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Selection and G x E: Introduction

If only two different environments are considered, the interaction may be expressed as a genetic
correlation. When so formulated the genetic aspect of the situation becomes clear and a

quantitative evaluation of the efficacy of different methods of selection may be easily obtained by
procedures already devised for dealing with genetic correlations. — Falconer (1952)

Version 26 June 2014

Genotype-by-environment interactions (G x E for short), wherein genotypes differentially
perform across environments (LW Chapter 22), has important implications for breeding.
When selecting for trait performance, care must be taken to ensure that any response obtained
under the environmental conditions used for selection translate into response under the
conditions of the production system. A dramatic response to selection under controlled
conditions may be greatly diminished, or even vanish, when those genotypes are expressed in
a different environment. Similarly, an experimentalist would like to know whether a selection
response observed in the laboratory is relevant to the expected response under field/natural
conditions. Depending on the circumstances, G x E can be either desirable or undesirable. In
some situations a breeder wants to select for genotypes that disproportionately respond to
environmental inputs such as irrigation and fertilizer. In other settings, a breeder may wish
lines that are largely refractory to changes in the environment. G x E is also important in
evolutionary biology, being implicitly at the heart of many discussions on adaptation, with
some genotypes assumed to be more optimal in some environments than others. This is also
the notion of locally-adapted lines or breeds.

When extensive G x E is present, a breeder has three opinions: ignore it, avoid it, or
exploit it (Eisemann et al. 1990). If one ignores G x E when σ2

G×E is a significant fraction of the
phenotypic variance, individual selection performs poorly as heritability is low and hence
the phenotype of a single individual is a poor predictor of its breeding/genotypic value
(Equation 38.9). One can try to mitigate G x E effects by using family or line selection over a
number of environments, which reduces the contribution of σ2

G×E to the heritability of the
family/line mean (Equation 38.10). Breeders can try to avoid the consequences of G x E by
selecting for lines with wide adaptability (i.e., broad tolerance/stability over environments).
Finally, the bold breeder may attempt to exploit it by developing locally-adapted lines for the
environment(s) of interest. The options that are available when dealing with G x E depend
upon the predictability of the environment. If the environment has predicable components,
then G x E can potentially be exploited. Conversely, if the environment has significant unpre-
dictable components (such as year-to-year variation), G x E cannot be exploited and instead
the breeder must try to mitigate its effects (for example, by selecting for lines which are more
stable over environments).

Two broad classes of models can be used to examine genotype-environment interactions.
The first (which is the subject of this chapter) is the character-state approach, treating the
environment as distribution of discrete macroenvironments. At one extreme these are binary
(such as a high- versus a low-growth diet, or stressed versus nonstressed environments), and
much of our focus in this chapter is on two-environment selection. At the other extreme, the
distribution of environments is highly complex and essentially unpredictable in that each
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new realization is different, such as a series of growing seasons (typically years) for a set
of particular locations. Chapter 39 examines selection in these more complex environments.
Implicit in this discrete treatment is that there is no natural ordering of the environmental
types. However, environmental factors are often continuous or at least graded, such as the
performance of the trait over a gradient of temperate, rainfall, or soil nitrogen. This notion
of a reaction norm, the behavior of a genotype as a function of one (or more) environmental
variables, forms the second broad class of models for treating G x E. Chapters 40–42 (which
develops the machinery for selection on functions as opposed to traits) examines selection
response on reaction norms. The character-state and reaction norm approaches represent two
opposite ends of the spectrum in modeling the environment. The character-state is a very
holistic approach, assuming that environment is a black-box with little (or no) knowledge
of in the actual factors that comprise it. The reaction norm, on the other hand, is a very
reductionistic approach, focusing on one (or a few) specific factors and examines how a
genotype performs as we change the values of these factors (for example, weight as a function
of temperature). A third aspect of G x E, namely that some genotypes may differ in their
micro-environmental variances, has been discussed in Chapters 13 and 37.

Our introduction to selection and G x E starts with an overview of the critical features
of G x E (which are examined in greater detail in LW Chapter 22). One major theme of
this chapter is the connection between multi-trait selection and G x E, as performance in
different environments can be considered as correlated traits. The next two sections develop
this theme, first by considering the direct and correlated responses over two environments
when selection occurs in only one of them. Important issues, such as which environment to
select in and the consequences for mean performance and stability, are developed for two
environments within this framework. We then turn to simultaneously selecting in two (or
more) environments, which is accomplished by selecting between groups (such are pure lines
or segregating families) where group members are scored over several environments. We
conclude this chapter with an introduction to multiple-environment trails, where lines are
scored over several locations and several years. This introduces the necessarily background
for a more detailed treatment in Chapter 39.

SELECTION AND G x E: BASIC IDEAS

G x E is Both a Challenge and an Opportunity

The presence of G x E offers both a challenge and an opportunity. As shown in Table 38.1,
any particular genotype can fall into one of four possible classes when we jointly consider its
mean performance and its amount of G x E over some target population of environments
(TEP).

Table 38.1 Possible combinations of mean performance and level of G x E for a genotype, with their
implications for breeding. After Ceccarelli (1989).

Mean Performance
High Low

High Potential for Potential for
locally-adapted lines locally-adapted lines

Amount of G x E
Low Ideal. Potential for Undersirable

widely adaptive lines

The ideal genotype has high mean performance and low G x E, so that it does consistently
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well in all environments. The result is a widely-adaptive genotype/line. At the other ex-
treme is a genotype with low mean performance and low G x E, which is undesirable, as it
does poorly everywhere. Thus, when G x E is low, one or a few lines/strains may perform
best over all environments in the TEP. Conversely, when G x E is high, there is usually no
single widely-adaptive line/strain that does best everywhere. Rather, with high G x E, the
opportunity exists to select for locally-adapted lines, provided there are predictable features
of the environment. If G x E is high, but the environment is unpredictable, then the best a
breeder can do is to select for lines with good mean performance and low G x E. Spatial
aspects of the environment (such as location) tend to contain more predicable features than
temporal aspects (such as yearly variation).

Table 38.1 distills the key questions a breeder (or evolutionary biologist modeling a trait)
need to consider regarding G x E. First, is there significant G x E? If there is, one must either
try to select for genotypes/lines that show stability (similar performance) over environments
or else attempt to select for locally-adaptive lines. If the environment has predictable features
(for example hot versus dry; sandy versus clay soil), then locally-adaptive lines may be
feasible. However, if most of the environmental contribution to G x E is unpredictable, such as
year-to-year variation, there is little point for a breeder (or a genotype) in trying to predict the
future, unless there are a very limited number of outcomes. The reality is that the environment
generally tends to have both predicable (e.g., generally wet versus generally dry locations)
and unpredictable (yearly variation in rainfall within a location) features. Breeders are thus
faced with two competing tasks. First, there may be different mega-environments (also called
agroecological environments), collections of macroenvironments within which only modest
G x E occurs. In such cases, lines can often be found (or selected) that are widely-adaptive
within each mega-environment. Second, the breeder attempts to select for genotypes/lines
with low G x E for unpredictable features of the environment so that their performance is
relative stable. Both of these themes are explored in the next chapter.

Components of σ2
G×E : Variance Heterogeneity and Lack of Correlations

It is useful to remind the reader that there are two different sources for G x E — differences
in the genetic variances across environments (genetic heterogeneity, often referred to as
scale effects) and lack of perfect correlation among breeding values across environments
(LW Chapter 22). For two environments, Robertson (1959) showed that the G x E interaction
variance can be partitioned into theses two sources,

σ2
G×E =

(σA1 − σA2)2

2
+ σA1 σA2(1− rA) (38.1a)

where σ2
Ai

is the additive variance in environment i and rA is the additive genetic correlation
across environments. Cockerham (1963) and Itoh and Yamada (1990) extended Robertson’s
decomposition to ne environments,

σ2
G×E =

1
ne − 1

ne∑
j

(
σAj − σA

)2 +
2

ne(ne − 1)

ne∑
i<j

σAiσAj [1− rA(i, j)] (38.1b)

Here σA is the average of the square root of the genetic variances over all environments,
and rA(i, j) is the correlation between environments i and j. While Equation 38.1 is phrased
in terms of additive genetic variances, it also holds for genotypic variances (with σ2

A and rA
replaced by σ2

G and rG) when the focus is on a collection of pure (inbred or nearly-so) lines, as
is typically the case in field trails of many crops. Hence, there can be G x E even with perfect
correlations across environments (r = 1) and likewise even when the genetic variances are
constant across environments (σAj = σA). With estimates of the genetic variances from



458 CHAPTER 43

each environment in hand, the relative contributions of genetic heterogeneity versus lack
of correlation can be directly accessed. For example, Cooper and DeLacy (1994) examining
grain yield in 15 wheat lines over ten environments in Queensland (Australia) found that
69% of σ2

G×E was due to lack of perfect correlation while 31% was due to heterogeneity of
genetic variances across environments.

Breeders are generally more concerned about the variance in G x E generated by lack
of perfect correlation across environments, as this can result in the ranking of genotypes
changing over environments (this type of G x E is often called a crossover interaction). As
we will see, however, both components (differences in variances, lack of perfect correlation
across environments) enter into discussions of selection response when G x E is present.

Example 38.1. Hühn et al. (1993) examined data from the official registration trails for five
crop species (Faba beans, Fodder beets, Sugar beets, oats, and winter rape) carried out in
Germany from 1985-89. The correlation among line rankings (across environments for a given
crop within the same year) was examined using Kendall’s coefficient of concordanceK , which
is closely related to the Spearman rank correlation coefficient ρ. The following values were
seen:

Faba beans Fodder Beets Sugar Beet Oats Winter rape
K (mean) 0.444 0.637 0.712 0.433 0.476
K (range) 0.40-0.47 0.64-0.86 0.63-0.79 0.35-0.60 0.40-0.56
ρ (mean) 0.376 0.607 0.678 0.383 0.416
ρ (range) 0.33-0.40 0.59-0.84 0.60-0.76 0.29-0.55 0.34-0.51

For these data, the consistency of rankings across environments was only modest, especially
for Oats, Faba beans, and Winter rape. The authors examined possible connections between
K and variance component estimates (here σ2

G, σ2
G×E , and σ2

e , the line, line-by-location, and
within-plot variation). By regressing the mean correlation between ranks for a given year on
various ratios of variance components, they observed that K is well predicted by

K '
(

1 +
σ2
G×E + σ2

e/nr

σ2
G

)−1

where nr is the number of replicates per location. For these data sets it appears that most of
the variation in σ2

G×E is due to differences in correlation. However, this is a very selected set
of data, namely lines submitted to official trails and have likely been selected for stability.

G× E is Context-Specific

Finally, it is important to stress thatG,E, andG×E are highly context-specific. G x E is almost
inevitable if genotypes are tested over a sufficiently large set of environments. Conversely,
if genotypes are examined within a small, and appropriate chosen, set of environments, G
x E may largely disappear. Thus, the mega-environment for a set of particular genotypes is
often defined as that collection of environments where small amounts ofG×E are displayed
among the elements in this set. Defined in this fashion, a particular mega-environment is a
function of a particular set of genotypes, environments, and the particular trait being scored.

RESPONSE IN TWO ENVIRONMENTS

Our discussion of selection and G x E starts with the assumption that there are only two
environments of interest, which allows us to make several key points without dealing with
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the further complications that arise in the more realistic situation of a large number of envi-
ronments. We start with selection in only one environment, but the response is (potentially)
scored in another. Thus, the focus in this section is on the response over two environments
when selection occurs in only one of then. The next section examines response when selection
is based on genetic groups scored over two (or more) environments.

The notion that certain genotypes perform best in specific environments was recognized
by the earliest breeders, at least on an intuitive level, while the more formal discussions of
the implications for G x E for applied breeding and evolution began with Wright (1939),
Haldane (1946), Hammond (1947), and Lerner (1950). The modern treatment of selection
and G x E traces to the critical observation by Falconer (1952) that one can treat measures
of the same trait in different environments as correlated characters. This allows all of the
machinery for direct and correlated responses and multitrait selection (Chapters 30 – 36) to
be used to examine selection response across environments when G x E is present. While
Falconer’s initial suggestion was that this approach was viable for two environments, it
works equally well for k distinct environments by treating these as a k-dimensional vector
of traits and estimating the k × k G matrix. Thus, in those (admittedly rare) cases where
we have estimates of both the genetic and phenotypic covariance matrices (for the trait
measured in the k different environments), the multivariate breeder’s equation and index
selection theory can be directly applied. In the absence of any such estimates, are there any
rules/trends that apply when selecting traits over two environments? Hammond (1947)
and Jinks and Connolly (1973), as well as others to be discussed below, have suggested some
informal rules in this case.

Response in a Target Environment: Hammond’s Conjecture

When the breeder has two (or more) environments to choose from in which to perform
selection (for example, a highly-managed controlled setting and a more natural field or
production setting), the question naturally arises as to which environment should be used.
In most settings, the target environment for a breeder would be the field or production
setting, but there may be significant logistical advantages to working in a more controlled
environment. Hammond (1947) made the interesting suggestion that selection be under-
taken in the more favorable environment for a trait in order to maximum progress in the
less favorable environment, an idea we will call Hammond’s conjecture. His idea is that
the favorable environment may allow for better discrimination among genotypes (due to
increased genetic variance and/or reduced environment variance). Hammond’s suggestion
went against the common assumption that selection should be performed in the target en-
vironment (Wright 1939, Lush 1946, Nichols 1947, Kelley 1949), but raised the important
idea that perhaps (at least in some cases) larger responses can result from selecting in a
different environment than the target (i.e., indirect response exceeding direct response, see
Chapter 30). Some plant breeders working with pure (i.e., inbred) lines also supported Ham-
mond’s notion, arguing that selection in the highest-yielding environments would produce
the greatest separation between genotypes (Frey 1964, Roy and Murty 1970, Fasoulas 1973),
while others noted that such favorable environmental conditions are not representative of
typical environments where the majority of the crop is cultivated (Donald 1962, Hinson and
Hanson 1962, Ceccarelli 1989, Simmonds 1991). This theme of direct versus indirect response
will arise repeatedly throughout the chapter, and we will return on several occasions to this
question of where to select.

Example 38.2. Falconer and Latyszewski (1952) and Falconer (1960) selected for growth rate
in mice in two nutritional environments (this work was also discussed in Example 30.7). In one
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environment, mice were housed individually and food was restricted to around 75% of normal
intake, while in the other, mice were housed in groups of four to six and given unlimited food.
Selection for increased weight gain was effective in both environments, although heritability
was higher (0.29 to 0.20) in the restricted diet environment (although this difference was not
significant). The higher heritability value arose because while the additive genetic variance
was reduced in the poorer environment (by around 45%), the environmental variance was
reduced even more (around 66%). Falconer suggested that this reduction in σ2

e may be, in
part, due to rearing single versus multiple individuals.

When the restricted-diet selected individuals were grown in the unrestricted environment,
they showed a significant weight gain, but when the unrestricted-selected individuals were
reared in the restricted diet environment, they did not. These results are a direct contradiction to
Hammond’s conjecture, in that selection in the poorer environment gave the larger response in
the target population. Further, there were other significant differences. The high-feed selected
lines contained around 24% more body fat than the restricted-diet lines when both where
grown in the high-feed environment. Thus, selection in the restricted diet also resulted in
leaner mice, which (in many cases) would also be economically favored in a selection program.

The careful reader will note that Falconer’s experiment showed an extreme asymmetric
correlated response, with a correlated response in one direction (response in high from low-
selected lines) but not in the other (no response in low from high-selected lines). Recall
from Chapter 31 that while modest differences in correlated responses can occur under the
infinitesimal model (provided the traits have different heritabilities), the dramatic differences
seen in this experiment likely could only have arisen from allele frequency changes. Indeed,
given the differences in fat content between the two lines, there was clearly selection on
different pathways in high versus low lines, and hence selection on at least some different
genes.

While Falconer’s experiment was fairly conclusive evidence that Hammond’s conjecture
is not universal, there are also cases where it holds. For example, Lasslo et al. (1985) found that
selection for weaning weight in Targhee sheep in a high nutritional setting results in as much
improvement in growth rate under range conditions as was seen with direct selection under
range conditions. Similarly, Kirigwi et al. (2004) found for wheat (Triticum aestivum) that
selection in both high and low moisture environments resulted in comparable responses
in yield in a low moisture environment. Lasslo et al. (1985) review (briefly) a number of
other animal experiments, some of which support Hammond, others which are more in line
with Falconer’s results. Whether Hammond’s conjecture holds for a particular trait from
a particular genetic population under particular environmental conditions is an empirical
question, but Falconer (1952) showed that significant guidance is provided from the theory
of multiple trait selection.

Falconer did so by rephrasing Hammond’s suggestion in terms of the conditions under-
which a correlated response (change in the less favorable environment from direct selection
in the more favorable one) exceeds the direct response (direct selection in the less favorable
environment). Assuming equal selection intensities are possible in both environments, Equa-
tion 30.22 gives the requirement rAhF /hU > 1 where h2

F and h2
U are the trait heritabilities in

the favorable and unfavorable environments, and rA is the genetic correlation across envi-
ronments (with clones, σ2

G replaces σ2
A and broad, as opposed to narrow, sense heritability

is used). If the goal is trait improvement in one environment, unless there are major differ-
ences in trait heritabilities, direct selection in the target environment is the method of choice.
Even if there are major differences in h2 across environments, we still require a high (and
positive!) genetic correlation for the correlated response (selection in the non-target environ-



SELECTION AND G x E: INTRODUCTION 461

ment) to exceed the response from direct selection in the target environment. Of course, this
ignores real-world logistical constraints which may reduce the efficiency of selection in the
less-favorable environment, such as differences in selection intensity, or overall feasibility.
Equation 30.22 allows these to be incorporated as well (through the ratio of the selection
intensities), allowing us to compare different schemes.

Example 38.3. Different environments can, of course, be largely man-made. One example is
the contrast between low- and high-input production systems. Low-input systems have very
little added during production, while high-input systems often have considerable inputs such
as fertilizers, pesticides, and fungicides. While high-input systems can create environments
with substantially larger yields, they also result in potentially more environmental impact, can
be significantly more costly, and may only be feasible in a small subset of all possible production
areas. Presterl et al. (2003) and Brancourt-Hulmel et al. (2005) examined the relative efficiency
of direct and correlated responses in low and high N (nitrogen) input systems in European
maize and French winter wheat, respectively. Presterl et al. estimated heritabilities for grain
yield in maize in high and low N systems, as well as the genetic correlation between systems,
finding rAhH/hL ' 0.70. Hence, correlated response in low N from direct selection for
yield in high N is only 70% of the expected response from direct selection in low N. Similarly,
Brancourt-Hulmel et al. found that the efficiencies of indirect selection on grain yield in wheat
ranged from 0.15 to 0.99 over the pairs of environments examined. Hence, indirect selection
is always beaten by direct selection with the same selection intensity. A potentially mitigating
factor is lower yields in low N system, and hence the potential for stronger selection in high-N
systems.

When treating the same character scored in two different environments as a correlated
trait, we expect high levels of pleiotropy. Indeed, if there is no G x E, the genetic correlation
between traits is one, with each allele having an identical effect in both environments. Thus,
we expect that complementary pleiotropy (alleles with ++ or−− effects on the traits over the
two environments) will be common. Of interest is the frequency of alleles with antagonistic
pleiotropy, those alleles that increase the trait in one environment but decrease it in the other
(i.e., +− and−+ alleles), as such alleles reduce the genetic correlation between environments.
Recall from Chapter 31 that when pleiotropic alleles are present, the correlated changes in a
trait can be very unpredictable, as the genetic covariance can be quite fragile to even small
changes in allele frequencies. This is especially true when antagonistic alleles are present.

Improving an Index of Mean Performance

The above discussion was concerned with response in a particular environment, and the
question of interest was whether it is ever better to select in some other environment besides
the targeted one. We now consider the situation where the response over both environments
is of interest. James (1961) considered this question by examining the response for a index
of weighted environmental responses,

H = ag1 + g2 (38.2)

Here a is the weight placed on the response in environment one relative to environment
two and gi is the breeding (or genotypic) value of the trait in environment i. This is a
standard index selection problem, and provided we can obtain the genetic and phenotypic
correlations across environments (for example, by considering the means of a sibship split
between environments or by using inbred lines), the standard machinery of index selection
(Chapters 33, 34) can be used (e.g., Van Sanford et al. 1993).



462 CHAPTER 43

Suppose we only have resources to select in one environment. Using standard results for
direct and correlation responses with two traits (Equations 30.20 and 30.21), James obtained
expressions for the response in the index when selection occurs in only one environment.
Suppose selection occurs only in environment one, then

R1 = h1σA1 ı, and CR2 = rAσA2h1ı, (38.3a)

and the expected response in the index becomes

RH(1) = aR1 + CR2 = h1σA1

(
a+ rA

σA2

σA1

)
ı (38.3b)

If we are selecting among pure lines, then ρG and σ2
G replace their additive-genetic counter-

parts, and board-sense as opposed to narrow-sense heritability is used. Similarly, selecting
only in environment two yields

RH(2) = aCR1 +R2 = h2σA1

(
arA +

σA2

σA1

)
ı (38.3c)

Setting v = σA2/σA1 , we have

RH(1)
RH(2)

=
h1

h2

(
a+ rAv

arA + v

)
(38.3d)

as the ratio of expected responses on the index from selection in only a single environment
(as obtained by James). Equation 38.3d shows that the optimal environment for selection
is a function of both components of σ2

G×E (heterogeneity of genetic variances v and genetic
correlation across environments rA).

As a minor aside in his paper, James noted that “exactly the same methods can be
applied to selection in more than two environments”, fully realizing that index selection
machinery allows us to obtain the optimal index for the weighted response over any defined
combinations of environments, provided we have estimates of P and G for the trait over these
environments. It is also worth reminding the reader that the Smith-Hazel index holds even
when there are different traits in the index and merit functions (Chapter 33). Thus, provided
we have estimates of P and G, we can obtain the optimal index for weighted response over
k environments given selection only occurs in a subset j < k of them.

More generally, from the theory of correlated response (Chapter 30), the expected re-
sponse in environment i from selection in environment j is

CRi | j = rA(i, j)σAihj ıj (38.4a)

Pederson and Rathjen (1983) and Cooper and DeLacy (1994) offer a further simplification of
this result. Following Burdon (1977), if there is no covariance between environmental values,
the expected phenotypic correlation between the same hypothetical individual measured in
both environments is

rP (i, j) = hihjrA(i, j) (38.4b)

where h2
i is the heritability measured in environment i (LW Equation 21.11). Hence,

rA(i, j) =
rP (i, j)
hihj

(38.4c)
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Substituting Equation 38.4c into 38.4a, and recalling that hi = σAi/σzi gives

CRi | j =
ρP (i, j)
hihj

σAihj ıj = ρP (i, j)
σAi
hi

ıj

= ρP (i, j)σzi ıj (38.4d)

as obtained by Pederson and Rathjen (1983). Equation 38.4d shows that the expected cor-
related response from selection in a different environment can be expressed entirely as a
function of the phenotypic correlation and the phenotypic variance (Cooper and DeLacy
1994). While this may seem surprising at first, recall that the critical assumption leading to
this result is that all of the cross-environment phenotypic correlation is genetic in nature.

Sensitivity and the Jinks-Connolly Rule

A second issue with selection response over two (or more) environments is whether the
sensitivity (or its complementary measure, stability) of the trait (differences in performance
across environments) changes following selection on that trait in a particular environment.
This is an important issue in plant breeding as stability in year-to-year performance (given
that each year with its unique climatic features is a new environment) is often as important
as mean performance. With just two environments, sensitivity is simply the difference in
the mean of a genotype in the two environments, and we use this metric here. When a trait
is measured in more than two environments, a variety of stability measures (and indeed
stability concepts) have been proposed and these are examined in the next chapter.

When focusing on two environments, are there somewhat general statements we can
make about the response in sensitivity without knowing all the genetic details required to
construct the appropriate selection indices? Jinks and Connolly (1973), Jinks and Pooni
(1988), and Falconer (1989, 1990) suggested that some useful generalizations do emerge.

A nice synthesis of these suggested generalizations is given by Falconer (1990). With a
slight modification of his terminology, the relationship between the effects of the environ-
ment and the direction of selection can be classified as either antagonistic or synergistic
G x E selection. Antagonistic selection is in the opposite direction from the environmental
effect, for example, up-selecting in an environment that has a reduced trait value and down-
selecting in an environment with an increased trait value. Synergistic selection is selecting
along the environment trend — up selecting in an environment that tends to increase trait
value and down-selecting in an environment that decreases trait value. The G x E is inserted
to avoid confusion with similar descriptions for index selection (e.g., antagonistic index
selection, wherein traits are selected in the direction opposite of their genetic correlations,
Chapter 30), but will generally be dropped when the context is clear.

With just two traits, the sensitivity is most easily defined as the difference in trait means
across environments, and this is often rescaled to a value of one before selection. Hence, if
µ∗ denotes the mean after some period of selection, then the sensitivity can be scaled by

s∗ =
µ∗H − µ∗L
µH − µL

(38.5)

where µH and µL are the means in the high and low environments before selection. If s∗ is
less than one, then selection results in decreases sensitivity (and hence greater stability) of
the trait over environments, while the converse is true when the sensitivity after selection
exceeds one.

Jinks and Connolly (1973) and Jinks and Pooni (1988) made the important suggestion
that antagonistic selection reduces environmental sensitivity (i.e., improves stability), while syn-
ergistic selection increases sensitivity (decreases stability), an observation that Falconer (1990)
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denotes as the Jinks-Connolly rule. If generally correct, this is a powerful observation. A
related idea is Falconer’s (1989) suggestion that antagonistic selection be used to improve
mean performance, i.e., use upward selection in a bad environment to improve an index
of performance over both environments. A similar notion has also been proposed by plant
breeders, namely selecting in a stressed environment in order to improve performance over
both stressed and non-stressed environments (e.g., Johnson et al. 1968, Shabana et al. 1980).
Note that this is exactly the converse of Hammond’s conjecture (which is to use synergistic
selection – upwards selection in the good environment). How much support is there for
these suggestions?

Figure 38.1. Examples of antagonistic (left) and synergistic G x E selection (right) when
increasing (top) or decreasing (bottom) the overall trait mean across environments. The solid
circles represent population means in a particular environment (denoted by Low and High),
while the open circles are the population means following selection. The sensitivity (differ-
ences in mean values between environments) is given by the slope of the line connecting
the two means, scaled to be one for the unselected populations (Equation 38.5). Left: Under
antagonistic selection, we select against the environmental trend, up-selecting in the low en-
vironment (top) or down-selecting in the high environment (bottom). R and CR denote the
direct and correlated responses. Notice that when |R| > |CR|, sensitivity is decreased (the
slope of the lines connecting the means after selection is less than one). Right: Under syner-
gistic selection, we select with the environmental trend, up-selecting in the high environment
(top) or down-selecting in the low environment (bottom). Note here that when |R| > |CR|,
sensitivity is increased (the slope of the lines connecting the means after selection is greater
than one). After Falconer (1990).

Falconer (1990) reviewed the experimental literature, and found support for the Jinks-
Connolly rule: in 14 of 21 cases, antagonistic selection decreased sensitivity, while synergistic
selection increases it in 16 of 21 cases. Thus, while Jinks-Connolly does not hold as a rule, it
does seem to hold as a trend. As to Falconer’s (1989) suggestion that mean performance is
best improved by antagonistic selection, it was better than synergistic selection for increasing
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the mean in 8 of 13 cases, and in decreasing the mean in 6 of 8 cases. Hence, there is also
some support for this approach, but Falconer (1990) later warned (as we show below) that
there is no theoretical justification for his earlier suggestion. Further, the plant breeding
literature shows no clear advantage to mean performance by selecting in the more stressed
environment (e.g., Shabana et al. 1980, Zavala-Garcı́a et al. 1992, Kirigwi et al. 2004).

Both of these suggestions can be easily addressed in a framework based on direct ver-
sus correlated responses. We start with sensitivity first. Figure 38.1 makes the main point:
When the direct response is greater than the correlated response, the result is increased sen-
sitivity under synergistic selection and decreased sensitivity under antagonistic selection.
Hence, Jinks-Connolly rule holds when the direct response exceeds the correlated response,
something we expect to happen often, but not always. More formally, if we are selecting to
increase the mean, then Jinks-Connolly holds when RL > CRH (top left of Figure 38.1), or
(Equation 38.3a) when σAL > rAσAH . If we are selecting to decrease the mean (bottom left of
Figure 38.1), then Jinks-Connolly holds when RH > CRL (considering the absolute values
of responses), or when σAH > rAσAL . Thus one condition for Jinks-Connolly to fail is a large
difference in the genetic variances between environments but a strong genetic correlation
between them. In terms of the Robertson-Cockerham decomposition of σ2

G×E , this implies
that the first term of Equation 38.1a/b dominates the second.

While Jinks-Connolly suggests a general trend and is expected to hold more often than
not, Falconer (1990) noted that a modification of this rule held in all 24 experimental cases
he examined, namely that the sensitivity is less after antagonistic selection than after synergistic
selection. Since the sensitivity is a slope, this means that the change in the numerator of
Equation 38.5 is greater under antagonistic selection than under synergistic selection. When
selecting to decrease a trait, this requires

(RH − CRL)− (CRH −RL) > 0 (38.6a)

which rearranges to recover
RH +RL > CRH + CRL (38.6b)

with this same condition holding for selection to increase a trait. Hence, for Falconer’s
modification to hold, the less restrictive assumption that the sum of the direct responses is
greater than the sum of correlated responses must hold.

What about Falconer’s (1989) suggestion that mean performance over the two environ-
ments is best improved by antagonistic selection? If the mean change is equally weighted
in both environments, then when selecting to increase a trait, under antagonistic selection
direct response occurs in the low environment, while under synergistic selection direct re-
sponse occurs in the high environment. Thus, Falconer’s (1989) suggestion holds when the
average of the direct response in low and the correlated response in high exceeds the direct
response in high and the correlated response in low,

RL + CRH > RH + CRL (38.7a)

Assuming equal selection in both environments, then from Equation 38.3a, this reduces to

hL (σAL + rAσAH ) > hH (σAH + rAσAL) (38.7b)

Conversely, when selecting to decrease trait value, this condition becomes

RH + CRL > RL + CRH (38.7c)

Note that Equations 38.7a and 38.7c are mutually exclusive, so that if antagonistic selection
is better in one direction, it will be worse in the opposite direction. Thus, as Falconer (1990)
pointed out, there is little theoretical justification for his earlier (1989) suggestion.
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All of the above theory assumes the most basic version of the breeder’s equation, in
particular no changes in variances and covariances and also that responses are symmetric.
We have already seen that if heritabilities are unequal, then the covariances can differentially
change even under the infinitesimal model (Chapter 31), leading to asymmetric correlated
responses. Likewise, when sufficient allele frequency change occurs, any initial symmetries
in responses likely disappear, and no general statements can be made.

SELECTING IN TWO ENVIRONMENTS

While we have been considering the response over both environments, the careful reader will
have noticed that selection was always assumed to occur in just one environment, allowing
individual selection to be used. For example, parents may be selected in a high-performing
environment, while their offspring (and hence response) are scored in both high- and low-
performing environments. We now expand our analysis to allow for selection in multiple
environments, for example by using between-line or between-family selection based on the
performance of group members over a number of environments. Before considering this, a
few comments on the cost of ignoring G x E are in order.

The Cost to Response from G x E

As a benchmark for selection when G × E is present, if environmental structure is ignored
and simple mass selection used (choosing the best performing individuals based solely on
their phenotypic values), then the expected response becomes

R = ıσzh
2
z = ı

σ2
A

σz
= ı

σ2
A√

σ2
G + σ2

G×E + σ2
E

(38.9a)

whereσ2
G andσ2

E are the genetic and environmental variances. Whenσ2
G×E is large relative to

σ2
A, the heritability is low and selection very inefficient, as an individual’s phenotypic value

in one environment is a poor predictor of their average breeding value over all environments.
If we are selecting among clones (or pure lines) then σ2

G replaces σ2
A. Setting σ2

G×E to zero,
Matheson and Cotterill (1990) note that the “cost” (loss of potential gain) of genotype-
environment interaction when using standard mass selection is

1−
√

σ2
G + σ2

E

σ2
G + σ2

G×E + σ2
E

(38.9b)

We can improve upon response if something about the environmental structure is
known. The simplest approach is stratified mass selection (Chapter 10), where the envi-
ronment is assigned into blocks and individual selection occurs within each block (Equation
10.14). While this approach accounts for potential differences in the macroenvironmental
values between blocks, it does not account for differences due to G× E. Under either stan-
dard or stratified mass selection, selection is still based on the values of individuals (adjusted
by block mean in the case of stratified selection). However, each genotype is still assessed in
only a single environment.

Selecting a Group Over Several Environments

Now suppose we wish to simultaneously select across two (or more) environments. The
obvious problem is that we typically cannot use the same individual to measure the trait
over several environments. Instead, we must resort to measuring different individuals in each



SELECTION AND G x E: INTRODUCTION 467

environment, using genetic relatedness to connect them across environments. Thus, selection
is based on the mean performance of individuals from a particular genetic group (such as
a line, or half- or full-sib families) that are distributed over environments (e.g., Dickerson
1962, Scheinberg 1973, Burdon 1977). If we are using members of a group with an average
coefficient of coancestry of Θ, then the correlation in breeding values between members
across environments (say i and j) is given by 2ΘρA(i, j), where ρA(i, j) is the correlation in
breeding values if we were able to measure the same individual in both environments i and
j (LW Chapter 22). For ease of presentation in what follows in this (and the next) chapter we
often use genotype or line to refer to the genetic group.

The simplest application of this approach is a very common setting in plant breeding,
where inbred lines (typically regarded as being sufficiently inbred to be considered clones,
or nearly so) are measured in ne environments, often with replication (nr individuals from
each group measured within each environment). The basic model for the value of the k-th
replicate of line i in environment j is

zijk = µ+Gi + Ej +GEij + εijk (38.10a)

where G and E are the line and macro-environmental effects and ε the residual (the micro-
environmental value that thekth replicate experiences, which are assumed to be uncorrelated
and homoscedatic with constant variance σ2

e ). If the lines are still segregating, then e also
includes the deviation of the genotypic value from the line mean G. The line mean for
genotype i becomes

zi =
1

ne nr

ne∑
j=1

nr∑
k=1

(µ+Gi + Ej +GEij + εijk)

= µ+Gi +
1
ne

ne∑
j=1

(Ej +GEij) +
1

ne nr

ne∑
j=1

nr∑
k=1

εijk (38.10b)

Assuming thatGi,GEij , andEj are all uncorrelated, the variance of the line means becomes

σ2( z ) = σ2
G +

σ2
E + σ2

G×E
ne

+
σ2
e

nenr
(38.10c)

Selecting clones with the greatest mean over environments, the expected response becomes

R = ı
σ2
G

σ z
= ı

σ2
G√

σ2
G + (σ2

E + σ2
G×E)/ne + σ2

e/(nr ne)
(38.10d)

Replication of group members reduces the contributions from σ2
G×E , σ2

E , and σ2
e to the

variance of the line mean, which results in a higher heritability, increasing response. A
common modification of Equation 38.10 is that the environmental effect is often treated as a
fixed effect, and hence the data are adjusted to account for this, and the σ2

E term disappears.
One version of this is stratified mass selection, when contrasts are made within a given
block. Treating E as a fixed effect is a more general way to accomplish this same goal of
removing the effects of E (but not G × E!). We show later (Example 38.4) how to further
improve Equation 38.10d by decomposing the G x E interaction into additional effects such
as location, year, and year-by-location contributions.

It is important to point out a critical assumption that leads to Equation 38.10d. Starting
with Equation 38.10a, we assumed that the genotypic and G x E effects are uncorrelated and
homoscedastic (variances are constant, being independent of the subscript on G and GE),
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namely Gi ∼ (0, σ2
G) and GEij ∼ (0, σ2

G×E). This implies that the genetic variances are the
same in each environment, as (ignoring the environment random factor E),

σ(zij , zij) = σ(Gi +GEij , Gi +GEij) = σ2
G + σ2

G×E

Likewise, the genetic covariance between the same genotype (i) measured in two environ-
ments (j, k) is

σ(zij , zik) = σ(Gi +GEij , Gi +GEik) = σ2
G

This particular covariance structure wherein the genetic variances are the same across all
environments and the genetic covariances are the same across all pairs of environments is
called compound symmetry. Obviously, this is only a very narrow view of G x E, as in general
the genetic variances can change across environments and different pairs of environments
can display different correlations (e.g., Equation 38.1b). Further development of selection
response under more general covariance structures in covered in the next chapter (starting
with Equation 39.37)

The idea is essentially the same when using half- or full-sib families, but with a little
more bookkeeping (Chapter 17). Selection is based on the family means, with represen-
tive members from the chosen families randomly crossed to form the next generation. The
resulting response is given by

R = ı
σ2
AF

σz
(38.11a)

where the between-family additive genetic variance σ2
AF is given below and the variance

in family means σ2
z is given by Equation 17.39a (using the definitions offered by Equations

17.11a and 17.11b). If nr family members are measured in each of ne environments, then
setting N = nr ne,

σ2
z = σ2

GF + σ2
Ec +

σ2
F×E
ne

+
σ2
Gw + σ2

e

N
(38.11b)

where Ec is the common family environmental effect, E the remainder of the environmen-
tal effects and GF the total genetic variation accross families and F × E the family-by-
environment interaction. Ignoring epistasis, the total (σ2

GF ) and additive (σ2
AF ) genetic vari-

ation across families is

σ2
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(
1− 1

N

)
1
4σ

2
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2
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2
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1
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(38.11c)

while the genetic variation within each family (σ2
Gw) and the family by environment inter-

action variance (σ2
F×E) are

σ2
Gw =


3
4σ

2
A + σ2

D half-sibs

1
2σ

2
A + 3

4σ
2
D full-sibs

, σ2
F×E =


1
4σ

2
A×E half-sibs

1
2 σ

2
A×E + 1

4σ
2
D×E full-sibs

(38.11d)

Similar expressions can be developed for other types of families, such as S1 and S2 (first and
second-generation selfing). While these formulae seem a bit busy, the key point to notice
is that while the additive-genetic covariance is less with family selection than individual
selection, so is the phenotypic variance. In particular, if G x E is significant, only part (the
family x environmental component) appears in the family mean variance and this part is
weighted by 1/ne. While the above expressions are typically not directly used, due to the
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difficulty in estimating the component variances, they provide important insight into the
expected response when this sort of selection scheme of evaluating the performance of the
genetic group in ne random environments is used.

Selection for Mean Performance Versus Sensitivity/Stability

When G x E is present, a breeder faces not only the question of where to perform selection,
but also the issue of whether a line with wide adaptation is better than a collection of lines
that are more locally adapted. If the choice is made to select for a line with good mean
performance over environments, the breeder must then weight the relative importance of
mean performance versus sensitivity. In subsistence agriculture, decreased sensitivity (also
called tolerance, i.e., increased stability in performance over environments) is as important
as mean performance, as farmers and their families simply cannot afford even a single bad
year. Ideally, a breeder would prefer to select for lines with both high mean performance
and also decreased sensitivity (improved tolerance). Unfortunately, there may be tradeoffs
between these goals.

Figure 38.2. Mean performance vs. sensitivity. Both populations have the same mean perfor-
mance (average value over both populations), but rather different sensitivities. The population
represented by the solid circles and the solid line has greater sensitivity, so that it has a greater
performance in the high environment but significantly poorer performance in the low envi-
ronment relative to the low sensitivity line with the same mean performance.

Falconer’s (1990) analysis of the Jinks-Connolly rule examined the effect of selection
in only a single environment on the sensitivity of the trait. Recall Falconer’s conclusion than,
for two environments, sensitivity is less after antagonistic selection than after synergistic
selection. Thus when the selection in a single environment is against the environmental trend
(i.e., up-selecting in the poorer environment), the result is increased stability of the trait over
both environments relative to the response from up-selecetion in the good environment.

Do any such general statements emerge when we allow selection to occur in both environ-
ments? Let µH and µL denote the means in the higher- and lower-performing environments.
Mean performance is given by

m =
µH + µL

2
(38.12a)

while sensitivity can be measured by

s = µL − µH . (38.12b)

With this definition, s is negative, and a positive change in s (∆s > 0) corresponds to
decreased sensitivity (increased stability), while a negative change corresponds to increased
sensitivity. If selection occurs in only a single environment, we can ask about the response in
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either m and s, but we are not selecting directly on either, but rather observing a correlated
response from direct selection in only one environment. With selection in two environments,
we can now directly selection on eitherm or s (or both). Rosielle and Hamblin (1981) provide
some interesting insight in this case, and we follow their treatment.

Recall (e.g., Equation 38.3a) that sign of the genetic correlation rA determines if the
correlated response in one trait is in the same direction as the direct response in another. Using
this simple observation, Rosielle and Hamblin’s analysis follows from computing the genetic
correlations for various combinations of m, s, H = µH , and L = µL. For example, consider
the genetic correlation between sensitivity s and performance H in the high performing
environment,

ρs,H =
σ(s,H)
σ(s)σ(H)

=
σ(L−H,H)√
σ2(L−H)σ2(H)

=
σ(L,H)− σ2(H)√

σ4(H) + σ2(H)σ2(L)− 2σ2(H)σ2(L)
(38.13a)

All correlations, variances and covariances refer to additive genetic variation (if outbreed-
ing populations are considered) or total genetic variance (if selection is among pure lines).
Denoting the ratio of the genetic variances for the high versus low environment by

φ =
σ2(L)
σ2(H)

, (38.13b)

Rosielle and Hamblin simplify Equation 38.13a to obtain

ρs,H =
φ ρH,L − 1√

1 + φ2 − 2ρH,Lφ
. (38.13c)

The resulting sign for the genetic correlation between sensitivity s and high performance H
becomes

sign(ρs,H) = sign(φ ρH,L − 1), (38.13d)

which is negative unless σ2(L) > σ2(H) and ρH,L is sufficiently large (such that φρ > 1).
When this correlation is negative, selection for decreased sensitivity (∆s > 0) results in a
correlated response to decrease the mean performance in the high environment. Thus, un-
less the genetic variance is larger in the low-performing environment (which is unusual,
e.g., Allen et al. 1978), selection for increased tolerance/stability results in a decreased per-
formance in the high environment. Equivalently, selection in just the high environment to
increase the mean (∆H > 0) generally results in increased sensitivity (∆s < 0), which is a
restatement of the Jinks-Connolly rule.

Similarly, the genetic correlation between sensitivity and performance in the low envi-
ronment is

rL,s =
φ− ρH,L√

1 + φ2 − 2ρH,Lφ
(38.13e)

so that selection on s increases the performance in the low environment when φ > ρH,L,
otherwise it decreases µL. Proceeding in exactly the same fashion, the genetic correlations
between mean performance on one hand and performance in the high and low environments
on the other are, respectively,

rH,m =
φ ρH,L + 1√

1 + φ2 + 2ρH,Lφ
, and rL,m =

φ+ ρH,L√
1 + φ2 + 2ρH,Lφ

(38.14)

Both of which are positive unless the genetic correlation between environments is negative.
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Finally, the genetic correlation between mean performance m and sensitivity s is

rs,m =
φ2 − 1√

1 + 2φ2 + φ4 − 4ρ2
H,Lφ

2
(38.15)

which is negative unless φ2 > 1. Hence, selection on sensitivity decreases mean performance
(∆s > 0→ ∆m < 0), and selection on mean performance decreases sensitivity (∆m > 0→
∆s < 0) unless σ2(L) > σ2(H). Rosielle and Hamblin caution not to over-interpret these
two-environment results when multiple environments are considered, but their point is still
well made.

We can easily incorporate joint selection on mean performance and sensitivity into a
selection index. To slightly simplify matters, consider an index selecting on total performance
over both environments (i.e., 2m in place ofm) and on the sensitivity s, where a is the weight
(relative to total performance) placed on sensitivity,

I = 2m+ a · s = (gH + gL) + a(gL − gH) =


gH +

(
1 + a

1− a

)
gL a 6= 1

gL a = 1

(38.16)

The last step follows by recalling we can always rescale one of the index weights to one
(Chapter 33). If total performance and sensitivity are given equal weight (a = 1), the index
reduces to the breeding (or genotypic) value gL of performance in the low environment.
Very small a corresponds to selection on total performance, while very large a corresponds
to selection on sensitivity. If the genetic and phenotypic variances and covariances between
low and high performance are known, then index selection theory can be used to obtain the
Smith-Hazel weights for this index (Equation 33.18a).

The above results for potential tradeoffs between stability and mean performance apply
in the simplest case where only two environments are considered. As one might expect,
when selection potentially occurs over a number of environments, the existance of tradeoffs
is much less clear. Indeed, simply defining stability can be rather problematic in such cases,
as we detail in Chapter 39.

SELECTING IN MULTIPLE ENVIRONMENTS

The two-environment case served as a useful introduction to selection when G x E is present.
While simple, it is an appropriate model in some settings, such as experiments using two
discrete environmental treatments. It is also not an unreasonable model for many animal
breeding settings, where organismal mobility and husbandry can often mitigate minor en-
vironmental variation, and the resulting contrasts are between major environmental dif-
ferences such as temperate versus tropical. In situations were genotypes or lines can be
replicated over locations as well as years (a common situation for many plant breeding
trails), the environmental structure is considerably richer. The rest of this chapter (and much
of the next) examines selection in such settings.

MET: Multiple-environment Trails

One can imagine (at least) three environmental components that can contribute to G x E.
First, a location macro-environment valueE` that is common to all individuals in that setting,
be it a specific location/site, general geographic region, or presence/absence of a specific
environmental factor. The idea is thatE` is relatively predictable and hence somewhat stable,
and can be a target of selection. The second is the yearly (or seasonal) component of the
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environment Ey that varies from year to year (for example, average temperature or rainfall
during a growing season). This is essentially an unpredictable component, and hence is
not selectable. The best a breeder can do is to attempt to average out its effects by scoring
genotypes over a number of seasons to access their average performance and to select for
stability. Finally, a macro-environment by year interaction E`×y may also be present, and
this too is unpredictable. Thus, the G x E interaction can be decomposed into contributions
for locations, years, and location x year interactions,

σ2
G×E = σ2

G×` + σ2
G×y + σ2

G×y×` (38.17a)

As mentioned, the breeder may wish to exploit G x E in predictable environments while
trying to mitigate it (though selection for stability) in unpredictable environments. Note
that σ2

G×`/σ
2
G×E essentially represents the potential fraction of interaction variance due

to predictable environmental factors, while the remainder likely represents unpredictable
features. The relative contribution of these two components informs the breeder of their
options (breeding for location and/or stability).

Equation 38.17a provides the motivation for multiple-environment trails (or MET)
where varieties are scored for several years over several locations (Chapter 20). The impor-
tance of Equation 38.17a is that replication can reduce the noise from G × E when trying
to assess genotypes. So see this, suppose that nr individual from a line are scored in a sin-
gle environment, and the mean performance of these individuals is reported. The resulting
residual error variance becomes σ2

e/nr. Likewise, if such replication occurs over n` locations
(environments) and for ny years per location, then the G x E and environmental variance
associated with the mean performance of a line becomes (Lonnquist 1964, Comstock and
Moll 1973, Patterson et al 1977, Brennan and Byth 1979, Thompson and Cunningham 1979)

σ2
G×`
n`

+
σ2
G×y
ny

+
σ2
G×y×`
n`ny

+
σ2
e

n`nynr
(38.17b)

The key feature of Equation 38.17b is that suitable replication can reduce the contribution
of any particular component of σ2

G×E to the variance of a line mean, thereby increasing the
heritability of the line mean (Equation 38.4). The idea of METs is to find those lines that
perform well over some target populations of environments, recognizing that while loca-
tional correlations might be reasonably stable, the unpredictability in year-to-year (and hence
location-by-year) interactions implies that the breeder must select for lines that perform well
over some (largely unpredictable) distribution of environments.

Example 38.4. Atlin et al. (2001) use data from six different crops to show the benefits of
replication across years and locations. Estimates of line, G x E components, and residual
variance were obtained from (1) Atlin and McRae (1994), (2) Cullis et al. (1996), (3) Talbot
(1984), (4) Cooper and Somrith (1997), and (5) Copper et al. (1999), and were as follows:

Crop Region σ2
G σ2

G×` σ2
G×y σ2

G×`×y σ2
e Ref

Spring barley Canada 62 29 18 63 174 1
Spring Oat Canada 122 58 21 53 178 1
Wheat Australia 23 8 9 53 87 2
Winter wheat UK 99 7 22 113 128 3
Potatoes UK 9780 2980 2630 14960 18790 3
Lowland rice Thailand 198 82 18 199 178 4
Lowland rice Thailand 60 3 49 259 440 5
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Recalling Equation 38.17b, the heritability of the line means is given by

h2
z =

σ2
G

σ2
z

, with σ2
z = σ2

G +
σ2
G×`
n`

+
σ2
G×y
ny

+
σ2
G×`×y
n` ny

+
σ2
e

N

whereN = nrn`ny . With increased replication, σ2
z approaches σ2

G, and hence the heritability
of line means can be made to approach one by using sufficient replication. Using the above
values, Atlin et al. (2001) calculated the estimated heritabilities under different designs (dif-
ferent allocation of lines over locations n`, years ny , and replications per site nr). The last
column gives the ratio of the single-replication heritability with that for the most complete
design considered here (5,5,2 = 5 replicates per location, 5 locations, 2 years per location),

Heritability of lines means h2
z as a function of (nr, n`, ny)

Crop 1,1,1 1,2,1 4,1,1 5,5,2 Ratio
Spring barley 0.18 0.29 0.29 0.71 3.9
Spring Oat 0.28 0.42 0.31 0.79 2.8
Wheat 0.13 0.22 0.20 0.63 4.8
Winter wheat 0.27 0.40 0.36 0.79 2.9
Potatoes 0.20 0.32 0.28 0.72 3.6
Lowland rice 0.29 0.44 0.37 0.80 2.8
Lowland rice 0.07 0.13 0.13 0.49 7.0

For example, if we grow each line of Wheat as only a single replicate in a single location
in a single year (1,1,1), the expected board-sense heritability is 0.13. However, if each line
is grown as five replicates at each of five different locations over two years (5,5,2), then the
heritability of the line means increases to 0.63, almost a five-fold increase in precision for
choosing the best genotypes. Note that (1,1,1) corresponds to selecting between lines using a
single observation, which is simply individual selection. Thus, for lowland rice, a 3 to 7 fold
increase over individual selection can occur by basing selection on the means of replicated
lines.

How to we treat selection under such a very complex distribution of enviroments? As
always the key when G x E is present is finding the right environment(s) in which to select.
While the theory of multi-trait selection provides the machinery needed, actually being able
to apply this theory is much more problematic. For example, even if we had good estimates
of the genetic correlations across locations, the genetic correlations across years at the same
location are essentially unpredictable. Thus, while multi-trait selection theory provides basic
ground rules, real-world selection when G x E is present requires additional approaches. One
of the simplest is illustrated in Example 38.5. When the target is average performance over
some region, we may be able to use data from previous years to find those locations that
are most predictive of performance over the entire region. In such cases, field trails can
be performed at these sites, allowing the breeder to concentrate resources. Likewise, the
breeder may manipulate the environment at some locations (for example, inducing water
stress through controlled irrigation) in an attempt to measure potential performance in years
of environmental stress.

Example 38.5. Hamblin et al. (1980) examined the correlation between mean yield for wheat
varieties (averaged over 30 sites scattered throughout an area of roughly 250,000 km2 in the
state of Western Australia) with the mean yield for particular triplets of locations. Using data
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from 1973-1976, four promising triplets where chosen. The correlation between these sites and
the yield data from 1969-1972 was then examined, as given in the table below, where ∗ and ∗∗

denote 5% and 1% significance.

Location triplet 1969 1970 1971 1972 1969-72 1973-76
Beverley-Borden-Muresk 0.63 -0.07 0.94∗∗ 0.88∗∗ 0.60 0.90
Beverley-Kondinin-Wickepin 0.72 -0.26 0.98∗∗ 0.83∗∗ 0.57 0.91
Bolgart-Borden-Woogenellup 0.57 0.77∗ 0.94∗∗ 0.90∗ 0.80 0.91
Borden-Muresk-Woogenellup 0.64 0.41 0.91∗ 0.91∗ 0.72 0.94

The last two columns denote the average correlation over the four years in the validation
data set (69-72) and the four years in the initial data set (73 - 76), respectively. While all four
triplets appeared very promising in the intial data set (four-year correlations were all over
90%), in the validation data set two of the location triplets showed negative correlations (both
in 1970), while the best triplet only had an average correlation of 0.8 over 1969-1972. Further,
this best-performing triplet in the validation set (Bolgart-Borden-Woogenellup) was not the
best-performing triplet in the original analysis (Borden-Muresk-Woogenellup).

Example 38.5 represents an attempt to find some structure within the G x E data, a topic
we explore in great detail in Chapter 39. Another approach is to select in those environments
that are the most “discriminating”. The problem is that different breeders have different
notions of what was meant by discriminating. One school of thought, which is essentially
Hammond’s Conjecture, is to select in the environments with the highest heritabilities (e.g.,
Frey 1964, Johnson and Frey 1967). Allen et al. (1978) suggested a modification of this ap-
proach by considering environments with the largest value of ρGh, where ρG was the genetic
correlation with the target population (for example, mean yeild over some large region) and
h the square root of the heritability (broad-sense when using inbred lines). The other school
of thought is since populations are always likely to experience a stressful environment dur-
ing the duration of the cultivar/line, one should select in stressed environments (e.g., Gotoh
and Osanai 1959). Again we have seen this before in the idea of selecting in the worst en-
vironment. As reviewed by Allen et al. (1978), and in our previous discussions, while there
are examples of improved performance in the target population by selecting in a stressed
environment, there are also numerous counterexamples.

Design Trade-offs: Years Versus Location

Equation 38.17b and Example 38.4 show how replication increases the accuracy of the line
mean in predicting the line genetic value. With estimates of the appropriate G x E variance
components in hand, the optimal allocation of resources (i.e., a set total number of plots)
can be found to maximize the heritability under these resource constraints. One important
tradeoff to consider is the allocation of locations versus years. Given that genotype-by-year
and genotype-by-location-by-year can comprise a considerable fraction of σ2

G×E (Example
38.4), replication over years seems desired. However, the increased heritability due to ad-
ditional replication over years does come with a price — an increase in the time between
cycles of selection, and hence potential reduction of the rate of genetic response (Comstock
and Moll 1963). As we have seen (Chapters 20-22), a single cycle of selection in some crops
can take several years, so let c denote the length of a single cycle of selection with a single
year of replication, so that c+ k is the cycle time when k additional years of replication are
added. The expected rate of response per year, i.e., the rate of genetic gain, becomes

∆R = ı
σ2
G

σ(zk)

(
1

c+ k

)
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where

σ2(zk) = σ2
G +

σ2
G×`
n`

+
σ2
G×y

(k + 1)
+

σ2
G×`×y

(k + 1)n`
+

σ2
e

(k + 1)n` nr
(38.18a)

Equation 38.18a assumes that the number of locations per year and the number of replicates
per location-year combination remains constant, with only the number of years of testing
(ny = k + 1) changing. The ratio of rate of gain for one versus k additional years of testing
becomes

∆Rk
∆R1

=
(

c

c+ k

)
σ(z1)
σ(zk)

(38.18b)

Comstock and Moll (1963) consider the most extreme case where σ2
G×y dominates all other

interaction terms. In this case, for one and 2 years of testing, we have

σ2(z1) ' σ2
G + σ2

G×y, σ2(z2) ' σ2
G +

σ2
G×y
2

Even if σ2
G×y accounts for 95% of σ2

G + σ2
G×y , for two years of replication σ(z1)/σ(z2) = 1.3.

Substituting into Equation 38.18b shows that for the rate of response to be increased by
replication requires a cycle time of c ≥ 3 years. For four years of replicationσ(z1)/σ(z4) = 1.9,
requiring a cycle of at least four years for replication to increase the rate of response. Hence
while replication over many years increases precision, this is often more than offset by the
longer cycle time.

Several studies have examined the effects of adding additional years of testing. Com-
pairing one to three years of testing, Cross and Helm (1986) examined maize hybrid selection,
while Gellner (1989) examined spring wheat (Triticium aestivum L.) and oats (Avena sativa
L.). Bowman (1998) compared the predictive results of one versus two years of testing in
six crops from North Carolina (corn, cotton, oats, soybeans, wheat, and barley). Finally, Yan
and Rajcan (2003) examined the prediction of soybean performance in Ontario as a function
of number of years of previous testing. The rather surprising conclusion from these studies
is that a single years worth of data often gives almost the same accuracy in predicting the
subsequent year as does using two (or more) years of data.

Example 38.6. Using an extensive dataset on soybean yield in Ontario, Yan and Rajcan (2003)
examined the effects using one, two, three, and five years worth of data in predicting yield. A
partial set of their data is shown in the table below, which compares the actual performance
(measured by the variance-scaled BLUP estimate of the genotype value, or t-BLUP, Yan et
al. 2002) in a given year with the predicted performance based on the previous one, two,
three, and five years worth of data. Prediction performance was measured by the correlation
between estimates of the genotypic effects of lines in the focal year and the predicted value
based on using results from previous year(s).

Number of years of testing
Year 1 2 3 5
2000 0.57 0.63 0.61 0.61
1999 0.57 0.57 0.57 0.65
1998 0.56 0.68 0.68 0.67
1997 0.51 0.56 0.52 0.53
1996 0.47 0.51 0.51 0.51
Average 0.54 0.59 0.58 0.59

As the above table shows, the conclusion is that using two years of data does slightly better than
using a single year, but that adding additional years results in no further improvement. Yan
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and Rajcan also examined another measure, the number of genotypes that can be decisively
evaluated (allowing them to be judged as significantly inferior or superior, as indicated by
their t-BLUP values being greater than 2 in absolute value, Yan et al. 2002). As shown below,
the number of decisively evaluated genotypes increases by adding additional years.

Number of Number of years of testing
Year genotypes 1 2 3 5
2000 112 30 35 38 45
1999 112 44 50 55 55
1998 112 9 22 30 31
1997 104 33 39 38 39
1996 90 18 21 25 28

While replication over several years does not significant improve prediction ability for any
given line in subsequent years, it does help the breeder in culling the least desirable, and
choosing the most desirable, lines.

Design Trade-offs: Subdividing a Target Region

Another design issue is whether a target region should be further divided into subregions
for selection, as opposed to selecting lines by averaging their performance over the entire
region. The motivation for division into subregions follows from the basic model for G x E.
We ignore year effects to make our main point. If we first ignore any potential subregions,
the expected value of line i in location k becomes

E[zik] = µ+Gi + `k +G`ik (38.19a)

Now suppose that there are distinct subregions, in which case we can break up a location
effect from the model given by Equation 38.19a into a subregional effect S and an effect of
location nested within that subregion `(S). Thus for line i in subregion j and the kth location
nested within that subregion, we have

E[zijk] = µ+Gi + Sj + `(Sj)k +GSij +G`(Sj)k (38.19b)

Within a given subregion (j), the expected value of line i now becomesGi+GSij , so that the
numerator in the heritability of line means measured within a subregion becomes σ2

G+σ2
G×S

(as opposed to just σ2
G when subregional effects are ignored). The advantage of selecting

within a subregion (as compared to selecting over the entire region) is that the component
σ2
G×S is removed from σ2

G×` and now contributes to response (Comstock and Moll 1963,
Atlin et al. 2000b). The tradeoff is that the number of replicates is decreased, increasing the
variance of the line means (relative to the variance if all subregions are lumped). Atlin et
al (2000b) considered these tradeoffs in detail, finding that subdividing a region improves
response only when σ2

G×` is large relative to σ2
G and a significant fraction (they suggest at

least 30%) of the σ2
G×` variance is due to σ2

G×S . Atlin et al. (2000a) examined yield of using
145 random doubled-haploid barley lines tested over a total of 22 sites in Canada from 1992
and 1993. Considering Canada as a single region, σ2

G = 300 and σ2
G×` = 245. Subdividing

Canada into eastern versus western gave σ2
G×S = 95, so that regional effects accounted for

38% of the line by location interaction. However, based on σ2
G×` and σ2

G being of roughly
equal effect, they suggest little is to be gained by selecting within each subregion.

Participatory Breeding and G x E

The notion of regional testing directly relates to a recent movement in plant breeding —
participatory breeding, with local farmers actively involved in the selection of new lines.
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The motivation for this approach was the concern that formal plant breeding (FPB), namely
multiple-environment traits of new lines conducted through national and international cen-
ters, was not producing products for low-input farmers working in marginal environments.
The success of FPB is clearly undeniable, but the concern was that much of its focus was for
stable crops widely-adaptive to high yield environments (where most of the profit occurs),
potentially at the expense of marginal farmers whose yield, while critical to them and their
families, is economically quite small. Witcombe et al. (1996) make a distinction between two
different types of participatory breeding. In participatory varietal selection (or PVS), the
farmer helps with the selection among a set of essentially finished (i.e., fully inbred) varieties,
either through input on selectively desirable traits and/or evaluation of performance in their
own fields. In participatory plant breeding (or PPB), the material being worked with is still
segregating (i.e., it is not yet in its stable, fully inbred, final form), and hence the selection
decisions may not be as granular as those among essentially fixed lines. While participatory
breeding is also motivated by the desire for conservation of local lines and a variety of social-
political-economic issues, our focus here is entirely on conditions under which PPB (or PVS)
may produce better results from a breeding standpoint than more traditional FPB methods.
Readers wishing a more richly textured background can consult Ezyaguirre and Iwanaga
(1996), as well Sperling et al. (2001) and other articles in the special issue of Euphytica (2001,
Volume 122, issue 3) focusing on all aspects of participatory breeding.

From a strictly breeding standpoint, there are three issues when comparing PPB and
FPB. The first is that the targets of selection under formal plant breeding may be different
from the targets of selection desired by low-input farmers. From this standpoint, there is
clearly a significant benefit from seeking input from the ultimate end-users, the farmers
themselves (e.g., Ceccarelli et al. 2000). The remaining two issuses can (again) be rephrased
in a direct versus correlated response framework. The target population of environments
(TPE) are low-input growing situations, often under considerable stress (relative to high-
input systems). Thus, PPB occurs within the TPE, while the fields at research stations typically
do not, although this not be the case (for example, field trails can be made under conditions
of enforced stress). Balancing this are the higher heritabilities for line means that can be
obtained under FPB by using highly replicated experimental designs (e.g., Example 38.4)
and greater access to more diverse genotypes (and hence a largerσ2

G). These various tradeoffs
can be placed in terms of Equation 30.22a, giving the ratio of the correlated response (FPB)
to the direct response (PPB) as

Response under FPB
Response under PPB

=
CRX
RX

=
(
ıFPB
ıPPB

)
ρG

(
hFPB
hPPB

)
(38.19)

What is not included in Equation 38.19 is accounting for differences in the targets of selection
desired by the farmer versus those selected for the breeder. This can be incorporated by
viewing these two (potentially different) objectives as selection indices and then computing
the correlated response in one given selection on the other (Chapter 33). Putting this point
aside (as it can be addressed by consultation with the farmers as to the desired targets),
the three terms in Equation 38.19 highlight the advantages (and disadvantages) of the two
approaches (Atlin and Frey 1990, Atlin et al. 2001). Given the larger number of individuals
grown, selection intensities can clearly be higher under FPB, as can the heritabilities (e.g.,
Example 38.4), while higher genetic correlation with the target environment is a point in
favor with PPB. Let’s examine these last two points (higher h2, lower ρG under FPB) in more
detail.

Clearly when the genetic correlation between the selection environments under FPB and
the production environments under PPB is sufficiently low, differences in selection intensities
and heritabilities cannot overcome this, and PPB gives a larger response. Of course, if the
correlation is zero or negative, FPB has very little to offer. Thus, it remains an open empirical
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question as to the correlation of yield (or some other measure of performance) in good versus
poor environments. There are a few reports in the literature where the genetic correlation
was computed for yield in high- versus low-yield environments, the later generated by the
introduction of some agent of stress. For example, Atlin and Frey (1989) using oats in Iowa
observed correlations of 0.5, 0, and 1.0 between low- and high-yield environments when the
low yield was caused by stress due to low Phosphorous P, late planting, and low Nitrogen
N (respectively). Thus, the full range of options is seen here – if the stress is due to low
N, FPB is always preferred (as ρG = 1). If the stress is due to late planting, PPB is always
preferred (as ρG = 0). If stress is due to low P, then either FPB or PPB may be preferred
(as ρG = 0.5), depending on the relative strengths of selection and heritabilities under FPB
vs. PPB. Ceccarelli et al. (1992) found ρG = −0.12 for barley yield under drought vs. non-
drought in Syria, clearly favoring PPB. Finally, maize yield under low N stress in Mexico
had a genetic correlation of 0.4 to 0.5 with yield under non-stress conditions (Lafitte and
Edmeades 1994, Bänziger et al. 1977). Again, either FPB or PPB might be appropriate in
these cases. The take-home message is that there is no general trend, and each case must be
examined separately.

As Example 38.4 highlights, the replication over locations and (especially) years done
under FPB can mitigate contributions to G x E caused by site, year, and site-by-year variation.
The net result is a significantly improved heritability for the line means. Further, as Altin et
al. (2001) point out, large-scale plant breeding programs likely have access to many more
lines that PPB (although one might argue that the later are already more locally-adapted).
As a result, σ2

G can often be manipulated to be larger under FPB than PPB. These are the
great strengths of FPB programs, and these advantages (coupled with potentially stronger
selection) can overcome a modest value of ρG. Atlin et al. (2001) correctly argue that the
success of PPB largely hinges on the ability to transport the replicated experimental design
technology used by FPB to the farmer’s field, as it is only by replicating across locations and
years that the effects of non-predicable G x E can be accommodated. As they concisely state:

A small, site-specific breeding program may be optimally situated to exploit local adaptation
if it exists, but may lack the resources needed to evaluate genotypes with enough precision to
reliably identify superior genotypes.

Clearly, both PPB and FPB work best when they borrow strenghts from the other’s approach.
Indeed, Atlin and Frey (1990) pointed out that by increasing replication under the stressed
(i.e., marginal) environments, the heritabilities of the line means approach values near one,
and (assuming equal selection intensity), Equation 38.19 simply reduces of ρG. Thus, when
the target and selective environment are not perfectly correlated, there exists a level of repli-
cation such that direct selection in the stressed environment is expected to out-perform the
correlated response from selection in the non-stressed environment. Thus, at low replica-
tion, selection under FPB can often beat PPB, but as the levels of replication under stressed
environments increases, direct selection in the stressed environment should always be best.
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