
11
THE NEUTRAL DIVERGENCE

OF QUANTITATIVE TRAITS

There are some enterprises in which a careful disorderliness is the true method.
— Herman Melville, Moby Dick

Walsh updates 3 Nov 2011 to v. 27 September 2008, see head of Tex Code for details

In the preceding chapter, we learned how the opposing forces of random genetic
drift and mutation lead to an equilibrium level of within-population genetic vari-
ance. In contrast, the phenotypic variance among isolated populations may continue
to increase nearly indefinitely for neutral characters, as isolated demes or species
recurrently acquire and become fixed for independent mutations. Here, we explore
neutral factors that can drive the evolutionary dynamics of the among-population
variance. As in Chapter 10, we will start with the situation in which the time span
is short enough that most of the change in population-mean phenotypes is driven by
drift acting on existing variation rather than by new alleles introduced by mutation.
We then explore the consequences of longer-term divergence, with mutation playing
an increasingly dominant role, showing that eventually the rate of divergence for
neutral characters may become essentially independent of local effective population
sizes.

We conclude by using this theory to first develop statistical tests of whether an
observed pattern of phenotypic divergence is consistent with model of strict neutral
drift and mutation. We then review the application of these tests to both standard
morphological traits and to divergence in the patterns of gene regulation across
species. Although few quantitative traits may actually evolve in a purely neutral
fashion, a more compelling case for selection can always be made if the hypothe-
sis of neutrality can be formally rejected. For example, an observed divergence of
isolated lines that is significantly less than the neutral expectation provides evi-
dence of stabilizing selection, whereas the reverse supports a role for diversifying
selection. In addition, as populations become diminishingly small in size, drift be-
gins to overwhelm selection, promoting nearly neutral patterns of evolution. Recall
that Chapters 7-9 considered the complementary topic of tests for departures from
neutrality at specific loci, as opposed to specific traits, which is our focus here.

SHORT-TERM DIVERGENCE

We start with the special case in which all gene action is additive and random ge-
netic drift is the only evolutionary force. Most of the predictions of this model can
be expressed in terms of two observable quantities: the additive genetic variance
in the base population σ2

A(0), and the effective population sizes Ne of the isolated
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lineages. The expected among-population genetic variance, σ2
B(t), under neutrality is

obtained by noting that the mean genotypic value at a diallelic locus i is 2aipi (there
being two genes per locus, each with additive effect ai with probability pi, and effect
0 with probability 1 − pi). The variance among populations for this locus is (from
the definition of the variance) the expected value of the square of additive effects
minus the square of their expected values, or E{[2aipi(t)]2}−{E[2aipi(t)]}2. This sim-
plifies to 4a2

iσ
2
pi(t), where σ2

pi(t) is the expected among-population variance in allele
frequency. Summing over all loci, assuming negligible gametic-phase disequilibrium,
and substituting from Equation 2.12a gives

σ2
B(t) = 4

n∑
i=1

a2
i pi(0)[1− pi(0)]

{
1
Nfo

+

[
1−

(
1− 1

2Ne

)t]}
(11.1a)

=
(

1
Nfo

+ 2ft

)
σ2
A(0) (11.1b)

where Nfo is the effective number of founders per line, the inbreeding coefficient ft
follows from Equation 2.4c, and the time index is defined such that t = 0 denotes
the final generation of the base population and t = 1 denotes the founding gen-
eration for the isolated lines. Equation 11.1 shows that, under the assumptions of
this ideal model, the expected variance among genotypic means of isolated popula-
tions increases linearly with the inbreeding coefficient, asymptotically approaching
a limit (as ft → 1) that is very close to twice the additive genetic variance in the
base population (Wright 1951). Equation 11.1 describes how any initial variation
is partitioned by drift during the random (and differential) fixation of these initial
alleles in the diverging populations. Under the assumption of additivity, Equation
11.1b holds regardless of the number of alleles at the underlying loci.

Ignoring the generally minor contribution (N−1
fo ) from the baseline founder effect,

this limiting result may be obtained in a simpler manner. Because the probability
of fixation of a neutral allele is equal to its initial frequency, when the process of
random drift is completed, a proportion pi(0) of the populations will have genotypic
value 2ai, while the remaining proportion, 1−pi(0), will have genotypic value 0. The
mean genotypic value is therefore 2aipi(0) and the mean squared value is (2ai)2pi(0),
which yields the among-population variance 4a2

i pi(0)[1− pi(0)] = 2σ2
Ai

(0).
The expression for σ2

B(t) give by Equation 11.1 only considers the true genetic
divergence among lines (the evolutionary variance), which can in principle be ob-
tained by an analysis of variance of phenotypic variation within and among lines. If,
however, one simply focuses on the raw variance of the observed means, additional
sources of variation, associated with finite sample sizes, will contribute to the ob-
served divergence (Hill 1972; Lynch 1988). For example, when the mean phenotype
of each line is determined using n progeny from N/2 matings (involving N/2 males
and females, for a total parental sample size of N), there can be three additional
sources of variance to add to Equation 11.1:

i) The segregational variance (1−ft−1)σ2
A(0)/(Nn) of the mean offspring value about

the mean breeding value of their parents resulting from the sampling of Nn/2 in-
dividuals. This follows as the segregational variance equals half the total variance
(Chapters 15 and 22);
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ii) The sampling variance σ2
Em
/(N/2) associated with maternal effects resulting from

the sampling of N/2 mothers;

iii) The residual variance σ2
Es
/(Nn/2) associated with special environmental effects

averaged over the entire progeny pool.

Finally, the among-line variances in consecutive generations will be correlated as a
consequence of shared ancestry,

σB(t, t′) =
(

1
Nfo

+ 2ft

)
σ2
A(0) for 0 < t < t′ (11.2)

Equation 11.2 assumes no transmission of maternal effects across generations, which
if present would further inflate this covariance.

A few words should also be said about the potential importance of nonadditive
gene action. From Table 10.2, it can be seen that in the presence of dominance,
the among-population variance (in the absence of any new mutation) eventually
asymptotes at σ2

B = 2σ2
A + 2σADI + σ2

DI . Thus, dominance can magnify or reduce the
among-population variance depending upon the magnitudes of σ2

DI and σADI and
on the sign of the latter. In addition, the asymptotic contribution from epistatic
interactions involving additive effects is equal to 2nσ2

An for n-locus epistasis, i.e.,
4σ2

AA for additive × additive epistasis, and 8σ2
AAA for additive × additive × additive

epistasis. Thus, epistasis involving large numbers of loci can, in principle, greatly
magnify the among-population variance, even if it appears to be of relatively minor
importance within populations.

Sampling Error

We now consider the sampling properties of the among-population genetic variance
by reference to a particular experimental design, again assuming a character with
a strictly additive basis (Hill 1972; Lynch 1988). Starting from a base population
with additive genetic variance σ2

A(0), L replicate lines are isolated and subsequently
maintained each generation with N/2 random monogamous matings. Due to the
fact that only a finite number of lines is studied, the among-population variance
that actually develops in any particular experiment, σ̂2

B(t), will deviate from the
expectation σ2

B(t) given by Equation 11.1b. Moreover, due to finite sample sizes
within populations, the among-population variance estimated by the investigator,
Var(B, t), will further deviate from σ̂2

B(t). This first source of variation, σ2[σ̂2
B(t) −

σ2
B(t)], is a function of population-genetic structure and, for a fixed system of mating,

is largely beyond the control of the investigator. The second source of variation, the
sampling variance, σ2[Var(B, t)− σ̂2

B(t)], arises in estimating σ̂2
B(t) from the among-

line sample variance Var(B, t). Its contribution can be minimized by the use of large
sample sizes.

Since our concern here is variation in divergence do to genetic changes gener-
ated by random drift, we focus on the situation in which the among-line divergence
has been measured in such a way as to eliminate nongenetic causes (such as en-
vironmental trends). Suppose that the same experiment has been repeated many
different times, on each occasion starting with L lines from the same base popu-
lation. Due to the variation in the drift process and the finite number of observed
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lines, each set of experimental lines will develop its own temporal pattern of re-
alized among-population variance. The expected variation in the realized variance
among these hypothetical replicate experiments provides a measure of confidence
that one can have in the results of any single experiment. Letting σ̂2

B(t) be the re-
alized among-population variance at generation t for a particular experiment, the
expected variance of this quantity among replicate experiments is

σ2[σ̂2
B(t)] ' 4σ4

A(0)
L− 1

[
1

2N2
fo

+ 2
(

1 +
1
Nfo

)
f2
t + σ2

f (t)

]
(11.3)

Although, in practice, one generally performs such a divergence experiment only
once, the utility of Equation 11.3 is that it is entirely expressed in terms of observ-
able parameters, so that some idea of the reliability of estimates of σ2

B(t) can be
determined in advance. In most situations, the terms in Equation 11.3 involving the
founder number (Nfo) will be of second or third order and can be ignored.

The variance σ2
f (t) in the amount of actual inbreeding between individuals in

the population requires additional comments. This has been examined in detail in
Lynch (1988), drawing heavily from the results of Weir et al. (1980) and Cockerham
and Weir (1983). For freely recombining loci, σ2

f is zero when the pedigree structure
is fixed, e.g., obligate selfing, full-sib mating, the maximum avoidance systems of
Wright (1921), and the circular systems of Kimura and Crow (1963); and even with
fairly tightly linked loci, σ2

f (t) is generally negligible in any generation under selfing
or full-sib mating. However, under most natural mating schemes, some individuals
mate by chance with closer relatives than do others. This results in variation in f

among members of the same population, which because of sampling, accumulates
as among-population variance in f. The theoretical value of σ2

f (t) under different
systems of mating is of special interest because empirical studies usually do not
record the essential pedigree information for its computation. For larger population
sizes, even with unlinked loci, if the sexes are separate and matings are monogamous,
its squared coefficient of variation [CV(ft)]2 = σ2

f (t)/f2
t can attain values of 0.1 to

1.0 in the first two to four generations of isolation, which is enough to contribute
significantly to σ2[σ̂2

B(t)]. However, after six or so generations have passed, σ2
f (t) can

be safely ignored regardless of the population size, even with tightly linked loci.
Ignoring the initial founder effect, these results indicate that the coefficient of

variation of the among-population variance is
√

2{1 + [CV(ft)]2}/(L− 1), which is
generally on the order of

√
2/L, although in some cases being as high as 2/

√
L.

Thus, studies of phenotypic divergence need to have very large number of replicates
to be statistically reliable. For example, if it is desirable to reduce the standard error
of the among-line variance to 10% of the expectation under the null hypothesis of
neutrality and additivity, a minimum of 200 lines should be studied.

One can assess the fit of the additive theory to actual data under two different
settings. In the first, we have a single estimate of the among-line variance and we
compare this result to the value expected from theory (see Example 11.2). In the
second setting, we have a series of among-line estimates at different time points, al-
lowing us to consider the temporal pattern of increase in σ2

B , which as noted above,
should eventually reach a constant as f → 1. When such a temporal sequence of
Var(B, t) is available, these may be regressed on ft. Under the null hypothesis of
neutral additive genes, from Equation 11.1b the expected slope of such a regression
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is 2σ2
A(0). However, because of shared ancestry, consecutive estimates of mean phe-

notypes obtained from the same lines are nonindependent (Equation 11.2), violating
a fundamental assumption of ordinary least-squares (OLS) regression analysis, and
generalized least squares (GLS) must be used instead (Chapter 16, LW Chapter
8). For example, once the lines have become completely inbred (and ignoring muta-
tion), all future values of σ̂2

B(t) must be fixed, and therefore should not be given equal
weight in the regression analysis. The expected covariance of σ̂2

B between generations
with inbreeding levels ft and ft′ is

σ[σ̂2
B(t), σ̂2

B(t′)] ' 4σ4
A(0)

L− 1

[
1

2N2
fo

+ 2
(

1 +
1
Nfo

)
ftft′ + λt

′−t
1 σ2

f (t)

]
for t < t′ (11.4)

where λ1 = 1− 1/(2N). Lynch (1988) provides approximate expressions for the stan-
dard errors of the slope and intercept that account for the intrinsic correlations in
the data, assuming measurements of Var(B, t) in progressive generations. Chapter 16
also considers the same problem, but in the context of response in a selection exper-
iment and frames the solution in a GLS framework. The variance of the regression
coefficient increases with the duration of the experiment, but is essentially constant
after the fourth generation of inbreeding. At that point, the standard error ranges
from approximately 4σ2

A(0)/
√
L under obligate self-fertilization to 3σ2

A(0)/
√
L with

larger Ne, implying coefficients of variation in the range of 1.5/(f
√
L) to 2/f

√
L. For

large f , these are not greatly different from the sampling variances of single-point
estimates noted above.

Confidence Intervals on a Sample Variance

Given the critical role played by the sample variance in empirical tests of the
additive-drift model, we digress here to briefly consider a few statistical issues related
to estimating a variance from a sample. Provided individual observations used to
estimate a sample variance are uncorrelated with yi ∼ N(µ, σ2), then (LW Equation
A5.14c) for a sample of size n we have for Var =

∑
(yi − y)2/(n− 1) that

(n− 1)Var ∼ σ2χ2
n−1 (11.5a)

As a result, confidence intervals for the true variance σ2 based on the observed
sample variance Var follow from critical values for a χ2 distribution. Letting Xp,n

satisfy Pr(χ2
n ≤ Xp,n) = p, then

Pr(Xα/2,n ≤ χ2
n ≤ X1−α/2,n) = 1− α (11.5b)

From Equation 11.5a, substituting (n− 1)Var/σ2 for χ2
n−1, we have

Pr
(
Xα/2,n−1 ≤

(n− 1)Var
σ2

≤ X1−α/2,n−1

)
(11.5c)

= Pr
(

1
Xα/2,n−1

≥ σ2

(n− 1)Var
≥ 1
X1−α/2,n−1

)
= 1− α (11.5d)
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giving

Pr
[(

n− 1
X1−α/2,n−1

)
Var ≤ σ2 ≤

(
n− 1

Xα/2,n−1

)
Var

]
= 1− α (11.6)

This motivates a (1− α)100% confidence interval for the true variance σ2 given the
observed sample variance Var. As shown in Figure 11.1, confidence intervals for σ2

are asymmetrical about Var, and tend to be quite large even for modest sample
sizes.

— Insert Figure 11.1 Here–

We can also use Equation 11.5c to access the significance of an observed sample
variance given some assumed value σ2

0. Rearranging Equation 11.5c gives

Pr
[(

σ2
0

n− 1

)
Xα/2,n−1 ≤ Var ≤

(
σ2

0

n− 1

)
X1−α/2,n−1

]
= 1− α (11.7)

An observed sample variance outside of this interval is said significantly different
at level α from that expected under the null. Figure 11.1 plots these critical values
(scaled by σ2

0) as a function of sample size. Equation 11.7 gives critical values for a
two-sided test. Values for one-sided tests easily follow by replacing α/2 by α in the
suitable upper or lower critical value.

If the true variance is really σ2
1 6= σ2

0, then the power (LW Appendix 5) for this
parameter value is just the probablity that a sample variance falls outside of the
interval given by Equation 11.7, which is a function of the sample size n and the
assigned significance α for the test. Letting β denote the probability of a type II
error (failing to declare a test significant when the null is false), we can obtain this
from Equation 11.7 by noting that now [(n−1)/σ2

1 ] Var ∼ χ2
n−1. Multiplying all terms

of Equation 11.7 by (n− 1)/σ2
1 gives the probablity β of a sample variance failing to

be declared significant as

β = Pr
[(

σ2
0

n− 1

)(
n− 1
σ2

1

)
Xα/2,n−1 ≤ χ2

n−1 ≤
(

σ2
0

n− 1

)(
n− 1
σ2

1

)
X1−α/2,n−1

]
= Pr

[(
σ2

0

σ2
1

)
Xα/2,n−1 ≤ χ2

n−1 ≤
(
σ2

0

σ2
1

)
X1−α/2,n−1

]
(11.8a)

Hence, the power 1− β is

Pr
[
χ2
n−1 ≤

(
σ2

0

σ2
1

)
Xα/2,n−1

]
+ Pr

[
χ2
n−1 ≥

(
σ2

0

σ2
1

)
X1−α/2,n−1

]
(11.8b)

Example 11.1. Consider a sample variance estimated from n = 10 observations (e.g.,
the between-group variance estimated from the means of ten replicate lines). Since
Pr(χ2

9 ≤ 2.700) = 0.025 and Pr(χ2
9 ≤ 19.023) = 0.975, Equation 11.6 gives the 95%

confidence interval (α = 0.05) on the true variance σ2 as between (9/19.023)Var and
(9/2.7)Var, or 0.473·Var to 3.333·Var, for an uncertainty in σ2 spanning almost a full
order of magnitude.
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What observed values of the sample variance are unlikely given an assumed variance
of σ2

0? From Equation 11.7, the upper and lower critical values (for a two-sided test
with α = 0.05) are (2.700/9)σ2

0 = 0.3 · σ2
0 and (19.023/9)σ2

0 = 2.11 · σ2
0 . Finally, what

is the power of this design (again taking α = 0.05) when σ2
1 = σ2

0/2? Equation 11.8b
gives the power as

Pr
(
χ2

9 ≤
2.700

2

)
+ Pr

(
χ2

9 ≥
19.023

2

)
= 0.39

and hence a type II error rate of 61% when the true variance is half the assumed
variance. A similar calculation assuming σ2

1 = 2σ2
0 gives a power of 0.20, or a type

II error rate of 80%. Useful R commands for these calculations are pchisq(x,n) ,
which returns Pr(χ2

n ≤ x), and hence 1- pchisq(x,n) returns Pr(χ2
n ≥ x), while

qchisq(p,n) returns Xp,n.

Empirical Observations

As an example of the application of the preceding results, consider the results from
a large drift experiment with laboratory cultures of the flour beetle Tribolium casta-
neum (Rich et al. 1984). The authors followed twelve replicate populations at four
population sizes (1:1 sex ratio, random mating) over 20 consecutive generations.
Each generation, the mean pupal weight (in µg) of each population was obtained
from a bulk sample of 100 random individuals. The additive genetic variance was
estimated to be 460 in the base population. The observed Var(B, t) are plotted as
a function of ft in Figure 11.2, along with the expected divergence 2σ2

A(0)ft = 920ft
(solid lines). The dashed lines, obtained by using Equation 11.3 for the expected
variance and substituting this into Equation 11.7 (using α = 0.05 and n = 12), give
the limits of the among-population variance beyond which there is less than a 5%
chance for the realization of the drift process under the null to generate these values.
Since these bounds ignore measurement error, they may be regarded as conservative
confidence limits (as they assumed a smaller variance and hence are too narrow).
Nevertheless, almost all of the observations, with the exception of the clusters of the
late generations at N = 10 and 20, lie within these limits. The least-squares regres-
sions of the data are given by the dotted lines. The slope of each regression is less
than the expected 920, but all are within two standard errors of the expectation.
The observed patterns are fairly consistent with a hypothesis of random drift of
neutral additive genes. The observed declines in Var(B, t) late in the experiment at
the two smallest population sizes may have simply arisen by chance and remained
there due to intergenerational correlations (Equation 11.2).

–Insert Figure 11.2 Here–

The results of some other short-term divergence experiments given in Figure
10.3 show no evidence for nonlinear increases in the among-population variance
with inbreeding. Eisen and Hanrahan (1974) have argued that the divergence of
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growth and reproductive rates in inbred lines of mice is more rapid than can be
accounted for by the additive genetic variance in the base population, and Bryant
et al. (1986) suggested the same for morphological traits in bottlenecked housefly
lines. The implication of these authors is that some nonadditive variance is converted
by inbreeding into σ2

A (Chapter 10), leading to a faster between-line divergence. In
neither case was it verified that the departures from expectations were significant,
but this lack of significance is tempered by the low power of their designs.

Lande’s F Test

Is an observed divergence over a modest amount of time significantly different than
expected by drift? For the case in which one has only a single estimate of the
among-population divergence, Lande (1977) suggested the statistic

F =
Var(B, t)

t ·Var(A, 0)/Ne
(11.9a)

as a test for neutrality. As noted by Lande, under approximate assumptions, this
follows an F distribution, which we can show as follows. Assuming the trait is
normally distributed, the sample mean yi ∼ N [µ(0), σ2

B(t)], where we have assumed
that sampling variance terms are small enought to be ignored. From Equation 11.5a,

Var(B, t) =
1

L− 1

L∑
i=1

(yi − y·)2 ∼ σ2
B

L− 1
χ2
L−1 (11.9b)

Ignoring the (usually) small founder effect, Equation 11.1b gives

σ2
B(t) = 2ftσ2

A(0) = 2

[
1−

(
1− 1

2Ne)

)t]
σ2
A(0) ' tσ2

A(0)/Ne for t¿ Ne (11.9c)

and hence
Var(B, t) ∼ tσ2

A(0)/Ne
L− 1

χ2
n−1 (11.9d)

Assuming that Var(A, 0) is a good estimate of σ2
A(0), substitution into Equation

11.9a gives

F '
χ2
L−1

L− 1
∼ FL−1,∞

The last step follows from the definition of an F distribution (LW Appendix 5).
Hence Lande’s F statistic follows an F distribution with L − 1 numerator and in-
finite denominator degrees of freedom. More generally, since σ2

A(0) is estimated by
Var(A, 0), the denominator degrees of freedom are those associated with this esti-
mate.

A couple of approximations were required to reach this point. One check of their
validity is that if x ∼ σ2χ2

n/n, then σ2(x) = 2σ4/n (LW Equation A5.15b). Hence,
the numerator should have a variance approximately equal to 2[2ftσ2

A(0)]2/(L − 1).
Ignoring the added contribution from sampling error, this can be seen to be approx-
imately true for large Nfo by reference to Equation 11.3. However, with selfing and
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full-sib mating, the expected variance is about twice and 1.5 times too high respec-
tively. Thus, Lande’s approach should be restricted to lines with at least moderate
effective size. Moreover, as we will see below, all of the proceeding formulae for σ2

B

become questionable for t > Ne, because they ignore the contribution from new mu-
tations. Hence, Lande’s F test is best thought of as one for short-term divergence,
such as would be seen in a laboratory experiment or at most a modest amount of
time in a set of natural populations.

Example 11.2. Lande (1977) used Equation 11.9a to evaluate the results of a 12-year
divergence experiment involving five populations of Drosophila pseudoobscura (Ander-
son 1973). Two of the populations had been maintained at 25◦C, two at 27◦C, and
one at 16◦C. They were then raised in two common environments (16 and 25◦C) and
measured for wing length. Estimates of the additive genetic variance for these two
environments were 0.88 and 0.77, while the among-population variances were approx-
imately 6.62 and 4.37 respectively. An approximate upper bound for the number of
generations of divergence is t = 150, whereas the effective population size probably
always exceeded Ne = 1000. The use of these extreme bounds gives conservative es-
timates of F, making it more difficult to demonstrate diversifying selection on wing
length. Even so, the ratios of observed to expected among-population variance are
50 and 38, both of which are highly significant (comparing these with the critical F
ratio with four degrees of freedom in the numerator, and infinite degrees of freedom in
the denominator). Thus, the hypothesis that the observed line divergence is solely at-
tributable to random genetic drift can be rejected confidently. More likely, the different
thermal conditions resulted in selection for different wing lengths.

LONG-TERM DIVERGENCE

Our previous results were simply concerned with how any initial variation is parti-
tioned among lines during drift/inbreeding. While this is occurring, new variation is
constantly being generated by mutation, further driving divergence (Haldane 1949).
Polygenic mutation was first incorporated into the theory of population divergence
by Dempster (appendix in Bailey 1959) and was subsequently studied by Lande
(1976), Chakraborty and Nei (1982), and Lynch and Hill (1986). Again focusing on a
character with a purely additive genetic basis, starting with an ancestral-population
genetic variance of σ2

A(0), and assuming the infinite-alleles model, the expected vari-
ance of genotypic means for replicate populations isolated t generations in the past
is

σ2
B(t) = 2σ2

mt+ 2[σ2
A(0)− 2Neσ2

m][1− e−t/(2Ne)] (11.10)

where σ2
m is the per-generation mutational rate of input of genetic variance, as

described in Chapter 10. This expression shows that as t becomes large, the expected
rate of increase of the among-population variance for a neutral quantitative trait
becomes a constant 2σ2

m per generation. The same formulation applies to the among-
species genetic covariance for a pair of traits, if the mutational rate of production
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of covariance between the traits is substituted for σ2
m (Lande 1979).

Thus, under the infinite-alleles model, the asymptotic divergence rate is in-
dependent of the population size, just as it is in the neutral theory of molecular
evolution (Chapter 6; Kimura 1983). Although the expected number of new mu-
tations entering a population each generation is 2Nu per locus, the probability of
fixation of a new mutation is its initial frequency 1/(2N), so the expected number
of mutations fixed per locus per population per generation is simply u. For a set
of L populations, with each fixed mutation causing an increase in expected among-
population variance of ∼ E[(2a)2], and n loci contributing, the asymptotic divergence
rate is nuLE[(2a)2/L] = 2σ2

m.

Under the assumptions of the infinite-alleles model, the asymptotic divergence
rate of 2σ2

m is a fairly general result. It is independent of the degree of dominance of
new mutations, of the linkage relationships of the constituent loci, and of the mating
system (Lynch and Hill 1986). This is because both dominance and gametic-phase
disequilibrium are transient properties of alleles en route to loss or fixation, and
not cumulative phenomena, and because the probability of fixation of a new neutral
mutation is equal to its initial frequency regardless of the breeding system.

How long should populations be isolated before one should start to worry about
the contribution of new mutations to their divergence? From Equation 11.10, it
can be seen that this depends on the initial level of genetic variance and on the
effective sizes of the derived isolates. In Figure 11.3 it is assumed that the initial
base population is in drift-mutation equilibrium, so that σ2

A(0) = 2Neσ2
m, and that

the isolated lineages have rapidly attained the same effective sizes (Ne). Under these
circumstances, by the time Ne generations have elapsed, polygenic mutation subse-
quent to the isolation event has caused about 20% of the divergence, whereas for
t > 3Ne generations, the majority of the divergence is due to new mutations.

–Insert Figure 11.3 Here–

As emphasized in the preceding chapter, alternatives exist to the infinite-alleles
model, raising questions about the appropriate structure of a neutral null model. For
example, Cockerham and Tachida’s (1987) model, which assumes a finite number of
alleles with each new mutational effect being independent of the prior allelic state
(the house-of-cards model), yields an equilibrium among-population variance

σ2
B = 2[1− E(H)]σ2

A(∞) (11.11)

where from Chapter 10, E(H) is the expected heterozygosity per locus, and σ2
A(∞) =

2nE(a2) is the expected additive genetic variance in a population of infinite size. Note
that under this model, not only does the among-population variance not build up in-
definitely, but as 4Neu→∞, driving the heterozygosity to 1.0, the among-population
component of variance asymptotically approaches zero. This is because under the
house-of-cards model, replicate populations that are each effectively infinite in size
will individually harbor the same alleles with the same frequency spectrum defined
by the mutational interconversion rates.

If nothing else, these dichotomous results indicate that although neutral models
are essential to demonstrating the necessity of invoking natural selection to explain
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an observed pattern of divergence, the actual construction of the null model depends
on unresolved biological issues. Using the Zeng-Cockerham (1993) bridge model
examined in Chapter 10 (wherein the effect of a mutant allele is given by am = τao+a,
where ao is the effect in the ancestor and a a random deviation), the equilibrium
among-population variance becomes

σ2
B =

4E(a2)
(1− τ)2[1 + 4Neu(1− τ)]

(11.12)

where τ = 1 under the Lynch-Hill model (infinite alleles) and 0 under the Cockerham-
Tachida model. For τ < 1, the approach to the equilibrium level of divergence is de-
fined by the mutation rate (u), assuming an identical Ne in the base and descendant
populations,

σ2
B(t) = [1− (1− u)2t]σ2

B (11.13)

and hence quite slow (approximately 2u per generation).
Finally, we note that the expression for the variance of the among-population

variance (i.e., the variance of σ2
B(t) among replicate experiments with mutational

input) is algebraically complex, and has only been worked out for the infinite-alleles
model (Lynch and Hill 1986). However, if it is assumed that the number of loci
is large and the distribution of mutational effects is normal with mean zero, the
variance of the realized among-population variance approaches 2(2σ2

mt)
2/L for large

t. This is simply twice the square of the expected among-population variance. Thus,
for large t, the coefficient of variation of a realized among-population variance based
on L lines is expected to be on the order of

√
2/L, so as we have noted before, unless

L is quite large, estimates of σ2
B can deviate quite far from the expectation.

Effectively Neutral Divergence and the Estimation of Rates of Mutational
Variance

As discussed in detail in LW Chapter 12, the theoretical expectations of the neutral
model provide the basis for estimating the rates of polygenic mutation. Starting from
an inbred base population, experimental lines with known times of divergence can
be used to estimate the amount of polygenic mutation that is necessary to account
for the distribution of the resultant mean phenotypes. In one of the earliest endeav-
ors of this sort, Russell et al. (1963) started with several lines of maize that had
been maintained by prolonged self-fertilization. They then performed a dichotomous
branching experiment for five generations in which each plant was self-fertilized to
produce two new daughter sublines. Seed was saved from each generation, so that
at the end of the experiment members of all generations could be assayed simulta-
neously in a common environment, and then sib analysis was used to estimate the
additive genetic variance for the total population each generation. Assuming the
within-population variance to be in drift-mutation equilibrium, this type of popu-
lation expansion should give rise to an average rate of increase in the total genetic
variance of 2σ2

m/generation. In accordance with this prediction, the regressions of
the genetic variance on time were positive for every character investigated (Figure
11.4). The rate of polygenic mutation for each of the traits is thus estimated by
one-half the slope.
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Results from many other experiments of this sort were reviewed in LW Chapter
12. Although a number of additional results have emerged since then, most of these
are confined to a small number of model systems, and the conclusions reached in
our earlier review remain unaltered. Here, we simply give a brief update, providing
references only to post-1998 papers. Most estimates are framed in terms of the mu-
tational heritability, h2

m = σ2
m/σ

2
e . Estimates of h2

m for a diversity of morphological,
physiological, and life-history traits in D. melanogaster are consistently in the range
of 0.001 to 0.005. Mutational heritabilities for body size and life-history traits in ne-
matodes fall in the range of 0.001 to 0.008 (Vassilieva et al. 2000; Baer et al. 2006;
Ostrow et al. 2007), and the same is true for life-history traits in the microcrus-
tacean Daphnia pulex and in the grape phylloxera Daktulosphaira vitifoliae (Downie
2003). Thus, essentially all studies with invertebrates imply 0.001 < h2

m < 0.01 for
complex traits.

Although the numbers of studies are still rather limited, estimates of h2
m for

some land plants and vertebrates appear to be several-fold higher than those noted
above. Mutational heritabilities for growth and reproductive traits in Arabidopsis
thaliana are in the range of 0.001 to 0.008 (Schultz et al. 1999; Shaw et al. 2000;
Chang and Shaw 2003; Kavanaugh and Shaw 2005), but the average h2

m for maize,
from the study of Russell et al. (1963), is 0.0092. In addition, mutational heritabil-
ities for morphological and reproductive traits in mice fall in the range of 0.003 to
0.023 (Casellas and Medrano 2008). Thus, there is at least a rough indication that
mutational heritabilities are increased in organisms with longer life spans, which
might in principle be a consequence of elevated rates of mutation per generation
(Chapter 4).

Finally, it should be emphasized that in all mutation-accumulation experiments,
fitness declines in the vast majority of lines, indicating that mutations are on average
deleterious, although the fraction of mutations that are beneficial remains unclear
(Shaw et al. 2002; Keightley and Lynch 2003; Charlesworth and Eyre-Walker 2007;
Eyre-Walker and Keightley 2007; Dickinson 2008; Hall et al. 2008). Equally impor-
tantly, for characters that influence fitness only indirectly (e.g., morphology), the
fraction with negative pleiotropic effects on fitness remains unclear. Hence, estimates
of h2

m from mutation-accumulation experiments with their very small effective popu-
lation sizes may overestimate, perhaps significantly, the actual usable amount of h2

m

for most populations. Further, if one imagines that deleterious pleiotropic effects are
often small, as Ne increases, the fraction of all new mutations which are effectively
neutral decreases, so that the effective value of h2

m is likely a decreasing function of
Ne. What is unclear is whether this plateaus fairly quickly or continues to decrease
over a large range of Ne. Resolving these issues are critical to any attempts to utilize
estimates of mutational heritability to infer long-term mechanisms of evolution, as
illustrated in the following section.

–Insert Figure 11.4 Here–

TESTING THE NULL HYPOTHESIS OF NEUTRAL PHENOTYPIC
DIVERGENCE
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One of the enduring problems in evolutionary biology is the struggle to demonstrate
that various aspects of biodiversity are products of diversifying selection. It is one
thing to concoct plausible adaptive scenarios to explain patterns of morphological,
physiological, or behavioral divergence, but quite another to formally demonstrate
that an observed level of divergence cannot simply be explained by a null model
of random genetic drift. The preceding theory suggests a number of ways in which
this might be done. Lande’s F test (Equation 11.9) is one such approach, wherein
one compares the amount of divergence across a set of lines/populations with the
expected between-population variance (σ2

B). As mentioned, this test is best applied
over short time scales (t << Ne), such as might occur in a selection experiment or
over a short to modest amount of time in nature.

Here we focus on tests potentially over much longer time scales and ask whether
an observed amount of total divergence d = |µ(t) − µ(0) | within a single lineage
is excessively large (or small) relative to drift. As with comparisons based on the
amount of divergence over a set of lines or populations, the expected total divergence
within a single lineage is also a function of the between-population variance σ2

B. Tests
for unusual amounts of divergence (large or small) are framed by asking what critical
values for an effective population size Ne or mutation variance σ2

m are consistent with
the amount of divergence and whether these values are biological reasonable. If they
are, the hypothesis of drift alone accounting for the pattern is not rejected. It should
be stressed that considerable selection could have shaped the observed pattern, and
yet we can still fail to reject the drift model.

While these tests are widely used, they have several important caveats. For any
analysis of this sort to be meaningful, one must be confident that the magnitude
of population divergence is genetic, and not inflated by environmental effects on
phenotypes. This is clearly problematical when populations cannot be assayed in a
“common-garden environment”, such as using data entirely from the fossil record. In
addition, the divergence of means is best estimated by a formal analysis of variance
(e.g., Bjöklund 1991) so as to eliminate the inflation of the divergence by sampling
error of the within-population means. A further complication is that expressions for
critical effective population sizes or mutation rates ignore the sampling error of all
other terms. Finally, as we have discussed, the infinite-alleles model for neutral trait
evolution (where σ2

B is an ever-increasing function of time) may be too extreme,
and the usable amount of σ2

m and h2
m likely decreases with increasing Ne. Combining

all these considerations, it should be clear that the following tests for neutrality
cannot be regarded as very rigorous in a statistical sense, and are best employed as
diagnostic guides for future study.

Lande’s Brownian Motion Model of Neutral Trait Evolution

The basic structure of tests for neutral trait divergence is that µt ∼ (µ0, σ
2
B [t]),

namely the mean at time t has as expected value equal to the initial mean µ0 and
has variance σ2

B(t). To proceed further, we need additional assumptions about the
actual distribution from which the means are sampled, which is generally assumed
to be Gaussian (normal). Support for this assumption traces back to Lande (1976),
who framed mean divergence in terms of a Brownian motion process (Appendix 1).
Under the simplest Brownian motion model, if the current value of a random variable
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(such as a population mean) is x, the change in value over a small time interval is
zero with constant variance b. Under this model, the distribution of values at time
t is normal with mean x0 (the initial value) and variance σ2

t = bt (Appendix 1).
Assuming a strictly additive model with no environmental trends, Lande noted that
if we sample Ne individuals, their mean breeding value (i.e., the trait mean) would
have a sampling variance each generation of σ2

A/Ne, which is used for b. Hence, at
generation t, the distribution of phenotypic means is approximately normal with
expected mean µ0 (the initial mean) and variance

σ2
t = tσ2

A/Ne (11.14a)

This assumes a constant additive variance as well as a constant effective population
size during the period of divergence being considered. Since drift can also change
σ2
A, the assumption of a constant σ2

A is reasonable only for t ¿ Ne, unless the
initial variance is close to its mutation-drift equilibrium value. More generally, if
the additive variance and Ne are both changing each generation, then under the
Brownian motion model (taking the first time point at i = 0 and the last at i = t− 1
bringing us up to generation t),

σ2
t =

t−1∑
i=0

σ2
A(i)/Ne(i) (11.14b)

For example, assuming a constant effective population size, the additive genetic
variance at time t under drift and mutation is given by Equation 10.19b. Substituting
this into Equation 11.14b gives

σ2
t =

1
Ne

t−1∑
i=0

[
2Neσ2

m + [σ2
A(0)− 2Neσ2

m] exp(−i/2Ne)
]

= 2σ2
mt+ [σ2

A(0)− 2Neσ2
m]

(
1
Ne

t−1∑
0=1

exp(−i/2Ne)
)

(11.14c)

which recovers our previous expression (Equation 11.10) for σ2
B under drift and

mutation by noting that

1
Ne

t−1∑
i=0

exp(−i/2Ne) ' 2(1− exp[−t/2Ne)] (11.15)

This useful identity follows by recalling that the partial sum of a geometric series is

k−1∑
i=0

xi =
1− xk
1− x .

Taking x = exp(−1/2Ne) and noting from a first-order Taylor series that

1− exp(−1/2Ne) ' 1−
(

1− 1
2Ne

)
=

1
2Ne

returns Equation 11.15.
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Thus, as expected, the variance σ2
t of the Brownian motion process just corre-

sponds to the between-group drift variance σ2
B(t). The notion that (under a pure

drift model) the additive variance changes until it reaches a drift-mutation equilib-
rium value has resulted in different parameterizations of σ2

t in tests of drift (Lande
1976, Turelli et al. 1988). Lande assumed a constant variance, σ2

t = tσ2
A/Ne, but

since part of his concern was evolution in the fossil record, he replaced σ2
A by h2σ2

z ,
giving

σ2
t = h2σ2

zt/Ne (11.16a)

His logic was that σ2
z could be estimated directly from a sample in the fossil record,

while h2 values for many morphological traits fall within a relatively narrow window.
Hence, either a representative value for h2 could be used, or different values tried
to examine the robustness of any conclusions. This results in a test based on joint
considerations of Ne and h2. Conversely, Turelli et al. (1988) note that if the popu-
lation has been at its current size sufficiently long enough so that additive variance
is at its mutation-drift equilibrium value, then (assuming the infinite-alleles model)
σ2
A = 2Neσ2

m, giving
σ2
t = 2tNeσ2

m/Ne = 2tσ2
m, (11.16b)

Under this setting, Ne does not appear and tests are based on whether the required
values of σ2

m to be consistent with drift are plausible.

Tests Based on the Brownian Motion Model

Under the Brownian motion model, µt ∼ N(µ0, σ
2
t ), leading to tests of either exces-

sive (or too little) divergence based on simple Normal theory. Suppose an absolute
divergence of d = |µ(t)− µ(0) | is observed. The probability of this under drift alone
is given by

Pr ( |µ(t)− µ(0) | ≤ d) = Pr
(
|µ(t)− µ(0) |

σt
≤ d
√
σt

)
= Pr

(
|U | ≤ d

√
σt

)
(11.17)

where U is a unit normal random variable. Lande’s (1976) original test was based
on the constant variance assumption, σ2

t = h2σ2
zt/Ne. Recalling that Pr(|U | ≤ 1.96) =

0.95, Lande’s critical effective population size below which there is a< 5% probability
of a deviation as large as d satisfies

1.96 =
d√

th2σ2
z/Ne

, implying (1.96)2th2σ2
z = Ned

2 (11.18a)

Equation 11.18a allows one to determine critical values for either divergence time
t, heritability h2, or Ne that are consistent with drift. For example, solving for Ne
gives

N̂e =
t · h2 · 1.962

d2
∗

= 3.84 · t h
2

d2
∗

(11.18b)

where d∗ = d/σz is the divergence scaled in phenotypic standard deviations. Drift
with Ne > N̂e is unlikley to generate the observed amount of divergence. For a more
general test of significance level α, one replaces 1.96 by z1−α/2. Likewise, if one is
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comparing the means of two species that had a common ancestor τ generations ago,
then t = 2τ and d is the absolute difference between their means.

Example 11.3. Reyment (1982) observed a change of 1.49σz over roughly 5 x 105

generations in the size of a Cretaceous foraminifer. Taking a typical heritability value
of 0.3, Equation 11.18b gives the largest population size consistent with this amount
of divergence as

N̂e = 3.84 · t h
2

d2
∗

= 3.84 · 5× 105 · 0.3
1.492

' 260, 000

However, paleontological data suggests that the effective population size was greater
than 106, suggesting that drift could not account for such a rapid divergence. Assuming
h2 values of 0.5, 0.7, and 1 yields critical Ne values of 433,000; 607,000; and 867,000,
so that only for assumed h2 values close to one does the critical maximal size under
drift approach the assumed size of Ne > 106.

As noted by Turelli et al. (1988), the population size test given by Equation
11.18b is really two-sided. Lande’s original test examines whether Ne may be too
large to account for the observed divergence (as might occur if directional selection
was changing the mean). However, one can also inquire as to whether the stability
of population means is too great to be compatible with neutrality (too little di-
vergence). For a two-tailed test for neutrality with a 5% overall significance level,
we use a 2.5% probability cutoff for the observed divergence being too small to be
consistent with the model and a 2.5% cutoff for excessively high divergence. Since
Pr(|U | ≥ 2.24) = 0.025, the critical maximum population size in a test that evolution
has been too fast for drift is

N̂e(fast) ≤
t · h2 · 2.242

d2
∗

= 5.02 · t h
2

d2
∗

(11.19a)

Since populations with smaller Ne should show more drift (and divergence), Equa-
tion 11.19a gives the largest value of Ne consisted with drift generating the observed
divergence. If our assumed Ne exceeds N̂e(fast), we reject the hypothesis that drift
can account for this fast a divergence (using the values in Example 11.3 returns
Ne ' 340, 000). Likewise, since Pr( |U | < 0.03) = 0.025, the critical minimal popula-
tion size in a test that evolution has been too slow (support for stabilizing selection)
is

N̂e(slow) ≥ t · h2 · 0.032

d2
∗

= 0.0009 · t h
2

d2
∗

(11.19b)

If our assumed Ne is less than N̂e(slow), we reject the hypothesis that drift can
account for this slow a divergence (applying Equation 11.19b with the values from
Example 11.3 gives a critical minimal Ne of 61). More generally, for a two-sided test
at overall significance level α (α/2 for too much divergnece and α/2 for too little),
2.24 and 0.03 are replaced by z1−α/4 and z(1+α/2)/2.



NEUTRAL DIVERGENCE OF QUANTITATIVE TRAITS 17

The second important modification offered by Turelli et al. (1988) is that the
equilibrium additive variance 2Neσ2

m is a function of Ne, allowing us to alternatively
express critical values (for too much or too little divergence), not in terms of the
effective population size but rather in terms of the mutational heritability σ2

m. Now
σ2
t = 2tσ2

m and Equation 11.18a becomes (1.96)2t(2Neσ2
m) = Ned

2, or (for too much
divergence using the two-sized correction, 2.24 for 1.96), the smallest value for σ2

m

below which drift is unlikely (at α = 0.05) to account for the divergence is

σ2
m(fast) =

d2

(2.24)22t
= 0.10

d2

t

Thus, if estimates of σ2
m and t are available, one can test the neutral hypothesis

without an estimate of Ne. To compare this with Equation 11.19a (which uses the
scaled divergence d∗), we express this in terms of the scaled mutational variance.
Since σ2

e = (1− h2)σ2
z ,

σ2
m∗ =

σ2
m

σ2
z

= (1− h2)(σ2
m/σ

2
e) = (1− h2)h2

m (11.20)

Taking a generous range of heritability values (0.25 - 0.75) and recalling the empirical
range for the mutational heritability hm we typically expect σ2

m∗ to fall within the
range of 10−2 to 10−4.

The hypothesis of drift is rejected if the mutational variance is too small to
account for the observed divergence

σ2
m∗(fast) ≤ 0.10 · d

2
∗
t

(11.21a)

Just as a smaller Ne allows for more divergence (and hence we set a critical upper
value in Equation 11.18a), so does a larger mutational variance σ2

m, and we set a
critical lower value. Above that value drift could account for the observed divergence.

Example 11.4. Let’s return to Reyment’s foraminifer data from Example 11.3.
Using the original Lande model, we rejected the hypothesis that drift could have
accounted for the divergence. Applying Equation 11.21a, the hypothesis of drift ac-
counting for excessive divergence is not rejected when

σ2
m∗ < 0.10 · 1.492

5× 105
= 4.4× 10−7

Turelli et al. note that this is several orders of magnitude lower than typical values of
the scaled mutation variance, and thus this pattern of divergence is not too excessive
for drift.

Conversely, the divergence is too slow to be accounted for by drift if the assumed
variance is greater than the critical value

σ2
m∗(slow) ≥ d2

∗
2t · 0.0312

= 520.29 · d
2
∗
t

(11.21b)
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One important caveat for such tests of stabilizing selection is that laboratory–based
estimates of σ2

m∗ are measured under very small effective population sizes and hence
many to most deleterious pleiotropic effects are likely effectively neutral in these
settings (Chapter 6). As the population size increases, the actual usable amount of
polygenic mutational variance in a trait is likely considerably less than the labora-
tory estimates, perhaps by orders of magnitude. Hence, observations of stabilizing
selection based on the perceived polygenic mutation rate being to high to generate
so little divergence may be very biased and this test should be used with caution.

Which of the two variance assumptions (Equation 11.16a or 11.16b) should one
use in a test? In our view, the constant variance assumption (Equation 11.16a) is
less problematic, as the usable amount of σ2

m and h2
m may decrease with Ne. In such

cases, 2Neσ2
m/Ne may not be a constant over Ne, greatly complicating tests based

on critical mutational variances. Conversely, most trait heritabilities typically fall
within a modest window of values, and one can vary the assumed value of h2 to
examine its consequences.

Finally, it is worth noting that the methodology outlined above has primarily
been used to test the neutral hypothesis with two-point analyses (i.e., with phe-
notypic measures at two points in time in a vertical lineage, or from two extant
species derived from a recent common ancestor). A temporal series of data provides
a more powerful means of analysis, as it then becomes possible to look for statistical
trends in mean phenotypes or for correlations in rates of change in adjacent inter-
vals, neither of which are expected in a strictly neutral model (at least under the
infinite-alleles model) (Charlesworth 1984; Bookstein 1988; Estes and Arnold 2006).
For example, Bookstein (1989), using results from the theory of random walks, notes
that instead of considering the starting and ending points, if one instead considers
the largest (absolute) scaled deviation D∗ anywhere in the time series, one can ob-
tain tighter confidence intervals. One potential pitfall this with approach is that
if one has a rather sparse time series to consider, the critical values suggested by
Bookstein should instead be replaced by the order statistics for these values (which
can easily be generated via simulation). For example, with a time series of 5 points,
the largest deviation are expected to be less than a time series (over the same pe-
riod) that has (say) 500 sampled time points. Just as with a two-point divergence
analysis, environmental trends severely compromise this approach.

– Mike: Want to add a few sentences about testing this within a phylogeny? –

Divergence in Morphological Traits

Numerous attempts have been made to apply the above procedures, or simple vari-
ants of them, to data from the fossil record to test the hypothesis that levels of
morphological divergence over geological time scales have been driven by directional
selection. For example, in the first of such studies, Lande (1976) showed that change
in tooth-size dimensions over a 42 million year period in early horse evolution are
consistent with the hypothesis of random genetic drift if the heritabilities of the traits
had been near 0.5 and the long-term effective population size was smaller than 60,000
or so individuals. Given the generally high levels of heritability observed for mam-
malian morphological traits (Lynch and Walsh 1998), an assumption of h2 = 0.5 is
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not unreasonable, and the argument that the long-term Ne in such lineages could be
smaller than the critical value N∗e = 60, 000 is also plausible (Chapter 4), which would
imply that drift could have acted alone to cause the observed changes. Analyses of
tooth morphometrics in two additional lineages of extinct mammals (condylarths
and oreodonts) suggest critical effective sizes of 80,000 to 120,000 below which the
observed changes would be compatible with a neutral hypothesis. Thus, only if the
effective sizes of these ancient mammalian taxa were actually in excess of 105, a
matter that remains unclear, would the observed changes require some mechanism
of directional selection.

Several other studies of this nature have been applied to aspects of mammalian
skull evolution. For example, by taking the upper and lower limits to mutational
heritability, σ2

m/σ
2
e , to be 10−2 and 10−4, Lynch (1990) found that the rates of evo-

lution of cranial morphology in a wide array of placental mammalian lineages are
one to two orders of magnitude below the minimum neutral rate, and Lemos et al.
(2001) observed a similar pattern in marsupials. The only exception to this gen-
eral trend concerns the races of modern man, which appear to have diverged at a
rate slightly above the minimum neutral expectation (Lynch 1990; Ackermann and
Cheverud 2004; Roseman 2004). Although they leave many questions unanswered,
these kinds of results put in perspective previous arguments that rates of morpho-
logical evolution are exceptionally high in mammals, and especially so in the great
apes (e.g., Cherry et al. 1982; Wyles et al. 1983; Van Valen 1985). Clearly, the
predominant mode of evolution in mammalian skeletal morphology has been one
of stabilizing selection, not of strong diversifying selection. Similarly, Spicer (1993)
found widespread evidence of stabilizing selection on a variety of morphological
traits in Drosophila, but some caution is in order here as the tests were based on
critical mutation variances (Equation 11.21b). As mentioned, this approach likely
generates many spurious calls of too little divergence, and hence spurious calls of
stabilizing selection.

Divergence in Levels of Gene Expression

These types of comparative morphological studies can now be extended to molecular-
level traits (Fay and Wittkopp 2007). For example, modern genomics tools (such as
microarray analyses and RNA-Seq) allow us to measure the level of expression
for essentially the full repertoire of an individual’s genes. The amount of mRNA
present (either measured by the intensity of hybridization against probes for a gene
or directly from the amount present in massive sequencing of an RNA pool) is a
typically quantitative trait, showing both genetic and environmental variation, here
in the amount of transcript present. Thus, with appropriate controls, it is possible
to isolate the genetic component of gene-expression variance among individuals and
sometimes between closely related species.

The general conclusion from such work is that stabilizing selection plays a promi-
nent role in reducing levels of genetic variance in gene expression below the neutral
expectation – both within and among species, levels of variation are much lower
than expected based on presumed levels of mutational variance. For example, using
lines of the nematode C. elegans from a long-term (280 generations) mutation-
accumulation experiment, Denver et al. (2005) estimated σ2

m for several thousand
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genes. By comparing levels of variation among a global collection of natural isolates,
they found that ratios of standing levels of genetic variance to σ2

m were generally
no greater than a few hundred. Given that this ratio provides an estimate of 4Ne
under the assumption of neutrality in a selfing organism (as opposed to 2Ne in an
outcrosser), these observations provide a firm rejection of the hypothesis that gene
expression levels evolve in a neutral fashion. Rifkin et al. (2005) were able to esti-
mate mutational heritabilities for mutation-accumulation lines of D. melanogaster
by factoring out the variance at the individual fly level to obtain an estimate of σ2

e .
They found a median h2

m ' 2.4 × 10−5 across all genes, and showed that although
interspecific variance in the expression of a gene was correlated with its mutational
variance (in qualitative accordance with the neutral theory), the absolute level of
divergence was too low to be compatible with neutrality (consistent with the results
from Denver et al. 2005).

This conclusion of strong stabilizing selection on gene expression appears to
extend to mammals, despite the fact that the efficiency of selection would be ex-
pected to be reduced as a consequence of low effective population sizes (Chapter
4). For example, Lemos et al. (2005) found that levels of gene-expression variance
among intraspecific strains of mice average about two orders of magnitude below the
minimum neutral expectation, whereas those between mouse species and between
human and chimpanzee are eight to ten orders of magnitude too low for neutral-
ity. Evaluating primates more broadly (human, chimpanzee, orangutan, and rhesus
macaque), Gilad et al. (2006) found that the among-species variance in expression
of most genes did not increase with divergence time, contrary to the neutral expec-
tation; this study was particularly nicely designed in that it employed only DNAs
for which the sequences were identical across all four species.

Quite contrary to the preceding interpretation, Khaitovich et al. (2004, 2005)
have argued that gene expression in the great apes evolves in a largely neutral fash-
ion. However, their arguments are based on observations that are only loosely con-
nected with neutral expectations: a positive correlation between levels of within- and
among-species variation for the expression of different genes; and a linear increase in
among-species expression divergence with time. Because the genetic components of
within- and between-species variance are both driven by mutation, they are indeed
expected to be correlated under the neutral model. However, because gene expression
is a function of both the genetic and environmental background of an individual,
unless the latter is factored out in a quantitative-genetic analysis, such measures
provide uncertain information on the more relevant levels of genetic divergence.
Genes whose expression is strongly influenced by the environment may naturally
exhibit higher levels of variation both within and among samples. In addition, un-
less the actual rate of divergence is consistent with the rate of polygenic mutation,
linear patterns of evolutionary diversification need not imply neutrality, and may
instead be a consequence of random fluctuating selection. A further complication is
that Khaitovich et al. use human probes to measure differences in expression among
their species, but sequence divergence between the probes and target sites generate
reduced levels of hybridization, resulting in an increase in expression divergence over
time. Broadley et al. (2008) report a similar linear divergence of expression variance
with time in a series of 14 taxa in the Brassicaceae, but again the probe was based
on a single species (Arabidopsis). Thus, the conclusion that primate gene expression
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is evolving in a neutral fashion appears to be questionable, and has in fact been
essentially retracted by in a more recent analysis (Chaix et al. 2008), which suggests
an elevation in rate specific to the human lineage.

Example 11.5. As developed in Appendix 1, the Ornstein-Uhlenbeck process pro-
vides a model of Brownian motion drift coupled with a resorting force back to some
optimal value θ, as might be expected with drift and stabilizing selection. Bedford and
Hartl (2009) used such a process to fit the pattern of expression divergence within a
clade of seven species of Drosophila. Under the Ornstein-Uhlenbeck (OU) model, the
expected change in the mean value of a process at value x is a(θ−x), so that if x < θ,
it increases, while for x > θ it decreases. The parameter a which measures the strength
of the restoring force is also a measure of the strength of stabilizing selection. As with
Brownian motion, the value of the process at time t is normally distributed (Equation
A1.33b), but now with mean and variance

µt = xo exp(−at) + θ[1− exp(−at)], σ2
t =

b

2a
[1− exp(−2at)]

Thus for large t the mean value approaches the optimal value θ while the divergence
variance saturates at a value b/(2a), where b = σ2

A/Ne under the constant variance
model, giving an asymptotic variance of σ2

A/(2Nea). Bedford and Hartl found that,
in accordance with the OU model, the divergence variance does not linearly increase
with time, but rather quickly approaches an asymptotic value. They also introduced a
maximum likelihood estimator for a (and hence the strength of stabilizing selection)
using divergence data.

Taken together, these results suggest, perhaps not surprisingly, that at both
the phenotypic and gene-regulatory levels, mammalian evolution is primarily char-
acterized by periods of stabilizing selection, although relatively brief episodes of
directional selection cannot be ruled out. However, it must also be emphasized that
the interpretation of conservative rates of evolution is far from clearcut. In principle,
evolutionary divergence rates that are below the expectation of the Lynch-Hill model
may be a consequence of the general opposition of selection to all allelic changes as-
sociated with the trait, but there might also simply be a fraction of mutations that
is truly neutral and another that has strong negative pleiotropic effects on fitness.
In that case, an observed level of divergence could actually be entirely based on
neutral mutations, but with the appropriate measure of mutational variance being
lower than the actual value observed in mutation-accumulation experiments (where
even highly deleterious mutations can accumulate). Alternatively, if the Cockerham-
Tachida model is a more appropriate model, then one would expect cumulative levels
of divergence to plateau in time rather than to increase indefinitely, not because of
direct selective constraints but because of limited availability of alternative allelic
states.

Population Subdivision for Quantitative Traits
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An alternative approach to testing the neutral hypothesis of divergence focuses on
subpopulations of the same species, isolated by semipermeable migration barriers,
as discussed in Chapter 2. By obtaining allele-frequency estimates for a diversity
of neutral molecular markers from multiple subpopulations, one can partition the
allelic diversity for the entire metapopulation (measured as heterozygosity under
the assumption of panmixia) into its within- and among-subpopulation components
(Cockerham 1973; Nei 1987; Weir 1996). The fraction of diversity associated with
subpopulation divergence is generally called FST (or sometimes GST ) in deference
to Wright (1951), who first suggested this measurement of population subdivision.

Now consider a quantitative trait with a purely additive-genetic basis, and let
QST denote the level of population subdivision for allele frequencies at the loci under-
lying the trait. Letting the genetic variance for the trait in the entire metapopulation
under the assumption of panmixia be σ2

G, then from the theory developed earlier in
this chapter as well as in Chapter 10, the within- and among-subpopulation com-
ponents of variance can be represented as σ2

GW = (1 − QST )σ2
G and σ2

GB = 2QSTσ2
G,

respectively. It follows that

QST =
σ2
GB

σ2
GB + 2σ2

GW

(11.22)

While the term QST is do to Spitze (1993), Prout and Barker (1989) and Lande
(1992) also proposed this approach. This is a very general result, applying to a wide
range of population structures and migration patterns provided the character does
indeed have an entirely additive genetic basis (Whitlock 1999). Leinonen et al. (2006)
proposed the related measure PST based on phenotype measures of divergence, but
considerable caution is required when using this in place of QST (Brommer 2011).

Equation 11.22 provides a potential empirical method for testing the hypothesis
of neutral divergence among subpopulation means. If isolates of sufficient numbers
of families from multiple subpopulations can be grown in a common environment,
then appropriate statistical methods (Lynch and Walsh 1998) can be used to es-
timate σ2

GW and σ2
GB. The resultant estimate of QST can then be compared to a

parallel measure of subdivision (FST ) derived from putatively neutral markers. Un-
der the assumption of neutrality QST should not be significantly different from FST .
However, QST > FST is expected if subpopulation differentiation has been primarily
driven by adaptive divergence, whereas the opposite pattern is expected if the mean
phenotypes of all or most subpopulations are kept relatively uniform by stabiliz-
ing selection for the same optima. One of the first formal tests of QST = FST was
proposed by O’Hara and Merilä (2005), while Whitlock (2008) and Whitlock and
Guillaume (2009) provide a broad overview of the use of comparisons of QST and
FST in tests for selection, including an evaluation of the form of the distributions
of both statistics. Holand et al. (2011) provides a recent example of these tests in
action.

Because of the requirement for assays in a common-garden arena, joint studies
of QST and FST are not common. However, the majority of results, over a diverse
assemblage of animals and land plants, support a hypothesis of QST ' FST or QST >
FST (Leinonen et al. 2008). As the latter results are qualitatively consistent with
adaptive differentiation, they are clearly at variance with the observations on longer-
term divergence noted above.

One major caveat with respect to this strategy for testing for neutral divergence
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is that, even under neutrality, the expected value of QST will not necessarily equal
FST if the trait of interest is influenced by nonadditive genetic effects. This is because,
as outlined in Chapter 10 and above, with nonadditive gene action, the within-
and among-subpopulation components of genetic variation for neutral characters
under short-term divergence are no longer equal to σ2

GW = (1 − f)σ2
G and σ2

GB =
2fσ2

G (where f is the parameter estimated by FST ), but instead are influenced by
a number of higher-order terms. In general, because the within-population genetic
variance declines less rapidly with inbreeding under nonadditivity (and sometimes
even increases; Chapter 10), QST as defined by Equation 11.22 will tend to be smaller
than FST under neutrality, although exceptions do exist (Goudet and Büchi 2006;
Goudet and Martin 2007; López-Fanjul et al. 2003, 2006, 2007). By encouraging
the false impression of stabilizing selection, this general behavior makes conclusions
regarding adaptive divergence based on elevated QST conservative, while rendering
observations of QST < FST ambiguous.

QTL Analysis of Divergent Lines

The preceding approaches rely on large samples of multiple populations or at two
or more intervals. However, there is a situation in which one might test for adaptive
divergence with just a single cross between two isolated lineages. By examining a
battery of polymorphic markers segregating in the F2 generation of such a cross, one
may search for QTLs associated with phenotypic measures of various traits (Lynch
and Walsh 1998). Under the neutral hypothesis, the relative abundances of “plus”
and “minus” marker alleles associated with small vs. large phenotypes are expected
to be randomly distributed should not differ significantly from a 1:1 ratio.

This general strategy will be biased if the parental lines are intentionally selected
to have extreme phenotypes, as the high line would then naturally be expected to
be enriched with “plus” alleles. However, Orr (1998) suggested a way around this
problem. If enough QTLs have been identified so that their distribution of effects
can be approximated, given the level of phenotypic divergence between the lines, one
can computationally evaluate the probability that the observed number of “plus”
alleles in the high line could have arisen by chance. Although Orr (1998) gives a
few examples of the application of this method to some artificial systems, it has
not been extensively applied, the main limitation being the development of a fairly
accurate estimate of the distribution of QTL effects, which in turn requires a survey
of high-density markers in a substantial number of F2 individuals. However, the
recent success of high-density marker genome wide association studies (GWAS) for
mapping (especially in humans) may reawaken interest in Orr’s method.
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Figure 11.1. Confidence limits (A) and critical values (B) for σ2 estimated from a sample of n
observations. A (Top): Upper and lower values for the 95% confidence interval in σ2 based on
an observed sample variance Var. For example, for n = 10, the 95% confidence interval for σ2 is
0.44·Var to 3.33·Var. B (Top): Upper and lower 5% critical values for an observed sample variance
given an assumed variance σ2. For example, for n = 10, 95% of the values of Var are expected to
fall within the interval 0.30·σ2 to 2.11·σ2.
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Figure 11.2. Observed and expected levels of the among-population variance for pupal weight in
a divergence experiment with the flour beetle Tribolium. The lines are described in the text. Data
from Rich et al. (1984).
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Figure 11.3. The expected fraction of among-population variance attributable to mutations arising
subsequent to the isolation event. It is assumed that the base population is in drift-mutation
equilibrium, σ2

A(0) = 2Neσ2
m, with the same effective size as the daughter species, so that from

Equation 11.10, the divergence due to base-population variance is 2σ2
A(0)[1−e−t/(2Ne)]. To obtain

the actual number of generations of divergence for any population size, multiply the horizontal axis
by Ne.
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Figure 11.4. The increase in additive genetic variance (within- plus among-population compo-
nents) in an expanding set of lines of corn. From Russell et al. (1963).


