Av

, while (assuming z is normally distributed)
σ2(z2) = 2σ4

z + 3σ2
Av

. This gives the heritability as

h2
v =

σ2
Av

2σ4
z + 3σ2

Av

(17.5b)

Table 17.2 reviews estimates of h2
v from the literature. The listed studies vary in which model

(Table 17.1) was used for the heritable transmission of σ2
E , with the additive variance for σ2

E

extracted from each and used in Equation 17.5b.
Note that the estimated heritabilities are low, typically less that five percent. However,

also note that the evolvability is large. Although selection may be difficult (given the low
heritability), there is much variation to exploit, as a high evolvability implies that significant
proportional change in the trait value can be achieved. (Chapter 13). The average estimated
value ofCVAv in Table 17.2 is roughly 0.4, for a squared value of 0.16. Recall from Chapter 13
that the metric IAv = CV 2

Av
gives of the expected amount of response given a standard unit

of selection (Equation 13.22c). Thus, a total unit amount of selection on the environmental
value is expected to change its mean value by 16%. The fragility of these models can be seen
by comparing the estimated additive-genetic correlation ρ in the two litter size studies (Yang
et al. 2011). For pigs, untransformed data gave ρ = −0.64, which changes to ρ = 0.70 when
a Box-Cox transformation was used. For rabbits, ρ changes from −0.73 to 0.28.

SELECTION ON σ2
E

The response in σ2
E is a function of two issues: the nature of transmission and the nature

of selection. We first discuss transmission: how a change in the mean value of Av translates
into a change in σ2

E in the next generation. As might be expected from the above discussion,
the results depend on which of the models given in Table 17.1 is used. Second, how does
selection act to change the distribution ofAv? Three general pathways are available. The first
is direct selection on Av generated by selection on the phenotypic value z of a trait. Second,
natural or artificial selection can be based on direct expression of σ2

E in an individual through
repeated measurements, selecting for individuals with a larger (or smaller) range in these
records.

The final route is through a correlated response (Equation 13.26c), with selection on z
resulting in selection on the breeding valueAm for the trait, which in turn is correlated with
Av . The machinery of multivariate selection is needed to consider the totality of response in
such cases, so we focus solely here on the direct response (i.e., assume a zero correlation),
deferring the general case until Volume 3. However, a few brief comments on the nature of
this correlation are in order. If the coefficient of variation σz/µz is to remain roughly constant
under selection, we expectAm andAv to be positively correlated, with larger breeding values
for the trait resulting in larger environmental variances. While most estimated corrrelations
are negative (Table 17.2), there are reasons these should be viewed with caution. Current
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statistical models assume no intrinsic skew in the data other than that generated by any
correlation betweenAm andAv . If skew is present for other reasons, this can significantly bias
estimates (Ros et al. 2004). For example, Yang et al. (2011) obtained highly negative estimates
for litter size in pigs and rabbits using untransformed data (ρ = −0.64 and−0.73), but these
estimates changed sign (to 0.70 and 0.28, respectively) when the data were transformed.

Transmission: Translating the Response in Av into Response in σ2
E

A number of authors have modeled the response in the phenotypic variance when there
are heritable differences in environmental sensitivity (Gavrilets and Hastings 1994; Wagner
et al. 1997; SanCristobal-Gaudy et al. 1998, 2001; Sorensen and Waagepetersen 2003; Ros
et al. 2004; Hill and Zhang 2004; Mulder et al. 2007, 2008). A critical step in each of these
models is treating phenotypic value and residual variance as two separate (and potentially
correlated) traits, both with heritable (i.e., additive-genetic) variation. While some models
(Gavrilets and Hastings 1994, Wagner et al. 1997, Hill and Zhang 2004) are based on strict
population-genetic analysis (following the change in individual allele frequencies), most are
based on schemes that assign breeding values to the heritable component of σ2

E (Table 17.1).
Under the infinitesimal model, the expected breeding value in the offspring is simply the
mean breeding values of its parents (Chapter 13), while changes in the variance in breeding
values from parent to offspring follow from Equation 16.8b. Using the expressions given
Table 17.1 allows us to map changes in µAv , the mean breeding value for environmental
sensitivity, into changes in σ2

E . The simplest case is the additive model (Equation 17.4b). Let
the responseRAv denote the change in the mean breeding value of the selected parents from
the mean breeding value of the entire population. The resulting change in σ2

E becomes

∆σ2
E(t) = σ2

E(t+ 1)− σ2
E(t) =

[
µAv (t+ 1) + σ2

e

]
−
[
µAv (t) + σ2

e

]
= µAv (t) +RAv (t)− µAv (t) = RAv (t) (17.6a)

The response a bit more complex under the multiplicative and exponential models, as
the mean population value σ2

E for the environmental variance is a non-linear function of the
mean (and variance) of theAv . Assume no change in the additive variance of environmental
sensitivities following selection. Under the multiplicative model (Equation 17.2a), the change
in σ2

E given a change in breeding values becomes

∆σ2
E(t) =

(
[µAv (t) +RAv (t) ]2 + σ2

Av

)
σ2
e −

(
µ2
Av (t) + σ2

Av

)
σ2
e

=
[

2µAv (t)RAv (t) +R2
Av (t)

]
σ2
e (17.6b)

Change in the variance in breeding value in the parents can similarly be accounted for by
using Equation 16.8b. Under the exponential model, again assuming no change in σ2

Av
,

∆σ2
E(t) = σ2

e exp
[
µAv (t) +RAv (t) + σ2

Av/2
]
− σ2

e exp
[
µAv (t) + σ2

Av/2
]

= σ2
e exp

[
µAv (t) + σ2

Av/2
]

(exp [RAv (t)]− 1)

= σ2
E(t) · (exp[RAv (t) ]− 1 ) (17.6c)

These expressions translate a responseRAv into the expected change in σ2
E . We consider two

different setting by which such a responsecan occur: as a consequence of direct selection on
phenotypic value z and as the result of direct selection on σ2

E itself.

Response From Stabilizing Selection on Phenotypic Value z

We have previously suggested that selection either for, or against, extreme individuals may
also result in some selection for genotypes with higher or lower environmental variances.
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We formalize this by considering how selection on a phenotypic value z maps into selection
on Am and Av . First consider a quadratic fitness model of stabilizing selection. Here, the
expected fitness of an individual with phenotypic value z is

W (z) = 1− s(z − θ)2, (17.7a)

where θ is the optimal trait value and s the strength of stabilizing selection. This is a weak
selection model, as W ≥ 0 only for sufficiently small s relative to the total variance of z.
Note that if we take s < 0, Equation 17.7a becomes a model of (weak) disruptive selection.
Gavrilets and Hastings (1994) examined how this phenotypic fitness function translates into
selection on (Am, Av) under the multiplicative model. To do so, replace z by Am +Ave and
take the expectation over e. Noting that E[e] = 0, E[e2] = σ2

e , the expected fitness as a function
of Am and Av becomes

W (Am, Av) = 1− sEe
[

(Am +Av e− θ)2
]

= 1− s
[

(Am − θ)2 + 2(Am − θ)AvEe [ e ] +A2
v Ee

(
e2
)]

= 1− s
[

(Am − θ)2 +A2
v σ

2
e

]
(17.7b)

Similar fitnesses arise under the guassian model of weak stabilizing selection (Equation
16.17), see Hill and Mulder (2010), but also see Example 17.3. Equation 17.7b shows that
phenotypic stabilizing selection favors Av values near zero, decreasing σ2

E . There are two
important consequences of this. First, the reduction in phenotypic variance can be signifi-
cantly greater than predicted from the simple reduction in the additive variance from the
Bulmer effect (Chapter 16). Second, there can be cases where the heritability will increase
under stabilizing selection. Since both additive and environmental variances are decreased,
if the decrease in environmental variance is sufficiently greater, h2 increases. Results for
quadratic disruptive selection follow by changing the sign on s, resulting in selection to
increase Av .

Example 17.3. The quadratic fitness function (Equation 17.7a) is a model for weak stabilizing
selection, as it can generate negative (and hence undefined) fitness values when selection is
sufficiently strong. A completely general model of stabilizing selection without this constraint
is normalizing selection (Equation 16.17), where θ denotes the optimal phenotypic value and
ω2 the strength of selection around this optimum. Devaus and Lande (2009) use this fitness
function in their study of selection on the flower-timing variance within an individual. They
assumed the additive model for genetic variation in σ2

e (Equation 17.4c) and that repeated
expressions z of the trait from an individual with breeding values Am (for the trait) and Av
(for σ2

E) were drawn from a normal, so that

p(z |Am, Av) =
1√

2π(σ2
e +Av)

exp
(
− (z −Am)2

2(σ2
e +Av)

)
.

Integration of W (Am, Av) =
∫
W (z) p(z |Am, Av) dz yields

W (Am, Av) =

√
ω2

ω2 + σ2
e +Av

exp
(
− (Am − θ)2

2(ω2 + σ2
e +Av)

)
(17.8)

WhenAm ' θ, the exponential term is near one (as its numerator is near zero), so that fitness
is largely driven by the square root term. As was the case for weak quadratic selection, fitness
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increases as Av decreases. The more interesting case is when the population is far from the
equilibrium, so that |Am − θ | À 1, and the numerator in the exponential term is large. In
this case, fitness can be improved by increasingly the value of Av , reducing the magnitude of
the exponential term. Thus, as also noted by Lande (1980) and Bull (1987), stabilizing selection
can actually favor an increase in σ2

e when the population is far from its optimal, as the larger
variance increases the chance that some phenotypes are near θ.

Response From Directional Selection on z

Now consider directional selection. Assuming the multiplicative model and a simple linear
fitness function

W (z) = 1 + sz, (17.9a)

Gavrilets and Hastings found that

W (Am, Av) = 1− sEe(Am + eAv) = 1− sAm +AvEe(e) = 1− sAm (17.9b)

Under this setting, there is no direct selection onAv . A rather different outcome was noted by
both Hill and Zhang (2004) and Mulder et al. (2007) for truncation selection on a normally-
distributed trait. As a measure of fitness, Hill and Zhang considered the probabilty P (a, b)
that a genotype with mean effect µ + a and variance effect σ2 + b is selected by using a
Taylor series approximation for the probability that such a genotype exceeds the truncation
threshold when a fraction p are saved and z ∼ N(µ, σ2). Keeping only first-order terms in a
and b recovers

P (a, b)
p

' 1 + a
ı

σz
+
b

2
ı x[1−p]
σ2
z

(17.10a)

Here ı is the selection intensity (Equation 14.3a), and x[1−p] satisfies Pr(U ≥ x[1−p]) = p
where U ∼ N(0, 1). Thus, truncation selection generates selection pressure ı on Am and
selection pressure ı x[1−p] on Av . When Am and Av are uncorrelated, the expected response
in the trait mean is just our standard result from Chapter 13 (Equation 13.6b),

RAm = h2
m ı σz (17.10b)

Under the additive model for the environmental variance, Hill and Zhang found the response
in the mean breeding value for the envrionmental variance is

RAv = h2
v ı x[1−p] σ

2
z , (17.10c)

which is also the response in σ2
E (Equation 17.6a). Equation 17.10a assumes the population

distribution of the trait value z is approximately normal, which breaks down at extreme trait
values when there is heritable variation in σ2

E (as z is no longer normally distributed but
rather a weighted mixture of normals). Hence, for strong selection these results are biased.

Example 17.4. Consider a trait with σ2
z = 100, h2

m = 0.3, and h2
v = 0.03 (a typical value

from Table 17.2). Assume the additive model for the environmental variance. What is the
expected response in the mean and σ2

E following a single generation of truncation selection
with p = 0.1? First note that that under these assumptions h2

mσz = h2
vσ

2
z = 3, so that the

differences in response are due to differences in the strength of selection (Equations 17.10b
versus 17.10c), not the genetic variances of these traits.
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Noting that Pr(U > 1.282) = 0.1, we havex[1−0.1] = 1.282 and ı = ϕ(1.282)/0.1 = 1.755,
with Equations 17.10b and c giving

RAm = 0.3 · 1.755 · 10 = 5.265, and RAv = 0.03 · 1.755 · 1.282 · 100 = 6.750,

so that a single generation of selection increases the mean by 5.3 and the environmental vari-
ance by 6.75. Using these same parameter values, the Bulmer equation (Equation 16.12d) gives
the change in σ2

Am
after one generation of selection as d = −3.74, for (ignoring changes in

σ2
E) a phenotypic variance of 96.26 and a heritability of (30-3.74)/(100-3.74) = 0.27. Account-

ing for changes in σ2
E gives phenotypic variance as 100-3.74+6.75 = 103.1 and heritability

(30-3.74)/103.1 = 0.25. Since the response in the trait mean is given by R(t) = h2(t) ı σz(t),
the decrease in h2 is somewhat offset by the increase in the phenotypic variance. The response
in the trait mean in generation two is 0.27 · 1.77 ·

√
96.26 = 4.69 ignoring the change in σ2

E

and 0.25 · 1.77 ·
√

103.1 = 4.49 including it.

Now consider stronger selection, p = 0.01. Here x[1−p] = 2.326 and ı = 2.666, giving

RAm = 0.3 · 2.666 · 10 = 7.998, and RAv = 0.03 · 2.666 · 2.326 · 100 = 18.603

Relative to p = 0.1, this is roughly a 50% increase in the response in the mean, but a 275%
increase in the response in the environmental variance. The Bulmer equation gives d = −4.06
for one generation of selection and a resulting heritability (ignoring any changes in σ2

E) of
0.27. Including the change in environmental variance, the new phenotypic variance is 100-
4.06+18.60 = 114.54, for a heritability of 25.94/114.54 = 0.23. As above, the actually heritability
is less than predicted from the Bulmer equation, but the resulting impact on the response in
the mean is again partly offset by the increase in the phenotypic variance, with the expected
response in generation two of 7.06 (Bulmer) and 6.78 (Bulmer plus changes in σ2

E).

Example 17.4 illustrates that as truncation selection becomes stronger, there is a dis-
proportionate change in the variance relative to the mean, as selection is choosing outliers,
and hence more strongly influenced by genotypes with larger variances. The effect on σ2

E

from directional selection on trait value is thus expected to be greatest under strong selection
(Hill and Zhang 2004). We can quantify this using Equation 17.10a. As shown in Figure 17.1,
from large p (weak selection as most of the population is saved), selection on the mean ( ı )
dominates. The two strengths of selection are equal around p = 0.16, below which selection
on the variance ( ı x[1−p]) is stronger. For p > 0.5 (more than half the population is saved),
x[1−p] < 0 implying that weak directional selection results in a slight decrease in σ2

E (Hill
and Zhang 2004). The effect is largest around p = 0.80 (only 20 percent of the population
culled) and but even here the strength of selection σ2

E is fairly small, with ı x = −0.3. This
slight decrease in σ2

E under weak directional selection occurs because only low outliers are
selected against, and such genotypes tend to have slightly higher variances.

As we have seen, there are two very different pathways, through either σ2
A or σ2

E , for
short-term change in the phenotypic variance σ2

z . Generation of gametic-phase disequilib-
rium by selection changes σ2

A without requiring significant allele-frequency change. Like-
wise, the presence of heritable variation in σ2

E can also generate a short-term response in
the total variance. As noted by Bull (1987), “environmental and genetic factors may thus
compete to produce a given selected level of phenotypic variance”. What insight do our
above results offer on which factor is more important? The general conclusion is that while
the direct selection pressure on σ2

E often has the same sign as the selection on σ2
A, this is not

always the case.
Under disruptive selection, there is direct select for positive disequilibrium (and hence

an increase in σ2
A), along with direct selection to increase σ2

E , so that the Bulmer equation
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is expected to under-predict the increase in phenotypic variance. With stabilizing selection
(when the population mean is close to the optimum value), the direct selection pressures
on σ2

A and σ2
E also align, favoring a decrease in each and again an underprediction of the

total change if just the Bulmer equation is applied. However, when the current population
mean is far from the optimum, there can be selection pressure to increase σ2

E . The most direct
conflict between these two potential components of change in the phenotypic variance occurs
under directional selection. This always generates negative d and hence a reduction in the
additive variance. However, under modest to strong selection, it also favors an increase in
σ2
E , often resulting in both an increase in the phenotypic variance and a further decrease in

the heritability. The net result is that the Bulmer equation underpredicts the expected change
in the mean (Example 17.4). With very modest selection (over 50% of the population saved),
there is weak selection pressure for a slight decrease in σ2

E . It is important to stress that all of
these results only consider direct response in σ2

E (i.e., we assume ρ(Am, Av) = 0). When the
breeding values for the trait value and its environmental variance are negatively correlated,
the sign of response on σ2

E can depart from these predictions.

Figure 17.1. The relative strengths of selection on the mean ( ı ) and variance (x ı ) under
truncation selection as a function of the fraction p saved. The two strengths of selection are
equal around p = 0.16. Note for p > 0.5 there is (weak) selection to decrease the variance, as
the curve for x ı dips below the dotted line indicating a value of zero.

Finally, while simple selection on z can result in direct selection on Av , it also targets
Am as well. Through the use of an appropriate selection index, one can directly select on Av
alone (and hence directly target σ2

E) even with only a single observation per individual. This
is possible becauseAm is linearly associated with z, whileAv is associated with z2. Rescaling
z to have mean zero, an index of the from Ii = azi + bz2

i can be constructed to specifically
target individuals with high (or low) Av values. We examine this index, and the component
responses, in Volume 3.

Direct Selection on σ2
E Using Repeated-Records

While σ2
E can change as a consequence of simple selection on trait value, a breeder may wish

to target σ2
E directly. The most conceptually straight-forward approach to do so would be

selecting those individuals with the smallest residual variances under a repeated-measures
design. We considered this design in Chapter 13 to reduce environmental noise when select-
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ing on the mean trait value of an individual, but here the target is the actual variation among
the records themselves. Individuals are chosen based on the index

Ii =
1

n− 1

n∑
=1

(zij − zi)2, (17.11)

where zij denotes the jth record (observation) from individual i, with selection for uniformity
favoring individuals with smaller Ii values. Natural selection can also act in a repeated-
records setting, such as on the within-individual variation in flowering time. Depending on
the ecological setting, selection can favor individuals with either larger or smaller values
within-individual variances (Devaus and Lande 2009). Assuming the exponential model for
σ2
E , San Cristobal-Gaudy et al. (1998) and Ibáñez-Escriche et al. (2008b) approximated the

expected response in the mean breeding value ofAv given selection intensity ı over the index
I as

RAa ' ı
σ2(Av)√

exp [σ2(Av)] [(n+ 1)/(n− 1)]− 1
, (17.12)

wheren is the number of repeated records per individual. More exact expressions are given in
Ibáñez-Escriche et al. (2008b), who also examine the power and required sample sizes when
using repeated-measures selection experiments to detect heritable environmental variation.

Under a strict repeated-records design, all observations in Ii have the same genotype. A
related design is to select based on variation in trait value among the offspring of an individual.
For example, Garreau et al. (2008) selected rabbit dams based upon Equation 17.11, but now
the observations were the weights of her offspring (suitably corrected for fixed effects such
as litter size and parity). As mentioned previously, offspring mortality is lower within litters
with more similar weights, and such selection conceivably occurs in natural populations as
well. Here the multiple records are based on individuals with potentially different genotypes,
and hence a large litter variance could arise from a high breeding value for σ2

E , segregation
of a major gene, nonadditive variance, or (most likely) some combination of these. Garreau
et al. observed a significant responses in the first generation in both up- and down-selected
lines. In subsequent generations, the selection pressure was weaker in their experiment, but
response was largely flat. While these data are consistent with a response in σ2

E , the majority
of the initial response may simply arise from selection for, or against, females heterozygous
for major genes influencing weight.



212 CHAPTER 17

Literature Cited

Box, G. E. P. 1953. Non-normality and tests on variances. Biometrika 40: 318–335. [17]

Britten, H. B. 1996. Meta-analyses of the association between multilocus heterozygosity and fitness.
Evol. 50: 2158–2164. [17]

Bull, J. J. 1987. Evolution of phenotypic variance. Evolution 41: 303–315. [17]

Chakraborty, R. 1987. Biochemical heterozygosity and phenotypic variability of polygenic traits. Hered-
ity 59: 19–28. [17]

Clay, J. S., W. E. Vinson, and J. M. White. 1979. Heterogenetiy of daughter variances of sires for milk
yield. J. Dairy Sci. 62: 985–989. [17]

Cullis, B. R., R. M. Thomson, J. A. Fisher, A. R. Gilmour, and R. Thompson. 1996. The analysis of the
NSW wheat variety database. I. Modeling trail error variance. Theor. Appl. Genet. 92: 21–27. [17]
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Rönnegård, L. and W. Valdar. 2011. Detecting major genetic loci controlling phenotypic variability in
experimental crosses. Genetics

Ros, M., D. Sorensen, R. Waagepetersen, M. Dupont-Nivet, M. SanCristobal, J.-C. Bonnet, and J. Mal-
lard. 2004. Evidence for genetic control of adult weight plasticity in Helix aspersa Genetics 168: 2089–
2097. [17]

Rowe, S. J., J. M. S. White, S. Avendano, and W. G. Hill. 2006. Genetic heterogeneity of residual variance
in broiler chickens. Gene. Sel. Evol. 38: 617–635. [17]

SanCristobal-Gaudy, M., L. Bodin, J.-M. Eisen, and C. Chevalet. 2001. Genetic components of litter size
variability in sheep. Genet. Sel. Evol. 33: 249–271. [17]

SanCristobal-Gaudy, M., J.-M. Eisen, L. Bodin, and C. Chevalet. 1998. Prediction of the response to a
selection for canalisation of a continuous trait in animal breeding Genet. Sel. Evol. 30: 423–451. [17]

Sangster, T. A., N. Salathia, S. Undurraga, R. Milo, K. Schellenberg, S. Lindquist, and C. Queitsch. 2008.
HSP90 affects the expression of genetic variation and developmental stability in quantitative traits.
PNAS 105: 2963–2968. [17]

Schmalhausen, I.I. 1949. Factors of evolution; Blakiston, Philadelphia. [17]
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