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“In recent years, there has been some tendency to revert to more or less mystical
conceptions revolving about such phrases as “emergent evolution” and “creative evolution.”
The writer must confess to a certain sympathy with such viewpoints philosophically but feels
that they can have no place in an attempt at scientific analysis of the problem.” Wright
(1931)

In the previous chapters, we treated the response to selection as an effectively deter-
ministic process, making the assumption that the stochastic force of random genetic
drift is negligible relative to the power of selection, and also ignoring the origin of
new variation by mutation. Such an approach often works well when the focus is
on short-term evolutionary issues. However, on longer time scales, selection, muta-
tion, and drift can interact to pattern variation both within and among populations
in significant and sometimes counterintuitive ways. As all populations are finite in
size, and all genomes are subject to mutation, these matters must be incorporated
into any general theory of evolution. Thus, although the material in this chapter is
confined to one- and two-locus systems, the resultant principles provide the basic
building blocks for more complex models for the evolution of quantitative traits
presented in subsequent chapters.

Whereas mutation and drift respectively introduce and remove variation from
populations, selection can have either effect, depending on whether it is directional
or purifying in nature. Of special interest is the degree to which all three forces
interact to define the distribution of allele frequencies in an equilibrium population
(or more precisely, in a quasi-equilibrium population, as with drift there is always
some stochastic wandering of allele frequencies around a long-term expectation). One
of the key issues considered in the following pages concerns the amount of variation
maintained in the face of opposing pressures. We initially address this matter by
retaining the assumption of an effectively infinite population size, considering the
issue of selection-mutation balance and the fitness load that recurrent mutation
always imposes upon a population. We then evaluate the situation in which drift
is sufficiently strong to compete with or even overpower the effects of selection.
The latter issue is of special interest when we consider selection on a quantitative
trait, as strong selection at the phenotypic level does not necessarily translate into
strong selection on any particular underlying locus. However, we also show that even
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when completely penetrant, only a small fraction of advantageous mutations are
successfully fixed in a population, owing to the overwhelming influence of stochastic
forces when alleles are rare.

Because the ways in which genes evolve often depend on the background context,
we also use this chapter to introduce some key issues regarding the evolution of
multilocus systems. First, drawing on results outlined in Chapter 3 for the effects of
linkage on the effective population size for a chromosomal region, we explore how
this translates into a reduction in the efficiency of selection for advantageous alleles.
Second, using compensatory mutations as an entrée into the matter of epistasis, we
evaluate the extent to which such pairwise changes are promoted in small vs. large
populations. Third, we evaluate the situation in which two or more key mutations
are required for a new adaptation, showing that some relatively simple scalings apply
to the time to establishment with respect to population sizes and mutation rates.

SELECTION AND MUTATION AT SINGLE LOCI

Many of the central questions in population and quantitative genetics concern the
mechanisms responsible for the maintenance of genetic variation in natural popula-
tions. Here, we introduce a few classical models for the balance between the opposing
forces of mutation and directional selection. Our preliminary focus will be on the
simple case of two alleles, as this serves as the foundation for more complex models
for the maintenance of quantitative variation covered in later chapters.

Consider a locus with advantageous allele A and deleterious allele a, with re-
spective frequencies 1− p and p. Let u be the mutation rate from A to a, and v be
the rate of back mutation to A, and assume random mating, constant selection, and
an effectively infinite population size. From Chapter 5 the new frequency of a after
a generation of viability selection is

p′ = p
Wa

W
(7.1)

where Wa is the marginal fitness of a, and W is the mean population fitness. Letting
p′′ be the allele frequency following mutation, we then have

p′′ = (1− v)p′ + u(1− p′) = (1− u− v)p′ + u (7.2)

This follows because 1 − v is the fraction of a that remains unchanged following
mutation, while a fraction u of all A alleles (with frequency 1 − p′) mutate to a.
Thus, under the joint action of selection and mutation, the new frequency of a is

p′′ = (1− u− v)p
Wa

W
+ u (7.3)

Haldane (1927) was the first to consider the stable equilibrium frequencies that
are eventually reached under this model of opposing mutational and selection pres-
sures. Letting the fitnesses of genotypes AA, Aa, and aa be 1, 1−hs, and 1− s, the
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equilibrium frequencies p̃ satisfying ∆p = p′′− p = 0 are given by the solutions of the
rather complicated cubic equation

(1− p̃ )3s(2h− 1) + (1− p̃ )2[2− 3h + uh + v(1− h)]

+ (1− p̃ )[−s(1− h) + u(1− hs) + v(1− 2s + hs)]− v(1− s) = 0 (7.4)

(Bürger 2000). Provided 0 < s < 1 and h ≤ 0.5, this expression has a single stable
equilibrium, and considerable simplification is possible in a number of biologically
realistic cases. For example, for the case of neutrality (s = 0), the equilibrium is
simply defined by the opposing forces of mutation

p̃ =
u

u + v
(7.5)

The situation of most interest here concerns the polymorphism maintained by a
balance between selection and mutation when allele a is at a selective disadvantage.
To simplify the solution, it is generally assumed that back mutation to the advanta-
geous allele is a negligible force. There are two justifications for such an assumption,
one mathematical and one biological. First, unless the selection coefficient is small
relative to the mutation rate, the frequency of the mutant allele will generally be
low enough that back mutation will be a second-order effect. Second, although func-
tional genes may mutate to deleterious alleles by numerous mechanisms, precise
back-mutations to normal alleles will necessarily be much rarer events, i.e, we ex-
pect v � u. Letting v = 0, Equation 7.4 reduces to a more manageable, quadratic
equation, with solution

p̃ =

√
[hs(1 + u)]2 + 4(1− 2h)us + (1 + u)hs

2(2h− 1)s
(7.6a)

assuming s > u. For the extreme (and unlikely) situation in which a is a completely
dominant deleterious mutation (h = 1),

p̃ =
u

s
(7.6b)

whereas if A is recessive (h = 0),

p̃ =
√

u

s
(7.6c)

For the general case of intermediate dominance (0 < h ≤ 0.5),

p̃ =
u

hs
, provided h �

√
u/s (7.6d)

A number of other special cases are presented in Nagylaki (1992) and Bürger (2000).
The multiple-allele version of this model can be obtained in a straight-forward

manner. Suppose there are k alleles A1, · · · , Ak and let uij be the probability that
allele Ai mutates to allele Aj. Letting ui =

∑
j 6=i uij be the total mutation rate from

allele Ai to any other allele, and assuming constant viability selection followed by
mutation and then random mating, the allele-frequency change equations become

p′′i =
1
W

(1− ui) Wi pi +
∑
j 6=i

ujiWj pj

 (7.7)
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where Wi is the marginal fitness of allele Ai. The equilibrium behavior of this system
can be quite complex, and with sufficiently strong mutation, the possibility of stable
cycles exists (Bürger 2000).

Clark (1998) examined a special case of the multiple-allele model in which there
is one optimal allele, and all heterozygotes for single mutations have fitness 1− hs,
while those for two different mutant alleles have fitness 1− ks, where k is a measure
of complementation between two deleterious alleles (with k = 0 implying that each
allele compensates for the other allele’s deficiencies). Under this model, multiple
deleterious alleles are maintained by mutation pressure, and provided k < 1, the
sum of their frequencies is higher than expected under the two-allele model. The
latter result arises as interallelic complementation reduces the magnitude of selection
operating on mutant alleles jointly present in the same genotype.

Example 7.1. How much variation can mutation maintain when a mutant allele is
lethal (s = 1)? The equilibrium frequency of a dominant lethal allele is

p̃ = u

(Equation 7.6b), whereas for a recessive lethal

p̃ =
√

u

(Equation 7.6c). Thus, because u � 1 (Chapter 3), recessive lethals are expected to
be much more common than dominant lethals, a pattern that is seen for numerous
human genetic disorders (Cavalli-Sforza and Bodmer 1971). Drawing from a tradition
starting with Haldane (reviewed in Nachman 2004), these expressions are often used to
estimate the lethal mutation rate for monogenic human diseases under the assumption
that the observed frequencies of lethal alleles are at mutation-selection equilibrium
(e.g., Kondrashov 2003).

For a dominant lethal, the frequency of selected individuals in the equilibrium popu-
lation is

freq(aa) + freq(Aa) = u2 + 2u(1− u) ' 2u

whereas for a recessive, the frequency of selected individuals is

freq(aa) = (
√

u )2 = u

Thus, despite the great disparity in allele frequencies for dominant and recessive
lethals, because u is expected to be very small, there is only a twofold difference
in the expected frequencies of affected individuals.

What about the equilibrium mean fitness of the population? With a dominant lethal

W = freq(AA) = (1− u)2 ' 1− 2u

while for a recessive lethal,

W = 1− freq(aa) = 1− u
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Example 7.2. Albinism in humans is caused by a recessive allele, with an estimated
frequency of albinos of around 1/20,000 (Cavalli-Sforza and Bodmer 1971). If we as-
sume that albinos are at a slight selective disadvantage (s = 0.1) and at mutation-
selection equilibrium, what is the estimated mutation rate to albino alleles? Assuming
Hardy-Weinberg, so that p̃ 2 = 1/20, 000, from Equation 7.6c,

p̃ 2 =
1

20, 000
=
(√

u

0.1

)2

which implies u = 5 × 10−6. Conversely, if we were to assume a mutation rate of
u = 10−5, the strength of selection against albinism would be inferred from

p̃ 2 =
1

20, 000
=

(√
10−5

s

)2

implying s = 0.2, i.e., a 20% reduction of fitness in albinos.

SELECTION AND DRIFT AT SINGLE LOCI

In the preceding section, we assumed a situation in which the forces of selection and
mutation are powerful enough to ignore the stochastic consequences of random ge-
netic drift, at least in the short term. This deterministic approach to population ge-
netics yields explicit equilibrium solutions for allele frequencies within populations,
usually with no oscillatory behavior. In reality, however, drift plays a significant
role in all long-term population-genetic contexts. For example, even when selection
against deleterious mutations is strong, the defective alleles segregating in a popu-
lation today will generally be descendants of entirely different mutations than those
millenia in the past. All mutations eventually experience one of two alternative fates,
complete loss or fixation.

Our focus now becomes the probability of fixation of an allele by the spread of
its descendants to a total frequency of 1.0. In general, drift reduces the efficiency of
selection in that the sampling of gametes to form each consecutive generation results
in random deviations in allele frequencies from the expectations based on selection
alone. If drift is strong relative to selection, a favored allele may stochastically de-
crease in frequency and sometimes eventually become lost, while a disadvantageous
allele may increase in frequency and sometimes become fixed. Throughout the fol-
lowing subsections, we ignore the effects of recurrent mutation, focusing instead on
the fate of a pre-existing allele or newly arisen mutation.

Most of the theory of the interaction between selection and drift was developed
for a single diallelic locus under viability selection, in which case the change in
allele frequency per generation can be treated as the sum of changes resulting from
selection and drift,

∆p = ∆ps + ∆pd
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where ∆ps is given by Equation 5.1b, and ∆pd (the per generation change due to
drift) is a random variable. Drift causes no directional tendency in the change in
allele frequency, and hence E(∆pd) = 0. Thus, the simplest measure of the strength
of drift is the expected variance in allele-frequency change due to gamete sampling,
which under the standard Wright-Fisher model (Chapter 2) is defined by the bino-
mial distribution,

σ2(∆pd) =
p(1− p)

2Ne
(7.8)

where p is the allele frequency prior to sampling, Ne is the variance effective popu-
lation size, and the 2 accounts for diploidy (Chapter 3). If σ2(∆pd) is small relative
to ∆ps, allele-frequency changes will not be dramatically different from their expec-
tations under selection in an infinite population, but when σ2(∆pd) > ∆ps, drift can
substantially obscure the deterministic force of selection.

Consider the situation in which alleles have additive fitness effects, with geno-
types AA, Aa, and aa having respective fitnesses 1, 1 + s, and 1 + 2s. Letting p

be the frequency of allele a, then from Equation 5.2, ∆ps ' s p(1 − p), assuming
weak selection (|s| � 1). Comparing this result with Equation 7.18, it is clear that
directional selection dominates drift when 2Ne|s| � 1, whereas drift dominates when
2Ne|s| � 1.

Because the intensity of drift scales with 1/(2Ne), a useful heuristic is that 2Nes

approximates the ratio of the power of selection to drift. This argument is not quite
precise because the variance of allele-frequency change is only a rough indicator
of the sampling properties of the allele-frequency distribution. However, diffusion
theory, which gives an essentially complete description of the dynamics of a diallelic
locus under drift and selection, upholds this general conclusion (Appendix 1). We
will frequently encounter the composite parameter 2Nes in the following paragraphs.

Probability of Fixation Under Additive Selection

There is no possibility of a perfectly stable polymorphism when drift and selection
interact. Indeed, even in the case of overdominant selection (where there is a stable
equilibrium in an infinite population, Chapter 5), one allele will eventually drift
to fixation unless both homozygotes are lethal. Under this view, all new mutations
ultimately become either lost or fixed at the population level, and those that become
fixed will themselves be subject to replacement by subsequently arising mutations.
Thus, when finite populations are considered, we need to think in terms of fixation
probabilities and sojourn times of mutations. Even highly favorable alleles have
fixation probabilities less than 1.0 to a degree that depends on the initial frequency
p0, the strength of selection, and the effective population size Ne.

Denote by pf (p0) the probability that an allele starting at initial frequency p0

becomes fixed. As noted in Chapter 2, under neutrality, the probability of fixation
depends only on an allele’s initial frequency regardless of population size,

pf (p0) = p0 (7.9)

Depending on its magnitude and direction, selection will cause this probability to
increase or decrease. When allelic effects on fitness behave additively, such that each
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copy of allele a changes fitness by s (giving fitnesses of 1, 1 + s, and 1 + 2s),

pf (p0) '
1− e−4Nesp0

1− e−4Nes
(7.10a)

' p0 + 2Nesp0(1− p0) when 2Ne|s| ≤ 1 (7.10b)

Equation 7.10a, due to Kimura (1957) with a slightly improved version given by
Cash (1977), is derived using diffusion theory in Appendix 1. The simplified ver-
sion, Equation 7.10b, was developed by Robertson (1960) using the Taylor-series
approximation e−x ' 1− x + x2/2 for |x| � 1, and an alternative derivation is given
below. Although these approximations apply to both beneficial (s > 0) and dele-
terious (s < 0) alleles, and work especially well favorable alleles (Carr and Nassar
1970), they can significantly overestimate the fixation probabilities of highly delete-
rious alleles (Ne s ≤ −1), an issue examined in detail by Bürger and Ewens (1995).

It is critical to note that even when an allele is under strong selection, drift still
plays a powerful role when allele frequencies are near zero. Starting with a single
copy of an advantageous allele (with frequency p0 = 1/(2N), where N is the absolute
size of the population), Equation 7.10a implies that the probability of fixation of
a new mutation is approximately 2s (Ne/N) when 4Nes � 1. As we expect Ne to
generally be � N (Chapter 3), this implies that a newly arisen favorable mutation
is usually lost by drift, no matter how beneficial. However, once the frequency of
a strongly beneficial allele becomes sufficiently high, fixation is almost certain. For
example, if Nesp0 > 0.5, the probability of fixation exceeds 0.70, while if Nesp0 > 1,
the probability of fixation exceeds 0.93.

For mutations of weak effect, it is informative to consider the probability of
fixation of a newly arisen mutation relative to the neutral expectation of 1/(2N).
Returning to Equation 7.10a, and approximating the numerator as 4Nesp0, with
p0 = 1/(2N), the scaled probability of fixation

p′f (p0) =
pf (p0)
1/(2N)

' 4Nes

1− e−4Nes
(7.11)

is found to be entirely a function of the composite parameter S = 4Nes, which as
noted above is a measure of the strength of selection (2s in favor of homozygotes)
relative to that of drift, 1/(2Ne) (Figure 7.1). For positive selection with S = 0.01, 0.1,
and 1.0, respectively, p′f (p0) ' 1.005, 1.05, and 1.58, whereas with negative selection
with the same absolute values, p′f (p0) ', 0.995, 0.95, and 0.58. This shows that the
fixation probability of a mutant allele is very close to the neutral expectation of
pf (p0) ' p0 provided |S | � 1. This domain of effectively neutrality is potentially
significant in a number of different contexts. For example, populations of sufficiently
small size are unable to purge deleterious mutations or promote beneficial mutations
with |s| < 1/(4Ne).

–Insert Figure 7.1 Here–

A number of other useful approximations for alleles with additive effects on
fitness have been derived from diffusion theory. For example, Kimura (1969) found
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that the average cumulative contribution of a new mutation to the population-level
heterozygosity (summed over all generations until lost or fixed) is equal to

HT =
(

4Ne

N

)(
S − 1 + e−S

S(1− e−S)

)
(7.12)

Although this measure may seem somewhat abstract, the product of HT and the
number of new mutations arising in the population per generation, 2Nu, is equal to
the expected heterozygosity under selection-mutation-drift equilibrium. For neutral
mutations (S = 0), HT = 2Ne/N , implying an expected heterozyosity of 4Neu (which
assuming 4Neu � 1 is consistent with results in Chapter 2 obtained by a differ-
ent method). For large positive S (strongly beneficial mutations), HT approaches
a limiting value of 4Ne/N , implying that on a per-mutation basis, such mutations
make twice the contribution to the heterozygosity as neutral mutations. Finally,
for deleterious mutations with strong enough effects to be eliminated by selection,
HT ' 2/(N | s |).

As in the case of the fixation probability, the expected heterozygosity at a locus
scaled to the neutral expectation (dividing 2NuHT by 4Neu) is a simple function of
S (Figure 7.1). Viewed in this way, it can be seen that although both the relative
fixation rate and the contribution to heterozygosity increase with S, the former re-
sponds much more sharply. This is because deleterious mutations that essentially
never fix in a population nevertheless make transient contributions to the heterozy-
gosity prior to elimination by selection, whereas positively selected mutations that
are driven through the population relatively rapidly contribute to heterozygosity for
only a relatively short period.

A useful approximation for newly arisen mutations with additive effects is that,
conditional upon fixation, the expected number of generations spent at frequency x

is
Φf (x) =

2Ne(1− e−Sx)(1− e−S(1−x))
SNx(1− x)(1− e−S)

(7.13a)

(from Equation 8.66 in Kimura 1983). There are two notable points with respect to
this residence-time relationship (Figure 7.2). First, provided |S| < 1.0, conditional
upon fixation, a new mutant allele spends approximately 2Ne/N generations in each
frequency class. Second, the occupancy features of a deleterious mutation en route
to fixation are exactly the same as those for a beneficial mutation with the same
absolute fitness effects, implying that both have the same mean time to fixation,
even though the probability of fixation is lower in the former case. First pointed out
by Maruyama and Kimura (1974), this counterintuitive behavior results from the
fact that if a deleterious allele is to become fixed, it must do so as a consequence of
some fortuitously rapid and extreme sampling errors.

It is also sometimes useful to know the expected residence times of mutations
that eventually become lost, Φl(x). From Equation 8.70 in Kimura (1983), the un-
conditional mean residence times for mutations (regardless of being fixed or lost)
is

Φ(x) =
2Ne(1− e−S(1−x))

Nx(1− x)(1− e−S)
(7.13b)

and using the fact that

Φ(x) = pf (1/2N) · Φf (x) + [1− pf (1/2N)] · Φl(x) (7.13c)
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Φl(x) =
Nee

Sx(eS(1−x) − 1)2

N2x(1− x)(eS − 1)(eS[1−(1/2N)] − 1)
(7.13d)

Again, we see that the residence times conditional upon loss are essentially the same
for positive and negative selection coefficients of the same magnitude (Figure 7.2).
This is not true for the unconditional residence times, Φ(x), which are functions of
Φf (x) and Φl(x) weighted by the probabilities of fixation and loss (Equation 7.13c).

For effectively neutral mutations destined to loss, |S| < 1.0,

Φl(x) ' Ne(1− x)
Nλx

(7.14a)

where λ = 1− [1/(2N)], whereas the unconditional residence time is

Φ(x) ' Ne

Nx
(7.14b)

i.e., the average time spent in frequency class x is inversely proportional to x.

–Insert Figure 7.2 Here–

The preceding expressions are useful in a number of applications. For example,
the mean numbers of generations to fixation, loss, or either can be obtained re-
spectively by summing Equations 7.13a, 7.13d, and 7.13c over all frequency classes.
Simplifications are possible in some cases. For example, as noted above, a neutral
mutation destined to fixation spends an average of 2Ne/N generations in each fre-
quency class, and because there are 2N − 1 classes, the time to fixation of effectively
neutral alleles is essentially 4Ne generations, an outcome obtained in Chapter 2 by
different means. The conditional time to loss of a neutral mutation is

tl =
2Ne ln(2N)

Nλ
(7.15)

(derived in Appendix 1). The mean number of generations until complete loss of a
new mutation with deleterious heterozygous effect s is

tl = 2(Ne/N)[ ln(2N/S) + 0.423 ] (7.16)

provided S � 1 (Kimura and Ohta 1969b; Nei 1971). More general expressions,
which require some numerical integration can be found in Kimura and Ohta (1969a).

The mean total number of copies descendant from a mutation prior to loss or
fixation is useful in a number of contexts, e.g., determination of the number of
individuals affected by a deleterious mutation. This is defined as

n =
2N−1∑
y=1

Φ(y/2N) · y (7.17a)

with a shift of the function Φ to Φl or Φf , respectively, leading to the expected
numbers conditional on loss or fixation. For the case of neutral mutations,

n = 4Neλ (7.17b)

nf = 4NeNλ (7.17c)

nl = 2Neλ (7.17d)
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The mean frequency prior to absorption is simply n/(2N) divided by the average
absorption time.

Example 7.3. Although it is generally thought that selection will increase the deter-
minism of a system, this is not necessarily the case. Cohan (1984) showed that starting
with identical allele frequencies, the probability of divergence between replicate popu-
lations can increase relative to the situation under pure drift if the initial frequency of
the advantageous allele is sufficiently small. This point can easily be seen as follows.
Supposing two replicate populations are segregating alleles A and a at a locus, with
the frequency of A being p = 0.25, then under pure drift, the probability that one
replicate becomes fixed for A and the other for a is 2 · 0.25 · (1− 0.25) = 0.375. Now
suppose that A is favored by selection, with Nes = 0.5. Again assuming p0 = 0.25,
Equation 7.10a gives the fixation probability of A as 0.46, implying that the probabil-
ity of fixing alternative alleles is 2 · 0.46 · 0.54 = 0.496. Thus, in this case, divergence
is substantially increased by the interaction between selection and drift.

In general, the probability of fixing alternative alleles in two replicates is 2pf (p) [ 1 −
pf (p) ], which is maximized when pf (p) = 1/2. Thus, the probability of divergence is
increased by selection if pf (p) under selection is closer to 1/2 than pf (p) = p under
drift, and because pf (p) > p for a selectively-favored allele, a minimum requirement
for increased divergence under pan-selection is that the starting frequency of the ad-
vantageous allele be < 1/2. More specifically, the probability of divergence under
drift plus selection exceeds that under drift when the initial frequency is smaller than
p̂ = 1 − pf (p̂ ). Figure 7.3 shows that the conditions for this to occur are not very
restrictive under additive selection.

This observation has a number of practical implications. For example, an elevated level
of population subdivision for a quantitative trait relative to the neutral expectation
is often taken to imply divergent selective regimes across subpopulations (Chapter
12). But here we see that under identical selection pressures, populations that initiate
with low-frequency, advantageous alleles can exhibit levels of divergence more con-
ventionally interpreted as being associated with diversifying selection. Whether allele
frequencies, selection coefficients, and drift intensities commonly have the right mixes
for uniform selection to enhance the magnitude of phenotypic divergence remains to
be seen, but a wide range of conditions appear to yield divergence levels that would
be difficult to discriminate from the neutral expectation (Lynch 1986).

–Insert Figure 7.3 Here–

Probability of Fixation Under Arbitrary Selection

We now consider the more general model, allowing for dominance, with the geno-
types aa, Aa, and AA having fitnesses 1, 1 + s(1 + h), and 1 + 2s. Diffusion theory
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(as developed in Appendix 1) then gives the fixation probability of allele A as

pf (p0 | s, h) '

∫ p0

0

eG(x) dx∫ 1

0

eG(x) dx

(7.18a)

where
G(x) = −4Nesx[1 + h(1− x)] (7.18b)

For a new mutant introduced as a single copy, p0 = 1/(2N), under random mating
and at least partial dominance,

pf

(
1

2N

)
' 2Nes(1 + h)

N [1− e−4Nes(1+h)]
(7.19a)

This shows that the probability of fixation of a new mutation is largely determined by
the heterozygous effect, as almost all copies of a mutation remain in this state until
the allele frequency has achieved a moderately high level. For a complete recessive
(h = −1), the approximation leading to Equation 7.19a breaks down, and higher-
order terms in the approximation of Equation 7.18a are required. However, for strong
positive selection on homozygotes of a completely recessive allele (4Nes � 1), a close
approximation is given by

pf

(
1

2N

)
'
√

4Nes/π

N
(7.19b)

(see Example A1.7 for details).
If there is direct inbreeding due to mating of close relatives (beyond the amount

of long-term inbreeding that is naturally generated by drift), Equation 7.18a still
holds, but now with

G(x) = −4Nesx{2f + (1− f)[1 + h(1− x)]} (7.20a)

where f is a measure of the departure of genotypes from Hardy-Weinberg expec-
tations, defined (in Chapter 2) by the frequency of heterozygotes, 2p(1 − p)(1 − f)
(Caballero and Hill 1992). Using Equation 7.18a, the fixation probability now be-
comes

pf

(
1

2N

)
' 2Nes[2f + (1− f)(1 + h)]

N
(7.20b)

(Caballero and Hill 1992; Caballero 1996), which for a complete recessive (h = −1)
reduces to

pf

(
1

2N

)
' 4Nefs

N
(7.20c)

Thus, with even a small amount of inbreeding, the probability of fixation of a ben-
eficial recessive allele is considerably higher than under random mating (Equation
7.19b) due to the elevated exposure in homozygotes (Caballero et al. 1991). In con-
trast, inbreeding has much more moderate effects on the fixation probabilities of
alleles with additive (h = 0) or dominant (h = 1) fitness effects.

By indirectly causing localized inbreeding, population subdivision can also in-
fluence the probability of fixation. Whitlock (2003) found that for a wide variety of



12 CHAPTER 7

population structures, the global probability of fixation of a new beneficial mutation
is well approximated by

pf

(
1

2N

)
=

2Nes(1 + h)(1− FST )
N

(7.21)

where the effective and total population sizes (Ne and N) are defined at the metapop-
ulation level, and FST is an index of population subdivision (defined as the frac-
tion of metapopulation variation for neutral allele frequencies that is distributed
among populations; see Chapter 2). Note that with complete population subdivi-
sion (FST = 1), fixation is impossible at the metapopulation level, as mutations are
permanently confined to the demes in which they arise.

One cannot immediately infer from Equation 7.21 whether population subdi-
vision enhances or reduces the probability of fixation because subdivision influ-
ences both FST and Ne. Expressions for effective population sizes under a number
of metapopulation structures were presented in Chapter 3, and parallel expressions
for FST can be found in most of the literature cited there. In the case of the ideal
island model with symmetric migration between demes and equal contributions of
all demes to the entire metapopulation (Chapter 3), Ne = N/(1−FST ), and Equation
7.21 reduces to 2(1+h)s, showing that in this particular case the probability of fixa-
tion is independent of the magnitude of population subdivision and simply equal to
twice the selective advantage in heterozygotes (Maruyama 1970). Analyses of more
complex population structures (Slatkin 1981; Barton 1993) are all special cases of
Whitlock’s (2003) expression provided the assumption of equal deme productivity is
met; and the modifications necessary when this condition are violated are developed
in Whitlock (2003) as well. The more complex situation in which the strength of
selection varies among demes has been taken up by Whitlock and Gomulkiewicz
(2005).

Otto and Whitlock (1997) provide results for fixation probabilities in popula-
tions of changing size, showing that selection is more effective in growing populations
(increasing the probabilities that favorable alleles are fixed and deleterious alleles
are lost) than in declining populations. This result has obvious implications for man-
aged populations. Fortuitously, the limiting expression for the fixation probability of
alleles with additive effects (given above as 2sNe/N) applies to populations that are
changing in size, provided appropriate modifications are made in the definition of
Ne (Otto and Whitlock 1997). The much more complex issue of jointly varying pop-
ulation sizes and selection coefficients is taken up by Uecker and Hermisson (2011).
A number of additional diffusion results are given for a diallelic locus in Appendix
1, but simple expressions are generally unavailable for multiple alleles.

Fixation of Overdominant and Underdominant Alleles

A case of special interest is the effect of drift on a locus experiencing selective
overdominance, where the heterozygote has higher fitness than either homozygote.
Whereas in an infinite population, such balancing selection permanently maintains
both alleles (Example 5.4), drift will ultimately fix one allele in a finite population
provided the homozygote has nonzero fitness. Although it might seem that balancing
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selection will still always magnify the longevity of a polymorphism, contrary to
intuitive expectations, selection in a finite population sometimes increases the rate
of fixation at an overdominant locus (Robertson 1962; Ewens and Thomson 1970;
Chen et al. 2008).

If the equilibrium frequency expected in an infinite population is extreme (roughly
p̃ < 0.2 or p̃ > 0.8), a polymorphism starting at p̃ in a finite population is usually lost
more rapidly under balancing selection than under drift alone, thereby accelerating
the removal of heterozygosity. Such behavior arises because selection keeps allele
frequencies fairly close to their equilibrium values. If such values are near 0.0 or 1.0,
the minor allele will be impeded from occasionally drifting to more protective states
of moderate frequencies, thereby increasing the likelihood of loss by drift.

Nei and Roychoudhury (1973) evaluated this issue further with newly arisen
overdominant alleles with initial frequency 1/(2N). In this case, the mutant allele
is initially confined to the heterozygous state, so its early fate is largely indepen-
dent of its own homozygous effect, but highly dependent on the magnitude of its
heterozygous advantage over the resident homozygote. Fixation probabilities can
only be obtained by numerical analysis in this case, but the results depend only
on two parameters, Ne(s1 + s2) and the infinite-population equilibrium frequency
p̃ = s2/(s1 + s2), where s1 and s2 are respectively the selection coefficients against
the homozygotes associated with the mutant and resident alleles. If p̃ for the allele
under consideration is much less than 0.5, the fixation probability is less than the
neutral expectation for the reasons noted above. However, if p̃ is larger than 0.5
(the fitness of the resident homozygote is lower than that of the mutant allele), the
fixation probability is always greater than the neutral expectation, even though fix-
ation results in the loss of the optimal (heterozygous) genotype. Moreover, in this
case, the fixation probability of the mutant allele is only slightly smaller than that
predicted by Equation 7.10a when s2 is used as a selection coefficient (Nei and Roy-
choudhury 1973). If 2Ne(s1 + s2) � 1, selection is uniformly overpowered by drift,
and the system behaves in an effectively neutral fashion.

The fixation times for newly arisen overdominant mutations parallel the patterns
of loss of variation that Robertson (1962) first noted (Nei and Roychoudhury 1973).
When the equilibrium frequency is outside of the range of (0.2, 0.8), the mean
fixation time is lower than the neutral expectation of 4Ne generations, whereas
for 0.2 < p̃ < 0.8 the time is elevated, with more extreme behaviors seen at high
Ne(s1 + s2) (Figure 7.4). Particularly intriguing is the fact that the fixation time of
an overdominant mutation is symmetrical around p̃ = 0.5, i.e., for a given strength
of selection Ne(s1 + s2), the time to fixation is the same at equilibrium frequencies
p̃ and 1 − p̃. Consistent with the situation for mutants with additive effects noted
above, this means that when an overdominant mutant allele is associated with the
least fit homozygous type, for the rare occasions in which fixation occurs, it does so
just as rapidly on average as when it is associated with the most fit homozygote (and
therefore fixes more frequently). Further considerations for the situation in which
populations are subdivided are given in Nishino and Tajima (2004).

–Insert Figure 7.4 Here–

Important situations also exist in which a new mutation is underdominant with
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respect to the resident allele, i.e., has reduced fitness when in the heterozygous state,
but equal or higher fitness as a homozygote. In an infinite population, such an allele
would always be driven from the population if its marginal fitness at low frequency
is less than that of the resident allele. In a finite population, however, there is
some chance that the mutant allele might drift to high frequency, transiently taking
the population through a reduction in mean fitness (during the period in which
heterozygotes are common), but possibly eventually becoming fixed.

Such a scenario has generated considerable interest in the area of speciation bi-
ology, as the fixation of an underdominant mutation in a subpopulation will lead to a
situation in which hybrids between subpopulations have reduced fitness. In principle,
such a condition can constitute the first stage in the development of reproductive
isolation.

For the situation in which the two homozygotes have equal fitness and heterozy-
gotes experience a reduction in fitness s, Lande (1979) found that if sNe/N � 1 (a
condition likely to be met based on empirical information on Ne/N ; Chapters 3 and
4)

pf (1/2N) '
√

Nes/π

N · eNes · erf(
√

Nes)
(7.22)

where the error function
erf(x) = (2/

√
π)
∫ x

0

e−y2
dy (7.23)

is the cumulative frequency of a unit normal, which can be calculated by various nu-
merical approximations (Abramowitz and Stegun 1972). If the efficiency of selection
is sufficiently low (Nes � 2), pf (1/2N) ' 1/(2N), as expected for an effectively neutral
allele. However, if the efficiency of selection is high (Nes > 2), so that erf(

√
Nes) ' 1,

pf (1/2N) '
√

Nes/π

NeNes
(7.24)

Of special interest in the study of speciation are chromosomal rearrangements that
cause problems during meiosis in chromosomal heterozygotes, with s as large as 0.5
being quite plausible (Lande 1979, 1984). With Nes = 2, 5, and 10, Equation 7.24
predicts fixation rates that are 0.22, 0.017, and 0.00016 times the neutral expecta-
tion. Such results imply that if heterozygote fitness is greatly reduced, transitions
to alternative allelic states (with equivalent homozygous fitness) are only possible if
Ne is very small. However, when such fixations do occur, they proceed much more
rapidly than the neutral expectation of 4Ne generations (Lande 1979).

Walsh (1982) generalized the above results to the situation in which the fitness
in the novel homozygote is elevated to 1 + t, such that after passage through a
fitness bottleneck, fixation of the underdominant allele leads to an increase in mean
population fitness. Letting θ = Nes, and ω = 1 + (t/2s),

pf (1/2N) =
erf{[(1/2N)− (0.5/ω)]

√
4θω}+ erf{

√
θ/ω}

erf{[1− (0.5/ω)]
√

4θω}+ erf{
√

θ/ω}
(7.25)

For t < 2s, the fixation probability is close to that predicted by Equation 7.22,
whereas for very large t, pf (1/2N) can moderately exceed the neutral expectation
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provided Nes is not so strong that the allele is incapable of drifting to a high enough
frequency to be favored by selection (Figure 7.5).

The latter case is of special interest, as one can identify a critical effective pop-
ulation size (N∗

e ) above which the efficiency of selection is so strong that there is
essentially no possibility of the population passing through the fitness bottleneck
imposed by heterozygotes. With heterozygotes having a fitness reduction of s, ho-
mozygotes an advantage of t, and p being the frequency of the mutant allele, the
mean population fitness is W = 1 − 2p(1 − p)s + p2t, which reaches a minimum at
p̂ = s/(t + 2s) = 0.5ω, with p < p̂ implying net selection against and p > p̂ net selec-
tion in favor of the mutant allele. Thus, the key issue is whether the mutant allele
can drift from initial frequency 1/(2N) to p̂, at which point selection can pull it to
fixation. When p is small, the frequency of mutant homozygotes is negligible, and
the new allele effectively behaves like a deleterious mutation being removed from
the population at rate s, and it can be shown that there is essentially no chance of
the allele drifting to p̂ if

N∗
e >

t + 2s

s2
(7.26)

(Lynch 2012a). For example, with a mutant allele with disadvantage s = 0.01 in
the heterozygous state but advantage t = 0.01 in the homozygous state, an effective
population size above 300 imposes a very strong barrier to establishment. Lande
(1979, 1985) shows that such selective valleys are much more likely to be vaulted in
subdivided populations, where local extinction and recolonization permit individual
demes to make transitions to an alternative genotypic state and then export such a
fixed change to a newly opened habitat.

–Insert Figure 7.5 Here–

Expected Allele Frequency in a Particular Generation

A number of applications, including attempts to predict the response to selection,
arise where it is useful to know the expected allele frequency at time t, E(pt). While
exact results can be obtained from probability transition matrices (Carr and Nassar
1970; Hill 1969a) and good approximations can be derived from diffusion theory (Ap-
pendix 1; Maruyama 1977; Ewens 2004) and other approaches (Curnow and Baker
1968, 1969; Pike 1969), these methods tend to be numerically intensive. Fortunately,
simple approximations have been developed for weak selection.

In a finite population, drift can reduce the selection response by progressively
diminishing the expected heterozygosity each generation. Consider a locus with ad-
ditive selection, with genotypes aa, Aa, and AA having fitnesses 1, 1+s, and 1+2s.
If we assume weak selection, such that changes in allele frequencies associated with
selection are relatively minor, compared to those induced by drift, from Equation
5.1b, the expected per-generation frequency change for an allele in the j th generation
of additive selection can be described as

E(∆pj) ' sE[ pj(1− pj) ] ' sp0(1− p0)
(

1− 1
2Ne

)j

(7.27)
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where p0 is the initial allele frequency. The last approximation follows directly from
the expression for the expected heterozygosity for a neutral locus in a finite popula-
tion after j generations with a starting allele frequency of p0, Equation 2.5. Summing
over generations, the expected frequency after t generations of selection and drift is

E(pt) = p0 +
t∑

j=0

E(∆pj) ' p0 + sp0(1− p0)
t∑

j=0

(
1− 1

2Ne

)j

' p0 + 2Nes p0(1− p0)
(
1− e−t/2Ne

)
(7.28a)

where the last step follows from the useful approximation

t∑
j=0

(
1− 1

2Ne

)j

' 2Ne

(
1− e−t/2Ne

)
(7.28b)

More generally, if the genotypes aa, Aa, and AA have fitnesses 1, 1 + s(1 + h), and
1 + 2s, then for small Ne|s| and Ne|sh|, the expected frequency of A is

E( pt) ' p0 + 2Nesp0(1− p0)
[ (

1− e−t/2Ne

)
+

h(1− 2p0)
3

(
1− e−3t/2Ne

)]
(7.29)

These approximations provide a remarkably simple route to obtaining fixation
probabilities under weak selection (Nes � 1). Because an allele is ultimately either
fixed (p∞ = 1) or lost (p∞ = 0), the asymptotic mean frequency as t → ∞ is equal
to the fixation probability,

E( p∞) = 1 · pf (p0) + 0 · [1− pf (p0) ] = pf (p0)

Thus, taking the limit of Equation 7.29 as t → ∞ yields a useful expression for the
probability of fixation under weak selection and arbitrary dominance,

f(p0) ' p0 + 2Nesp0(1− p0)
(

1 +
h(1− 2p0)

3

)
(7.30)

For additive fitness effects (h = 0), this expression is identical to Equation 7.10b.
Hill (1969a,b) found this approximation to be reasonable provided Ne|s| < 1. The
more general versions (Equations 7.29 and 7.30) were produced by Silvela (1980).

JOINT INTERACTION OF SELECTION, DRIFT, AND MUTATION

We now turn to the situation in which selection, drift, and mutation operate si-
multaneously. Under these conditions, alleles are not simply permanently lost or
fixed. Rather, the allele frequencies in a population of constant size eventually reach
a stochastic equilibrium (or stationary distribution), φ(x), where x denotes the
allele frequency. Recall from Chapter 2 that we can interpret such an equilibrium in
two different ways. First, given a conceptually large number of replicate populations,
φ(x) closely approximates the frequency histogram of the numbers of populations
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with specific allele frequencies at the locus. Conversely, if we were to follow a single
population temporally and construct a histogram of the historical record of allele
frequencies at the locus over a very large number of time points, we would again
recover φ(x).

Diffusion theory provides a general solution to this problem (Appendix 1). For
the simple biallelic case in which mutations from allele A to a occur at rate u, and
v is the reciprocal rate, Wright (1949) found that the equilibrium distribution for
the advantageous A allele is given by

φ(x) = CW
2Ne

x4Nev−1 (1− x)4Neu−1 for 0 < x < 1 (7.31a)

where C is a normalization constant such that Equation 7.31a integrates to one
and hence is a proper probability density (Example A1.3 provides a derivation of
this expression). Here, W is the mean population fitness, which is itself a function
of x and the selection coefficients associated with different gametic states. Note
that when both mutation rates are substantially < 1/(4Ne), conditions that may
frequently be met for single nucleotide sites (Chapter 4),

φ(x) ' CW
2Ne

x(1− x)
(7.31b)

showing that with weak mutation pressure, the expected allele frequencies condi-
tional upon the population being polymorphic are independent of both the mutation rate
and the mutation bias. This result, which represents still another counterintuitive
consequence of the influence of drift on gene frequencies, can be understood in the
following way.

Suppose that allele A has a selective advantage s over allele a, and let the rate
of mutation from allele i to j be uij. At stationary state, the ratio of times that a
population is completely fixed for optimal and suboptimal alleles is

P̃A

P̃a

=
( v

u

)
eS (7.32)

where S = 4Nes (Wright 1931; Li 1987; Bulmer 1991; McVean and Charlesworth
1999). Note that (v/u) and eS are, respectively, the mutation and selection biases in
favor of allele A, with the latter being equivalent to the ratio of fixation probabili-
ties of beneficial and detrimental alleles with the same absolute s (obtainable from
Equation 7.10a).

Equation 7.32 illustrates two key points. First, although the distribution of allele
frequencies conditional on polymorphism can be independent of mutational prop-
erties, the frequency of alternative fixed classes is not. Second, the ratio at which
the two monomorphic classes produce polymorphisms (u/v) is perfectly compen-
sated by the differential densities of the two classes, and provided the population
is sufficiently small that each new mutation is either lost or fixed before another
one is produced at the locus, this effect is not influenced by secondary mutations.
Equation 7.31b breaks down, however, when population sizes are large enough that
the waiting times for new mutations are smaller than the sojourn times of mutant
alleles.
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Because Equation 7.31a treats allele frequencies as continuously distributed vari-
ables, they may behave aberrantly at the absorbing boundaries of frequencies x =
0 and 1. However, a rough approximation for the absolute frequencies of the fixed
classes can be obtained by noting that

Rp = 2N [P̃Auta + P̃avtA] (7.33a)

is the rate of production of polymorphisms from the fixed classes, with t
a

t
A

being,
respectively, the mean sojourn times of mutations to alleles a and A. Using the
relationship in Equation 7.32 and the fact that P̃a + P̃A + P̃p = 1, where Pp is the
probability that the population is polymorphic, the probabilities that the population
is fixed for either allele or polymorphic for both can be solved starting with

P̃p ' 1− eRp (7.33b)

By multiplying the values of Equation 7.31a by Pp over the range of x = 1/(2N) to
1− [1/(2N)], we then obtain the spectrum of alternative population states.

Figure 7.6 provides some examples of the form of the stationary distribution
for biallelic loci experiencing bidirectional mutation. For neutral mutations, the
distribution is highly u- or j-shaped (depending on the magnitude of mutation bias)
at low population mutation rates (4Nu and 4Nv � 1), as the population is almost
always in a nearly fixed state. The distribution becomes flat with values of 4Nu and
4Nv near 1.0, and then more peaked as 4Nu and 4Nv become progressively larger
(with the mean centered on the infinite-population expectation given by Equation
7.5). For populations that are sufficiently small as to seldom harbor polymorphisms,
Equation 7.5 also represents the probability of the alternative fixed states. Selection
skews the distribution towards the more favorable allele, but even with S as large
as 10, a moderate frequency of the deleterious allele can be expected (even though
fixation of the latter would essentially never occur).

–Insert Figure 7.6 Here–

Equation 7.31a is useful in a number of applications. Consider, for example,
the case of a deleterious recessive allele maintained by mutation (with u being the
mutation rate to deleterious alleles, and s being the selective disadvantage of mu-
tant homozygotes). Letting x be the frequency of the deleterious allele, the mean
population fitness is W = 1 − sx2, using the approximation (1 − y)2Ne ' e−2Ney for
small y, so that W

2Ne ' e−2Nesx2
, and ignoring back mutation to the advantageous

allele, the equilibrium distribution is

φ(x) = Ce−2Nesx2
x4Neu−1 (1− x)−1 for 0 < x < 1 (7.33)

a result originally due to Wright (1938).
Nei (1969) provides a broad overview of the allele-frequency spectrum for lethal

mutations, including those that are entirely recessive or overdominant. As neither of
these conditions are commonly observed (LW Chapter 10), we note only some of the
results for partially recessive lethals. In this case, the average expected frequency
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at selection-mutation balance is given by Equation 7.6d, essentially independent
of population size, and provided 2Nehs � 1 (i.e., the power of selection against
heterozygotes exceeds the power of drift), the variance in allele-frequency is approx-
imately

σ2(p) = p̃/(4Nehs) (7.34)

Nei (1971) and Li and Nei (1972) give expressions for the expected numbers of
individuals affected by a newly arisen deleterious mutation prior to its elimination
by selection.

An area of special interest is the behavior of the four possible nucleotides at
a particular site. Denoting the four frequencies as xi (where i = 1, . . . , 4) and their
selection coefficients as si (here assumed to be weak and additive), under the as-
sumption that all nucleotides mutate to each other type at the same rate u, Equation
7.31a generalizes to

φ(x1, x2, x3, x4) = CW
2Ne (x1 x2 x3 x4)4Neu−1 (7.35)

where W = 1 + 2
∑4

i=1 xisi is the mean population fitness. Not surprisingly, the
solution to this trivariate expression (x4 being defined as 1 − x1 − x2 − x3) is quite
cumbersome (Li 1987; Zeng et al. 1989; Bulmer 1991; McVean and Charlesworth
1999).

Consider, however, the situation in which there is one optimal nucleotide, the
frequency of which is denoted by x, with the three others having an equal selective
disadvantage s in the heterozygous state. Scaling the fitness of the less-fit alleles to
be 1, the mean population fitness is then W = 1+2xs, which is closely approximated
by e2xs under the assumption of small s. Letting the mutation rate of all nucleotides
to the optimal state be v and the total mutation rate of the optimal nucleotide to
the other states be u, it follows from Equation 7.32 that the expected frequency of
the optimal nucleotide is

P̃opt '
(v/u)eS

1 + (v/u)eS
(7.36)

(Li 1987; Bulmer 1991; McVean and Charlesworth 1999). Strictly speaking, this
expression applies to the weak-mutation limit (where N(u + v) � 1 ensures that
polymorphisms are rare), so that P̃opt denotes the frequency of time the site is fixed
for the optimal nucleotide. Equation 7.36 makes a simple, intuitive statement – the
frequency of the optimal nucleotide at a site is a function of a single composite
quantity, (v/u)eS, which as noted above denotes the net pressure towards the opti-
mal state. As Ne → 0, the expected frequency of the optimal allele approaches the
expectation under pure mutation pressure, v/(u + v). For populations that are suf-
ficiently large to maintain substantial heterozygosity, Equation 7.36 is no longer a
strict definition of the probability of sampling an optimal allele, as prior to fixation
the descendants of a new mutation will themselves have time to acquire secondary
mutations. In this case, Popt is more appropriately viewed as the probability that the
most recent common ancestor of the alleles currently segregating in a population is
an allele of the optimal type.

Sella and Hirsh (2005) and Lynch (2012b) expanded the model leading to Equa-
tion 7.36 to allow for multiple alleles with different fitness states. Both models as-
sumed a stepwise-mutation model, with allele i mutating to i− 1 with rate u and to
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i+1 with rate v, and again are strictly valid as indicators of average allele frequency
only in the weak-mutation limit where the population is expected to be typically
nearly monomorphic for a single allele at most points in time. Sella and Hirsh as-
signed fitness Wi = 1 + si to allele i, and assumed symmetric mutation (u = v).
Letting Si = 4Nesi (assuming diploidy), the equilibrium probability that i is the
fixed (or nearly so) allele is completely independent of the mutation rate,

p̃i =
eSi

T
, where T =

n∑
i=1

eSi (7.37)

and n is the number of alleles. Whereas the Sella-Hirsh model makes no assumptions
about fitness ordering between alleles, Lynch’s model assumes an ordered fitness
increase in a series of alleles, such that Wi = 1 − e−ki, with the constant k setting
the granularity of fitness change between adjacent alleles, a fitness of 1.0 being
approached asymptotically as i →∞. In this case, the stationary distribution is

p̃i =
(v/u)ie−Si

T
, where T =

∞∑
i=1

(v/u)ie−Si (7.38)

and Si = 4Nee
−ki.

Formulae such as these, which can readily be modified to alternative fitness
schemes. Among other things, they are useful for determining the extent to which
drift limits the level of adaptation attainable by a population. For example, assum-
ing higher mutation rates to unfavorable states (u > v), the advancement toward
ever-higher (and fitter) allelic states stalls around a critical value in the allelic se-
ries, above which si ' e−ki is sufficiently small that drift (combined with mutation
pressure) overwhelms selection, thereby preventing further adaptive progress (Lynch
2012b). Although alleles in a fitness state above this critical point might arise by
mutation, because they are effectively neutral, they are subject to regressive evolu-
tion. On the other hand, alleles with sufficiently large disadvantages are incapable
of proceeding to fixation, and are purged by selection. Thus, as further discussed
in the following section, under virtually all models of adaptation, a drift barrier
ultimately prevents a population from achieving a perfect state of adaptation, even
in a constant environment.

HALDANE’S PRINCIPLE AND THE MUTATION LOAD

Having established the expected allele frequencies at a locus jointly influenced by
mutation, selection, and drift, we now consider in more detail the price that all
organisms pay for the privilege of evolving. Because most mutations are deleterious,
and many unconditionally so, for every beneficial allele created by mutation, many
more detrimental mutations will be introduced to a population. In populations of
sufficiently large size, the majority of such mutations will be kept at low frequency
and eventually purged, but the relentless flux of new mutations will nevertheless
result in an equilibrium load on the mean fitness in the population (Muller 1950;
Crow 1993). Remarkably, under reasonably general conditions, this load is often
essentially independent of the effects of individual mutations.
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In an elegant display of population-genetic reasoning, Haldane (1937) proposed
that the reduction in fitness resulting from recurrent deleterious mutations is a
function of the deleterious mutation rate alone, an observation that has come to be
known as Haldane’s principle. Consider a deleterious recessive allele a with selec-
tive disadvantage s in homozygotes. Recalling Equation 5.6d, the mean population
fitness when this locus is in selection-mutation balance is

W = 1− s · freq(aa) = 1− s

(√
u

s

)2

= 1− u (7.39a)

Because the expected frequency of recessive homozygotes is inversely proportional
to the selective disadvantage, the reduction in mean fitness (the mutation load) is
independent of the strength of selection and simply equal to the deleterious mutation
rate per allele.

For a deleterious dominant allele with equilibrium frequency u/s,

W = 1− s [ freq(aa) + freq(Aa) ]

= 1− s ·
[(u

s

)2

+ 2
(u

s

)(
1− u

s

)]
= 1− 2u +

u2

s

(7.39b)

Assuming s � u, the term u2/s is negligible, and the mean fitness is again essentially
independent of the strength of selection and simply a function of the mutation rate
(in this case, the per-locus rate 2u).

Finally, consider an allele with partial dominance, with heterozygote fitness
1 − hs. Recalling from Equation 5.6d that the equilibrium allele frequency is p̃ =
u/(hs), the mean population fitness is

W = 1− 2hs p̃(1− p̃)− sp̃ 2

' 1− 2hs p̃ = 1− 2hs
( u

hs

)
= 1− 2u (7.39c)

so that the expected mean fitness is independent of both h and s. Bürger (2000) ex-
plores these expressions in considerable detail, confirming that the error in ignoring
secondary terms in the preceding expressions is of order u2/s or smaller. With mul-
tiple deleterious alleles per locus, these same expressions apply if u is interpreted as
the total mutation rate of the most beneficial allele to all classes of deficient alleles
at a locus (Crow and Kimura 1964; Clark 1998).

One potential caveat to these results is that the derivation assumes a situa-
tion in which there are negligible epistatic effects on fitness. Kimura and Maruyama
(1966) examined this issue by considering a quadratic fitness function of the form
wi = 1 − h1i − h2i

2, where i is the number of mutations carried by the individual.
With h2 = 0, the model of additive effects assumed above is closely approximated,
and Haldane’s principle continues to hold, with mean fitness being approximately
equal to e−U , where U is the deleterious mutation rate per diploid genome. However,
at the opposite extreme with h1 = 0, fitness declines with the square of the number
of mutations, and mean fitness is elevated to ∼ e−U/2 regardless of the magnitude
of h2. A more general expression that allows for nonzero values of both h1 and h2,
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provided by Kimura and Maruyama (1966), demonstrates that this type of syn-
ergistic epistasis always reduces the mutational load on a sexual population. In
contrast, with diminishing-returns epistasis, where the decline in fitness with
increasing numbers of deleterious mutations becomes progressively shallower, the
mutation load is elevated beyond the Haldane expectation.

Fitness functions involving epistasis have played a significant role in our at-
tempt to understand the evolution of sexual reproduction, primarily because the
behavior just noted does not extend to asexual genomes, as first shown by Kimura
and Maruyama (1966) in a remarkably simple way. Consider an asexual population
of mixed clones, with p0 being the frequency of the clone with the minimum number
of mutations in one generation and p′0 being its frequency in the next generation.
Then, accounting for selection and mutation,

p′0 =
p0W0e

−U

W
(7.40)

where W is the mean population fitness, W0 = 1 is the fitness of the optimal genotype,
and e−U is the fraction of the members of this class that do not acquire mutations.
Note that no assumptions have been made here with respect to the mode of gene
action or on the form of the fitness distribution, and yet at equilibrium (p′0 = p0)
we obtain the very general result that mean fitness W = e−U . Thus, if synergistic
epistasis among deleterious mutations is important, a matter on which there is little
empirical consensus (Rice et al. 2002; Barton and Otto 2005; Kouyos et al. 2007;
Keightley and Halligan 2009), a sexual population will have a long-term advantage
in terms of mean fitness. Substantial additional work exists on this subject (e.g.,
Kondrashov 1984, 1988; Charlesworth 1990; Agrawal and Chasnov 2001; Otto 2003;
Haag and Roze 2007).

An additional issue with respect to Haldane’s principle is that Ne must be several
fold greater than 1/(hs) for Haldane’s principle to be closely approximated. If this
is not the case, deleterious alleles will be capable of drifting to frequencies higher
than expected under selection-mutation balance alone. Although this observation
led Kimura et al. (1963) to conclude that the mutational load due to segregating
mutations will monotonically increase with decreasing Ne, their study invoked a
relatively high level of back mutation in order to maintain a quasi-equilibrium allele
frequency. If instead, one treats back mutation as negligible force (for reasons stated
above), it can be shown that the load associated with segregating mutations is
nonmonotonic with respect to Ne. The segregational load reaches a maximum (in
excess of the Haldane expectation) at the point where 1/(2Ne) ' hs, as it is at
this point that mutations have a maximum deleterious effect that is still consistent
with being highly vulnerable to random genetic drift (Lynch et al. 1995a,b). As Ne

declines below this point, the segregational load approaches zero simply because
drift is so strong that few segregating polymorphisms of any kind are maintained,
and at this point permanent damage simply accrues via the fixation of deleterious
alleles, i.e., there is a fixation load in addition to any segregational load. Indeed,
once a population enters this small-population-size domain, the mutation load may
no longer even be maintained at a quasi-equilibrium state as a continual flux of new
rounds of weakly deleterious mutations leads to further fixations. If unopposed for a
sufficiently long time, such a condition can eventually reduce mean population fitness
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to the point at which the average individual is incapable of replacing itself, leading
to population extinction via a mutational meltdown (Lynch et al. 1995a,b).

Even populations large enough to avoid extinction by a mutational meltdown
must experience some fixation load, as there must often be mutationally derived
alleles with small enough deleterious effects to be immune to selection. The issue has
been explored by a number of investigators using a variety of models for mutational
passage between allelic classes (Hartl and Taubes 1998; Poon and Otto 2000; Sella
and Hirsh 2005; Lynch 2012b). Although the exact results vary somewhat among
studies, in every case the load resulting from fixation of suboptimal alleles is inversely
proportional to the effective population size, often with an upper bound on the order
of 1/(4Ne).

One way to arrive at this result is to recall the two-allele model given above as
Equation 7.36. Noting that the load for a fixed deleterious mutation with heterozy-
gous effect s is 2s times the expected fraction of time that the deleterious allele is
fixed, we then have

L =
2su/v

eS + (u/v)

' 2su/v

1 + 4Nes + (u/v)
(7.41a)

with the approximation arising when S = 4Nes < 1.0, which must be the case for
there to be a significant chance of fixation of a deleterious allele. Under the latter
conditions, with symmetrical mutation rates (u = v),

L =
1

2Ne + (1/s)
<

1
4Ne

(7.41b)

Mutational bias in the direction of deleterious alleles (u/v > 1) will elevate this load,
but the point remains the same. Finite population size imposes an ultimate barrier
to adaptational refinements that can be maintained in a population. Although this
load may appear to be small, as noted in Chapter 4, in all known cases, u < 1/(2Ne),
suggesting that the drift load per locus is likely to be typically greater than Haldane’s
segregational load. In addition, the previous derivations apply to single loci, whereas
the cumulative load over all n loci contributing to a trait will be roughly n times
the single-locus load. Thus, drift appears to generally impose a nontrivial barrier to
adaptive perfection.

There has been considerable debate about the meaning and consequences of
the genetic load (Wallace 1991; Crow 1993; Kondrashov and Crow 1993; Reed and
Aquadro 2006). As deleterious mutations are removed via reduced survival or repro-
duction, they must have some demographic consequences. Taken literally though, if
the deleterious mutation-free genotype is viewed as the standard (W0 = 1), an equi-
librium load L would imply approximately e−L viability (not including mortality
unassociated with genetic variation) if its entire influence was born by survivorship.
This would then require an inflation of family sizes by a factor eL relative to the
minimum value of two necessary to maintain population-size stability. Under this
view, the load concept is paradoxical in that a low-fecundity organism such as a ver-
tebrate would never be able to bear the demographic costs should the genome-wide
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deleterious mutation rate exceed ∼ 1.0, which is likely the case in animal species
(Chapter 4). Lesecque et al. (2012) show, however, that the magnitude of selective
death is greatly diminished if the fitness of individuals is scaled relative to the actual
mean fitness in the population rather than to the idealized W0 = 1. Such a situation
would be expected if selection operates mainly through competition of the actual
members of the population, rather than by comparison to a nonexistent genotype.

FIXATION ISSUES INVOLVING TWO LOCI

Populations and species diverge from each other through successive fixations of
new mutations, which can be effectively neutral, advantageous, or even slightly
deleterious. The relative contributions from these classes is of considerable interest,
especially the question of what fraction of substitutions is advantageous and hence
adaptive (Kimura 1983; Gillespie 1994). Our goal here is to broaden our outline of
fixation theory by considering the influence of the genetic background on expected
substitution rates.

There are a number of contexts in which fixation probabilities of alleles are
influenced by factors operating at other loci. For example, as discussed in Chapter
3, selection operating on any locus, either positive or negative, results in a reduction
in the effective population size in the local chromosomal region, thereby reducing
the efficiency of selection operating on all loci linked to the target of selection. Such
effects will reduce the fixation probabilities for beneficial alleles, while enhancing the
likelihood of fixation of deleterious alleles. In addition, for mutations with contextual
(epistatic) effects, fixation probabilities depend critically on the genetic background,
and hence on the frequencies of alternative alleles at interacting loci. All of these
factors depend very much on the effective population size, which defines the baseline
level of variation expected in a population.

The Hill-Robertson Effect

We first consider the matter of selective interference created by linked variation
involving beneficial alleles. Suppose that the gamete with the highest fitness, AB,
is initially absent and can only be generated by recombination in Ab/aB double
heterozygotes. Letting x2 and x3 denote the frequencies of the Ab and aB gametes,
and c be the recombination frequency between the two loci, then the probability
of AB being generated in the population is related to the product of the expected
frequency of Ab/aB heterozygotes and the probability that a random gamete from
such individuals is AB, (2x2x3) (c/2). Because x2x3 ≤ 1/4 and a population with
stable size must produce 2N successful gametes, the upper bound to the expected
number of AB gametes generated in any generation is then (2N)(c/4). Thus, if Nc <

2, fewer than one AB gametes will be produced each generation by recombination, so
unless there is a strong advantage to AB, one of the intermediate gamete types will
most likely become fixed before AB can reach an appreciable enough frequency to
be deterministically promoted by selection. Such fixation of one of the intermediate
types will then leave new mutation as the only mechanism for the generation of AB.
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For this special case where the optimal gamete is initially absent, Latter (1966b)
developed approximate expressions for the mean time to the first appearance of the
AB gamete by recombination and for its subsequent fixation probability.

Although there is no general expression for the probability of fixation when
alleles at two or more loci are competing for fixation, a number of important results
were developed by Hill and Robertson (1966). Most notably, they obtained a weak-
selection approximation for the probability of fixation for the following case. Let two
diallelic loci (with designated alleles A/a and B/b) have recombination frequency c,
p0 be the initial frequency of A, and D0 be the initial gametic-phase disequilibrium
(as defined in Chapter 2). Assuming completely additive selection (no dominance
or epistasis), with each copy of A adding s1 and each copy of B adding s2 to total
fitness, the probability that A becomes fixed is

pf (p0) ' p0 + 2Nes1p0(1− p0) +
2Nes2

2Nec + 1
D0 (7.42)

provided that 2Ne|s1| and 2Ne|s2| < 1. Comparing this two-locus approximation
to the single-locus result (Equation 7.10b) shows that the probability of fixation
can be increased or decreased depending on the sign of the initial gametic-phase
disequilibrium, D0.

Computer simulations show that when selection is strong (Ne|s1| and/or Ne|s2| �
1), linkage (i.e., c < 0.5) generally decreases the probability of fixation of an advan-
tageous allele relative to the single-locus result (Hill and Robertson 1966). If A and
B are favored alleles, linkage has little effect on the probability of fixation of the
ab gamete, but the probabilities of fixation of the Ab and aB gametes increase
at the expense of the optimal AB gamete (Latter 1965; Hill and Robertson 1966).
This decrease is maximized when Nec is small and both loci have the same effect
(e.g., s1 = s2), as then there is no selective distinction between the two intermediate
gametes, rendering them neutral with respect to each other. This is a significant
point, as most theoretical investigations on the effects of linkage on the selection re-
sponse have assumed loci with equal effects (e.g., Fraser 1957; Latter 1965, 1966a,b;
Gill 1965a,b,c; Qureshi 1968; Qureshi and Kempthorne 1968; Qureshi et al. 1968),
thereby inflating the perceived importance of linkage.

This general phenomenon of selective interference between linked loci was subse-
quently nicknamed the Hill-Robertson effect by Felsenstein (1974). As discussed
in Chapter 3, the primary implication of the Hill-Robertson effect is that selection
renders the behavior of linked loci closer to that expected under neutrality by reduc-
ing the effective population size for the chromosomal region (Birky and Walsh 1988;
Charlesworth 1994; Peck 1994). This effect applies to the efficiency of selection on all
non-neutral alleles, both advantageous and deleterious. For example, sometimes a
moderately beneficial mutation will arise in tight linkage to a highly detrimental al-
lele at another locus, resulting in the former’s rapid elimination from the population
if the net fitness of the chromosomal region is still lower than that of the population
mean. In addition, the average substitution rate at a locus generating deleterious
alleles is increased if that locus is linked to another locus generating either dele-
terious or beneficial alleles (Birky and Walsh 1988). In other words, the net effect
of linkage is to reduce the overall efficiency of selection for fitness-enhancing muta-
tions, magnifying the accumulation of mildly deleterious mutations at the expense
of fixing more advantageous alleles.



26 CHAPTER 7

This realization that the broad spectrum of Hill-Robertson effects is equiva-
lent to a reduction in Ne greatly facilitates the estimation of fixation probabilities
of new mutations subject to background selection and occasional selective sweeps.
Indeed, in most contexts that have been examined so far, the standard fixation ex-
pressions given above still apply provided the appropriate modifications are made
to the definition of Ne (Stephan et al. 1999), as has also been found for subdivided
and growing/declining populations. These redefinitions, which have already been
outlined at the end of Chapter 3, again point to the great technical utility of the
concept of effective population size.

Mutations with Contextual Effects

To this point, we have generally been assuming that the magnitude of selection
operating directly on an allele is independent of the genetic background (other than
effects associated with linkage disequilibrium) on which it resides. However, there
are numerous situations in which this will not be the case. Most notable is the
broad category of compensatory mutation, wherein specific single mutations at
either of two loci cause a reduction in fitness, while their joint appearance restores
fitness or even elevates it beyond the ancestral state. Such epistatic interactions play
a prominent role in Wright’s (1931, 1932) shifting balance theory for adaptive
evolution, under which an adaptive valley is traversed in a local subpopulation, with
the locally fixed advantageous genotype then being exported to surrounding demes
by migration. At the intramolecular level, compensatory mutations appear to be
important in a variety of changes in protein sequences and in the composition of
nucleotides in the stems of RNA molecules (Stephan and Kirby 1993; Kondrashov
et al. 2002; Kulanthinal et al. 2004; Azevedo et al. 2006; Breen et al. 2012).

Ascertaining the conditions under which evolution by compensatory mutation
is most likely to occur is challenging because unlike the situation in which a single
mutation fixes at a rate depending only on its own initial frequency, the success of
a mutation involved in an interlocus interaction depends on the frequency of alleles
at the interacting locus, on the fitnesses associated with the nine possible two-locus
genotypes, and on the recombination rate between the two loci. Consequently, no
general theory for the long-term evolution of interacting loci has yet been developed,
although considerable progress has been made in a number of special cases.

As the matter of fixation probability becomes less clear in the case of adapta-
tions involving more than one mutation, in this final section, we will slightly shift
our focal point to the rate and mean time to establishment of an adaptation. The
latter is defined to be the expected arrival time of the final multi-site adaptation
destined to be fixed in the population, starting from a state in which all participat-
ing mutations are absent. This excludes the additional time required for fixation,
which can generally be obtained from the expressions given above and will often be
considerably smaller than the first arrival time. When considering the response to a
long-term regular regime of selection, the steady-state rate of evolution is expected
to be close to the rate of establishment, as the extra time to fixation simply stretches
out each individual event leaving the intervals between them the same. Assuming
a constant influx of adaptive mutations, the steady-state rate of adaptation is then
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simply the inverse of the time to establishment.
As a benchmark for the following theoretical results, we start with the rate

of establishment of a single-site adaptation, with mutations having additive fitness
effects. Given a per-site mutation rate of u, 2Nu new mutations are expected to arise
each generation, each at frequency 1/(2N). As noted above, if the population size is
sufficiently large that 4Neu � 1, with fixation probability pf (1/2N) ' 2s(Ne/N), the
rate of establishment is

re = 4Neus (7.43)

which is directly proportional to the effective population size, the mutation rate to
adaptive changes, and the selective advantage. This approach, of course, assumes
that the response to selection is limited by the appearance of new adaptive alleles,
and in subsequent chapters we will consider in detail the situation in which part or all
of the selection response is a consequences of preexisting variation. It also ignores the
point made in the previous section that if 2Nu > 1 (more than one favorable mutation
arises per generation), the simultaneous presence of multiple segregating mutations
will reduce the effectiveness of selection, lowering the expected substitution rate
(Chapters 8, 10).

As the simplest possible model for the rate of adaptation by new mutations,
Equation 7.43 also relies on the rather naive assumption that fixations have no
bearing on subsequent events. This assumption can be violated for at least two
reasons. First, the fixation of a mutation can alter the selection coefficients of future
mutations by, for example, moving the mean phenotype closer to the optimal state
and consequently reducing the magnitude of selection for further change. This point
is implicit in the drift barrier to adaptation noted above, and relates to the idea of
Hartl et al. (1995) that the ultimate consequence of the relentless improvement of
traits by natural selection is the evolution of effective neutrality among the remaining
pool of segregating alleles. Second, when mutations have epistatic effects on fitness,
i.e., depend on the genetic background, the possibility exists of neutral or even
deleterious mutations becoming beneficial in certain contexts. We refer to multi-site
traits exhibiting the latter types of genetic behavior as complex adaptations, as
the scenario for their evolution is much less obvious than that under conditions of
additive fitness effects.

How do such compensatory changes and other more complex adaptations be-
come established? One possibility is simply that double mutations, while extremely
rare, will still arise, with one eventually being carried to fixation by selection. If,
however, the mutation rate at a nucleotide site is 10−9 (Chapter 4), a population
size in excess of 1018 is required to routinely see such double mutations, making this
route unlikely for most populations. Conversely, in very small populations, the path
towards adaptation must involve successive fixations via drift, which is also likely to
be a very long process. In contrast, moderately large populations offer a dual prob-
lem in that fixation of key intermediate mutations can be problematic if neutral
(owing to the very long time to drift to fixation) and highly unlikely if deleterious.
However, starting with Gillespie (1984), it became clear that another pathway, often
referred to as stochastic tunneling (Komarova et al. 2003; Iwasa et al. 2004), offers a
route for the establishment of complex adaptations in large populations even when
the intermediate states are deleterious. Under this scenario, secondary mutations
arise within the pool of segregating first-step mutations, resulting in fixation of the
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double mutant without either single mutation becoming common and hence without
a bottleneck in mean population fitness.

The power of stochastic tunneling is that it allows selection to explore (and
exploit) the fitness surface more than is possible by single-step mutations, and there
is a growing, technical body of work on the subject (Carter and Wagner 2002;
Komarova et al. 2003; Iwasa et al. 2004; Weinreich and Chao 2005; Weissman et
al. 2009, 2010; Gokhale et al. 2009; Lynch and Abegg 2010; Lynch 2010). Drawing
from this literature, our goal here is to provide approximate answers to three basic
questions regarding complex adaptations. First, what is the critical population size
below which sequential fixation dominates tunneling as a mechanism for adaptation?
Second, what is the expected rate (time) to establishment of such double mutations?
Third, how does recombination influence these processes?

To put the first question in context, we note that there must be a critical pop-
ulation size N∗ below which adaptations are essentially only acquired via sequential
fixations, owing to the extreme rarity of occasions in which multiple mutations
are simultaneously segregating at key sites. Below this threshold value, selection is
restricted to exploring the fitness landscape by single mutational steps from the cur-
rently fixed genotype. While a single chance fixation can place a population one step
closer to a distant adaptive peak, it can also move it even further way. Conversely,
for population sizes exceeding N∗, stochastic tunneling allows selection to explore
the consequences of genotypes two (and in large enough populations, even more)
mutational steps away from the currently most common genotypes. This simple ar-
gument suggests that adaptation in small populations will typically occur by simple
single-step hill climbing, occasionally supplemented by fortuitous drift across a suf-
ficiently shallow adaptive valley (with a reduction in fitness incurred during such a
phase). In contrast, large populations should experience episodes in which adaptive
events involve the simultaneous fixation of two (or more) mutations, without any
intervening period of fitness loss.

A simple argument on the critical population size for the situation in which
first-step mutations are neutral (a fitness plateau) follows from Walsh (1995) and
Lynch and Abegg (2010). Consider a complex adaptation requiring two mutations,
with the two sites in complete linkage, and suppose that an A mutation destined to
fixation has arisen. How likely is it that a B mutation will arise within a member of
this lineage on its way to fixation? Assuming neutrality of the first-step mutation, on
average, the second mutation has a window of 4Ne generations in which it can arise
on an A background, and during this period the average frequency of A is 0.5. Thus,
given an A mutation destined to fixation, the expected number of alleles acquiring
the second-site mutation is 4Ne · (2Nu) · (1/2) = 4NeNu. Hence, when Ne ' N , there
is essentially no chance of a two-mutation haplotype even arising during the fixation
of a one-step mutation if the population size is smaller than 1/

√
4u. Obviously, if the

first-step lineage is destined to become lost, even fewer copies of the double mutation
are produced. Now suppose that the double mutation has selective advantage s, so
that the fixation probability of the AB haplotype is ' 2s. Again assuming Ne ' N ,
the adaptation will almost certainly arise by stochastic tunneling rather than by
sequential fixation if the population size exceeds

N∗ ' 1
2
√

2us
(7.44)
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Note that this is not a terribly stringent condition, as with u = 10−9 and s = 0.01,
N∗ ' 112, 000. The critical population size is larger by a factor of 1/

√
x if Ne = xN

(recall from Chapter 3 that x is usually � 1). When the intermediate step is strongly
deleterious (with effect sd), then provided 4Nesd � 1, first-step mutations are almost
never fixed, with tunneling dominating over sequential fixation.

We now turn to the matter of rates of establishment, focusing again on the
situation in which two loci are fixed for alleles A and B respectively, and inquiring
as to the time to reach an alternative state of fixation at both loci, with respective
alleles a and b. We will assume equivalent mutation rates (u) from A to a and
B and b. The simplest selection scenario in this case, first explored by Kimura
(1985), assumes that gametes Ab and aB have equivalent fitness 1− s and gametes
AB and ab have equivalent fitnesses of 1.0. Thus, although transitions between
pure population states of AB and ab may occur, nothing is gained in terms of
fitness. Within the sequential fixation domain, such that mutations are limiting and
the efficiency of selection is weak (4Neu and 4Nes � 1), the degree of linkage can
be ignored (as only one locus is polymorphic at a time), and the mean time to
establish the novel ab type (or vice versa) is the sum of the waiting times for the
two mutational steps,

te =
1

2Nu

(
1

2pfd
+

1
pfb

)
(7.45)

where pfd and pfb are, respectively, the probabilities of fixation of deleterious (first-
step) and beneficial (second-step) alleles (obtained by applying selection coefficients
−s and s to Equation 7.10a). Transitions to state Ab or aB occur at rate (4Nu)(pfd)
(from ab or AB) the product of the population mutation rate and twice the rate
of first-step fixation (because there are two ways to produce first-step mutations),
and then conditional on the first change, the second occurs at rate 2Nupfb. Because
the probability of fixation of a deleterious allele is e−4Nes that of a beneficial allele
(above), the establishment time in this case is expected to be primarily determined
by the time required for fixation of first-step alleles, so that

re ' 4Nupfd (7.46)

If, on the other hand, selection against the intermediate haplotypes is much
stronger than drift so that fixation of the intermediate state is unlikely (the stochastic-
tunneling domain), the most likely scenario for a transition to the ab type is a
population initially residing in a state of selection-mutation balance at both loci.
Assuming complete linkage, and a selection coefficient s associated with the a and b
alleles when not combined, the Ab and aB gametes, each with initial frequency u/s

(from Equation 7.6d), would then serve as staging grounds for mutations to the ab
type. Mutant ab gametes arise at rate u from each of the 2Nu/s intermediate types,
and fix in an essentially neutral fashion with probability 1/(2N) (as most resident
gametes are of type AB, with equivalent fitness). Thus, the rate of establishment
of the ab type is

re ' (2u/s)(u) =
2u2

s
(7.47)

(Gillespie 1984; Stephan 1996), which is essentially independent of population size.
When mutations are reversible, the question also arises as to the long-term

stationary distribution of alternative states. Adhering to the reasoning that Ab and
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aB gametes will generally be maintained at low levels by selection-mutation balance,
and assuming equal back and forward mutation rates, Higgs (1998) elegantly showed
that the stationary distribution for the frequency (x0) of the AB gamete is

φ(x0) =
1

(1− z)2α−1

Γ(2α)
Γ(α)2

[x0(1− z − x0)]α−1 (7.48)

where α = 8Nu2/s is the population rate of mutational production of ab gametes,
z = 2u/s is the summed frequency of the Ab and aB gametes, and Γ denotes
the gamma function (Equation 2.25b). The frequency of the ab gamete is simply
1−x0−z. With α < 1, the distribution of x0 is highly U-shaped, with the probabilities
of the population being fixed for alternative AB and ab states being nearly equal. A
more general analysis, which allows for weaker efficiency of selection (4Nes < 1), and
differential selection and mutation operating on the intermediate states is presented
by Innan and Stephan (2001).

Now suppose that the secondary mutation has advantage sb, and denote the
disadvantage of first-step mutations as sd. The general Equation 7.45 still applies
in the sequential-fixation domain, and we again expect the rate of establishment
to be approximated closely by Equation 7.46 owing to the long waiting time for
the fixation of a first-step mutation. For the stochastic-tunneling domain, however,
Equation 7.47 must be modified to account for the fact that the fixation probability
of the double mutant is ∼ 2sb(Ne/N),

re ' (2u/sb)(2Nu)[2sb(Ne/N)] =
8Neu

2sb

sd
(7.49)

The key observations here are that the rate of establishment now depends on the
effective population size, while also scaling linearly with the square of the mutation
rate and the ratio of selection coefficients associated with first- and second-step mu-
tations. The rate of establishment in the reverse direction is obtained by substituting
sb + sd for sd and sd for sb.

Finally, we consider the special situation in which first-step mutations are ef-
fectively neutral. Again, Equation 7.45 provides an accurate description for the
sequential-fixation domain, and with substitution of the appropriate fixation prob-
abilities reduces to

te =
1

2Nu

(
1

2(1/2N)
+

1
pfb

)
' 1

2u

(
1 +

1
2Nes

)
(7.50)

with the last approximation obtained by using pfb ' 2s(Ne/N). Thus, provided
2Nes � 1, when the intermediate mutation is effectively neutral, the expected time
to establishment is ' 2u and only weakly dependent on the size of a population.

To obtain the expected rate of tunneling for the case of neutral intermediates,
we require the probability that tunneling occurs within the descendant lineage of a
first-step mutation before it becomes lost from the population. By various methods,
this probability has been found to be approximately

√
2us in large populations (Ko-

marova et al. 2003, Iwasa et al. 2004; Weissman et al. 2009, 2010; Lynch and Abegg
2010). With 4Nu first-step mutations arising per generation, the rate of establish-
ment via tunneling is then

re ' 4Nu
√

2usNe/N = 4u
√

2usNeN (7.51)
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If the mutation rates at the two steps are different, u inside and outside of the
square-root expression should be treated as mutation rates at the first- and second
steps. The key observation here is that when the intermediate stages are neutral,
tunneling occurs at a higher rate in larger populations, contrary to the situation
with deleterious intermediates. Moreover, although two mutations are required for
the final adaptation, the rate of establishment depends on the 3/2s power of the
mutation rate, unlike the square scaling with deleterious intermediates.

The above analyses assume an evolutionary path to a final adaptation through
just a single intermediate step, and actual fitness surfaces are likely to be more
complex, with a variety of potential pathways through any number of mutations.
The rates of establishment of complex adaptations under these alternative scenarios
has been examined by Gokhale et al. (2009), Weissman et al. (2009), and Lynch
and Abegg (2010). Simple analytical expressions have been found in only a few
cases, two of which we now summarize. As complex adaptations involving more
than two mutations are unlikely to evolve by sequential fixation, owing to the long
time necessary for cumulative fixations, we restrict our attention to the stochastic
tunneling domain, focusing on the issue of how re scales with the underlying features
of population size, mutation rate, and selection intensity.

For the case of neutral intermediates with increasing numbers (d) of mutations
required for the final adaptation (and the order of events assumed to be irrelevant),
the rate of establishment can be viewed as a series of nested tunneling events. For
example, for the case of d = 3 (two neutral mutations required before the final
adaptation is assembled with a third mutation), Equation 7.51 expands to

re = 6Nu

√
2u
√

2usNe/N (7.52a)

Note that the first term is now 6Nu because first-step mutations can arise at three
sites. The nest step then initiates at either of the two remaining two sites, with the
final stage initiated at the one remaining site involves tunneling within the sublineage
containing the first two mutations. For arbitrary d, this expression generalizes to

re = dφu(2Nu)1−0.5d−1
S0.5d−1

(7.52b)

where S = 4Neu, and

φ =
d−1∏
i=1

(d− i)0.5i

(7.53c)

This result shows that, with neutral intermediates, the rate of establishment by
tunneling scales with no more than the square of the mutation rate and with no less
than linearly with the absolute population size, these extremes being approached
at high d. Thus, the rate of establishment of complex adaptations can be much
more rapid than expected under the naive assumption that independently arising
mutations would lead to a scaling with the dth power of the mutation rate.

For the case of deleterious intermediates, suppose that all haplotypes involving
one to d − 1 mutations are equally deleterious (with fitness 1 − sd), with the final
mutation conferring an advantage sb. First step mutations then arise at rate 2Ndu,

but owing to selection have an expected survivorship time of 1/sd generations, during
which period d−2 additional intermediate step mutations must be acquired, followed
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by the appearance of a final-step mutation destined to fixation. This leads to a rate
of establishment via tunneling of

re ' 4Ned!(u/sd)dsdsb (7.54)

which reduces to Equation 7.49 when d = 2. Here we see that re now scales with
the dth power of the mutation rate owing to the limited opportunities for mutation
during the short sojourn times of deleterious mutations, whereas there is a linear
scaling with the effective population size. One cautionary note with respect to all
of the above-mentioned scaling features is that mutation rates appear to generally
evolve to be inversely related to the effective size of a population, which will tend
to reduce the dependence of rates of establishment on u and measures of population
size, as these two factors typically enter as products of each other (Lynch 2010).

Finally, we note that all of the above analyses assume an absence of recombi-
nation. This is a matter of significance, as it is often surmised that recombination
facilitates the evolution of complex adaptations. In the sequential-fixation regime,
recombination can be ignored simply because multiple polymorphic sites are never
present simultaneously. However, in the stochastic tunneling domain, opportuni-
ties will exist for both the creation and breakdown of optimal haplotypes. For the
case of deleterious intermediates but selectively equivalent end states (above), Higgs
(1998) provides more general expressions, allowing for arbitrary levels of recombina-
tion. Strong linkage substantially accelerates the rate of peak shifts with this fitness
landscape because the frequencies of the low-fitness intermediates remain nearly
unchanged during transitions to alternative high-fitness states, ensuring that the
population does not pass through a phase of reduced mean fitness (Kimura 1985;
Michalakis and Slatkin 1996; Stephan 1996; Innan and Stephan 2001). In contrast,
recombination between the high-fitness AB and ab gametes during a peak shift pro-
duces low-fitness intermediates, imposing a bottleneck on mean population fitness,
thereby inhibiting the movement from one state to the other.

Lynch (2010) and Weissman et al. (2010) examined this problem with a broader
class of models, reaching the conclusion that recombination is most likely to have
either a minor or an inhibitory effect on the establishment of a complex adaptation.
Consider, for example, the case of a two-site adaptation, starting with a population
fixed for the suboptimal ab haplotype. The overall influence of recombination on
the rate of establishment of the AB haplotype is a function of two opposing effects –
the rate of origin of AB gametes by recombination within doubly heterozygous (aB
/ Ab) parents is proportional to the rate of recombination between the sites (c),
whereas the net selective advantage of the resultant AB haplotypes is discounted
from s to s− c by subsequent recombinational breakdown (as in the early stages, ab
haplotypes still predominate, and are the primary partners in recombination events
with AB). Thus, because the product c(s − c) is maximized at c = s/2, two-site
adaptations are expected to emerge most rapidly in chromosomal settings where
the recombination rate is half the selective advantage of the final adaptation.

For the case of neutral intermediates, details in Lynch (2010) suggest that even
at the optimal recombination rate, the rate of establishment is generally enhanced
by much less than an order of magnitude relative to the situation with complete
linkage, whereas c > (s/2) is not greatly inhibitory. In contrast, when first-step mu-
tations are deleterious, even though the promotional effect of recombination at the
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optimal recombination rate (again ∼ sb/2) is negligible unless sb � sd, if the rate
of recombination exceeds the selective advantage of the AB haplotype, recombi-
nation presents an extremely strong barrier to establishment of the AB haplotype
(Lynch 2010). The latter result arises because almost all recombinational events in-
volving a newly arisen AB haplotype will involve an ab participant, generating the
maladaptive Ab and aB products.

Taken together, these results suggest that only a narrow range of recombina-
tion rates (in the neighborhood of sa/2) can enhance the rate of establishment of
a complex adaptation from de novo mutations. Moreover, because the role that re-
combination plays in the origin of specific adaptations depends on both the selective
advantage of the final product and the physical distance between the genomic sites
of the underlying sites, the issue cannot be reduced to a simple generalization.
With a highly context-dependent optimal recombination rate (per nucleotide site),
it becomes unclear whether selection is likely to have any general influence on the
promotion of recombination-rate modifiers (Chapter 4).

These kinds of observations, in which a two-locus system stochastically shifts
from one semi-stable state to another through evolutionary time, appear to be closely
related (albeit not transparently) to the features of a number of models of complex
traits. For example, diallelic models of quantitative traits under stabilizing selec-
tion often exhibit multiple equilibria for allele frequencies (including alternative
monomorphic and polymorphic states), depending on the effects of alleles and the
ways of assembling a multilocus phenotype that most closely resembles the optimum
(Bulmer 1972; Barton 1986, 1989; Bürger 1989; Gavrilets and Hastings 1994). One
can easily imagine that finite populations would wander from one local equilibrium
to another through time depending on the history of mutation and drift, although
no formal theory on the rate of such internal shifts has been worked out.
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