
Appendix 4

Multiple Comparisons: Bonferroni Corrections
and False Discovery Rates

FDR methods commonly take a list of p-values and then determine for each data set
how large the rejection threshold α can be made if we wish to keep the FDR below a bound

— Owen (2005)
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Often one is faced with interpreting a list of p values from tests of hypotheses, either from a
set of independent experiments all testing the same hypothesis or from a single experiment
wherein a large number of different hypotheses are tested. Both of these are examples of
multiple comparisons. In the former setting, the problem is to how best combine these
independent p values into a single global statement of the evidence (or lack there of) in
support of the common hypothesis. In the later setting, our concern is controlling error over
the entire collection of tests from a single experiment, and this topic forms the bulk of this
appendix.

Statistical analysis of a data set typically involves testing not just a single hypothesis,
but rather many (often very many!). This is especially true in the genomics era wherein a
single high dimensional experiment may test tens of thousands of hypotheses (such as
treatment-dependent expression over all the genes in a genome). For any particular test, we
may assign a preset probability α of a type I error (i.e., a false positive, declaring a test to be
significant, namely p ≤ α, when in fact the null hypothesis is true). Under this broad setting,
there are two different strategies for controlling error. First, if we expect that the vast majority
of the tests likely follow the null, then we are interested in controlling the experiment-wide
error rate, the probability of a false positive over all of the tests. The standard approach in
this setting is the classic Bonferroni correction — obtaining an experiment-wide error rate
of π over a set of n comparisons by declaring a test to be significant when p ≤ α = π/n.
However, this is usually far too stringent and results in an enormous loss of power. We review
sequential methods to improve this approach, but often the correction be best done by a shift
in thinking. If we expect some reasonable number of the hypotheses to be false, then trying
to avoid any false positives is not appropriate, but rather controlling the fraction of false
positives in those tests we declare to be significant (discoveries) is a much better aim. This
is especially true in large-scale exploratory experiments whose aim is to discover potential
candidates for further studies. In this setting we attempt to control the false discovery rate
(FDR), as opposed to the type I error (false positive) rate. Here the goal is to find a value τ
such that the set of tests declared significant using p ≤ τ has the desired false discovery rate.

Our treatment of these topics is as follows. First, we examine methods for combining p
values over independent tests. We then turn to controlling the overall false-positive rate for
a collection of tests from a single experiment through the use of Bonferroni corrections and
their extensions. Given that the decision to control the false positives versus false discoveries
hinges to a large extent on the fraction π0 of the tests that are true nulls, we then examine how
to estimate π0 from the empirical distribution of the p values. We conclude by discussing
approaches to control the false discover rate.
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COMBINING p VALUES OVER INDEPENDENT TESTS

Hypotheses of interest are often testing in multiple studies, and an important issue (the
statistical field of meta-analysis — the analysis of analyses) is how best to combine the
results from these studies into a single global statement. The most obvious approach is
simply to pool all the data and perform a single test, but for a variety of reasons this is
often not feasible. For example, different tests of the same hypothesis may involve different
methodologies and/or very different settings. Further, published papers may not report the
full data set but rather just a few summary statistics. In such settings, one straightforward
approach is to consider the list of p values for the collection of experiments that all purport
to test the same hypothesis and try to obtain a single global p value for this entire set.

This simple question is potentially fraught with peril for several reasons. First, are
the different tests all really testing the same hypothesis? The investigator must take care
to assure this is correct before proceeding. Second, the so-called file-draw effect, wherein
nonsignificant results remain in the file-draw (i.e., are not published), leading to published
results being biased towards p small values. One general trend seems to be a publication bias
for studies with small sample size but a reduction in this bias for larger samples (Easterbrook
et al. 1991; Dickersin et al. 1992). The presumptive reason is that small studies often lack
power, so that a nonsignificant result does not necessarily provide strong evidence that the
null hypothesis is correct. Conversely, due to the higher power of larger studies, authors
may feel more comfortable publishing negative results.

Fisher’s χ2

Fisher (1932) was among the first to offer a simple approach for combining p values (along
with Tippett 1931), based on the important concept that the distribution of p values under the
null follows a uniform distribution over (0,1). Further, if u ∼ Uniform(0,1), then −2 ln(u) ∼
χ2

2 (Pearson 1938). Hence, under the null, twice the negative natural log of a p value follows
a chi-square distribution with two degrees of freedom. If we have k independent tests, then
the sum of their log-transformed p values is the sum of k chi-square variables. Such a sum
is itself chi-square with degrees of freedom given by the sum of the degrees of freedom for
the individual chi-squares (LW Appendix 5). These observations lead to Fisher’s combined
probability test: for k independent tests with pi denoting the p value for test i, the sum

X2 = −2
k∑

i=1

ln(pi) (A4.1)

approximately follows a χ2
2k distribution.

Example A4.1. Suppose five different groups collected data to test the same hypothesis, and
these groups (perhaps using different methods of analysis) report p values of 0.10, 0.06, 0.15,
0.08, and 0.07. Notice that none of these individual tests are significant, but the trend is clearly
that all are “close” to being significant (p = 0.09). Fisher’s statistic gives a value of

X2 = −2
k∑

i=1

ln(pi) = 24.3921, with Pr(χ2
10 ≥ 24.39) = 0.0066

Hence, taken together these five tests show a highly significant p value. While the reader might
find it surprising to obtain a significant value for the global p given that none of the individual
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tests were, note that the distribution of p values is far from a uniform, but rather is skewed
towards zero.

Rice (1990; also see Whitlock 2005) noted that a problem with Fisher’s method is that
small p values are differentially weighted compared to complementary large p values (e.g.,
p versus 1− p). Equation A4.1 can be rearranged to yield

X2 = −2k ln(pG)

where pG is the geometric mean of the individual p values, which differentially weights
smaller values. Under Fisher’s method an observed p value of (say) 0.001 receives more
weight than a complementary value of 0.999, which is also as extreme. However, note for
a unit normal U that Pr(U ≤ −3.09) = 0.001 while Pr(U ≤ 3.09) = 0.999, so that under
a normal transformation the two complementary p values receive equal magnitude. This
motivates the Z score method.

Stouffer’s Z Score

A second approach for combining p values was offered by Stouffer et al. (1949), who trans-
formed the individual p values into Z scores, obtained by solving Pr(U > Z) = p. The sum
of k independent unit normals is itself normal, with mean zero and variance k. These results
lead to Stouffer’s Z score method: for test i assign a score Zi by solving Pr(U > Zi) = pi,
where U is a unit normal. Let Zs denote the sum over the transformed p values of k tests,
scaled by k−1/2 to give the sum a variance of one,

Zs =
∑k

i=1 Zi√
k

(A4.2a)

Since Zs ∼ N(0, 1), the overall p value is obtained by

p = Pr(U > Zs). (A4.2b)

As noted by Whitlock, this test was first proposed in a footnote in the authors’ sociological
study of Army life, making it one of the more obscure origins of a statistical method!

Example A4.2. Reconsider the data from Example A4.1. The Zi value are easily obtained
using R, as the command qnorm(1-p) returnsZ satisfyPr(U ≤ Z) = 1−p, or (equivalently)
that Pr(U > Z) = p. For example, Z1 is given by qnorm(1-0.1) , or 1.281. Similarly
computing the other Zi values gives

5∑
i=1

Zi = 6.754, hence Zs =
6.754√

5
= 3.020

Since Pr(U > 3.020) = 0.00126, as in Example A4.1, the combined p value is highly
significant.

Besides providing symmetric values for large and small p values (i.e., p and 1 − p), a
second major advantage of the Z score approach is that one can individually weight p values
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from different tests (Mosterller and Bush 1954; Liptak 1958), as the weighted sum of normals
is itself a normal (while the weighted sum of χ2 variables — the analog for Fisher’s test —
is considerably more complex). The resulting weighted version becomes

Zw =
∑k

i=1 wiZi√∑k
i=1 w2

i

(A4.2b)

where Zw ∼ N(0, 1). As expected, Zw reduces to Zs when all the weights are equal. One
can either weight by the degrees of freedom or by the reciprocal of the standard error of the
estimate. Whitlock (2005) shows that the weighted Z score method is superior to either X2

or Zs when sample size various over data. Zw has higher power and also a higher correlation
between its predicted p value and the actual p value obtained if one was able to merge all the
samples. As noted by Whitlock (2005), many studies in evolutionary biology are interested
in whether a hypothesis consistently holds over a collection of species. In such cases, the
number of species is number of replicates, and weighting p values for individual species is
inappropriate.

BONFERRONI CORRECTIONS AND THEIR EXTENSIONS

We now turn to the complementary problem of determining the significance level α for
individual tests required to control the overall false positive rate over a collection of n tests.
The typical setting is that a single study or experiment has gathered data and a number of
different tests, usually on different hypotheses, are performed using this data. Let π denote
our desired experiment-wide false positive rate — the probability of one (or more) false
positives over the entire collection of n tests is no greater than π. The standard approach for
determining the appropriate α given n and π is to use Bonferroni corrections.

Standard Bonferroni Corrections

The probability of not making any type I errors (false positives) over n independent tests,
each at level α, is (1−α)n. Hence, the probability of at least one false positive over the entire
collection is just one minus this,

π = 1− (1− α)n (A4.3a)

Solving for the α value required for each test gives

α = 1− (1− π)1/n (A4.3b)

This is often called the Dunn-Ŝidák method. Noting that (1− α)n ' 1− nα, we obtain the
Bonferroni method, taking

α = π/n (A4.4)

Both Equations A4.3b and A4.4 are referred to as Bonferroni corrections. In the literature, π
is the family-wide error rate (FWER), while α is the comparison-wise error rate, or CWER.

Example A4.3. Suppose we have n = 100 independent tests and wish an overall π value of
0.05. What α should be used for each individual test to achieve an experimental-wide false
positive rate of 0.05? The Dunn-Ŝidák correction gives

α = 1− (1− 0.05)1/100 = 0.000512
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while the Bonferroni correction is

α = 0.05/100 = 0.0005

Note that using such small α values greatly reduces the power for any single test. For example,
under a normal distribution the 95% (two-side) confidence interval for the true mean is x ±
1.96
√

Var, while moving to an α value of 0.0005 gives x± 3.48
√

Var.

Sequential Bonferroni Corrections

Under a strict Bonferroni correction, only hypotheses with associated p values ≤ π/n are
rejected, all others are accepted. This results in a considerable reduction in power if two or
more of the hypotheses are actually false. When we reject a hypothesis, there remain one
fewer tests, and the multiple comparison correction should take this into account, resulting
in sequential Bonferroni corrections. Sequential approaches have increased power over
standard Bonferroni corrections, as is illustrated (below) in Example A4.4. Shaffer (1995)
reviews these, and other, approaches.

Holm’s Method

The simplest of these corrections is Holm’s method (Holm 1979). Order the p values for the
n hypotheses being tested from smallest to largest, p(1) ≤ p(2) ≤ · · · ≤ p(n), and let H(i)
be the hypothesis associated with the p value p(i). One proceeds with Holm’s method as
follows:

(i) If p(1) > π/n, accept all the n hypothesis (i.e., none are declared significant).

(ii) If p(1) ≤ π/n, reject H(1) [i.e., H(1) is declared significant], and consider H(2)

(iii) If p(2) > π/(n− 1), accept H(i) ( for i ≥ 2).

(iv) If p(2) ≤ π/(n− 1), reject H(2) and move onto H(3)

(v) Proceed with rejecting hypotheses until the first i such that p(i) > π/(n− i + 1)

We can also apply Holm’s method using Equation A4.3a (α = 1−(1−π)1/n, the Dunn-Ŝidák
correction), in place of α = π/n.

Simes-Hochberg Method

With Holm’s method, we stop once we fail to reject a hypothesis. An improvement on this
approach is the Simes-Hochberg correction (Simes 1986; Hochberg 1988), which effectively
starts backwards, working with the largest p values first.

(i) If p(n) ≤ π, then all hypothesis are rejected.

(ii) If not, H(n) cannot be rejected, and we next examine H(n− 1).

(iii) If p(n− 1) ≤ π/2 then all H(i) for i ≤ n− 1 are rejected.

(iv) If not, H(n− 1) cannot be rejected, and we compare p(n− 2) with π/3.

(v) In general, if p(n− i) ≤ π/(n− i + 1) then all H(i) for i ≤ n− i are rejected.

While the Simes-Hochberg approach is more powerful than Holm’s, it is only strictly ap-
plicable when the tests within a family are independent. Holm’s approach does not have this
restriction. Hence, use Holm’s if you are concerned about potential dependencies between
tests, while if the tests are independent, use Simes-Hochberg or Hommel’s method.
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Hommel’s Method

Hommel’s (1988) method is slightly more complicated, but is more powerful than the Simes-
Hochberg correction (Hommel 1989). Under Hommel’s method, we reject all hypotheses
whose p values are less than or equal to π/k∗, where

k∗ = max
i

p(n− i + j) > π
j

i
for j = 1, · · · , i

Example A4.4 shows how all three of these methods are applied.

Example A4.4. Suppose for n = 10 tests, the (ordered) p values are as follows

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
π

n−i+1 0.0050 0.0056 0.0063 0.0071 0.0083 0.0100 0.0125 0.0167 0.0250 0.0500

For an experiment-wide level of significance of π = 0.05, the Bonferroni correction is α =
0.05/10 = 0.005. Hence, using a strict Bonferrioni for all, we reject hypotheses 1 and 2, and
fail to reject (i.e., accept) 3-10.

To apply these sequential methods, we use the associated π/(n− i + 1) values for π = 0.05
which are given in the table. Under Holm’s method, p(i) ≤ π/(n − i + 1) for i ≤ 3, and
hence we reject H(1) to H(3) and accept the others. Under Simes-Hochberg, we fail to reject
H(7) to H(10) [as p(i) > π/(n− i + 1)], but since p(6) = 0.009 ≤ π/(n− i + 1) = 0.010,
we reject H(6) to H(1).

To apply Hommel’s method, reject all hypotheses whose p values are less than or equal to
π/k∗, where

k∗ = max
i

p(n− i + j) > π
j

i

Let’s start with i = 1. Here, (i=1, j=1), p(10) = 0.5350 > π · (1/1) = 0.05. Now lets try
i = 2, giving (for j = 1, 2), p(9) = 0.1055 > π(1/2) = 0.025 and (as above) p(10) > π.
For i = 3, p(8) = 0.025 > π · (1/3) = 0.0167, p(9) > π · (2/3) = 0.033, p(10) > π. For
i = 4, p(7) = 0.175 > π · (1/4) = 0.0125, but (i = 4, j = 2), p(8) = 0.025 = π · (1/2).
Hence, k∗ = 3, and we reject all hypotheses whose p values are ≤ 0.05/3 = 0.0167, which
are H(1) to H(6). Note that a strict Bonferroni declared the fewest, and Simes-Hochberg and
Hommel’s the most, of the hypotheses to be significant while controlling the experiment-wide
false positive rate at 0.05.

Dealing with Dependence: The Leek-Storey Surrogate Variable Approach

What happens when p values are not independent? Indeed, how does one even know when
a lack of independence exists among the hypotheses tested? In a typical high-dimensional
experiment, a series of n variables are measured in m separate settings (typically individuals)
to give m data vectors, where nÀ m, often by orders of magnitude. For example, a standard
gene expression study may follow the mRNA levels of tens of thousands of genes in just
a few dozen individuals. In such settings where the number of hypotheses to be tested
is orders of magnitude greater than the number of individual data vectors, dependency
among tests is guaranteed. The critical observation, as noted by Leek and Storey (2008), is
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that this dependency can be removed before individual tests are performed, and that removal
of this dependency generates independent p values among the resulting tests. While one can
(potentially) control for lack of independence from the covariance structure among the tests,
this is of order n2 (one must use roughly n2 variance and covariance terms to account for this,
Owen 2005), while the covariance structure among the data is (at most) of order m2. Leek
and Storey (2007, 2008) discuss how to estimate this common latent structure in the data
and remove it before individual testing, an approach they call surrogate variable analysis.
We discuss a similar problem in Volume 3, the decomposition of a G x E matrix into a
lower-dimensional approximation using the singular value decomposition.

DETECTING AN EXCESS OF SIGNIFICANT TESTS

While Bonferroni corrections (and their sequential counterparts) are widely used, when the
number of tests is modest to large their application significantly erodes power, leading to
very high Type II errors (failing to declare a test significant when the null is false). This Type
I versus Type II tradeoff applies to most statistical tests (LW Appendix 5) and which error is
more of a concern to the investigator determines how to proceed. In many cases, our initial
experiment is simply an enrichment method: we wish to take a large number of possible
hypotheses and extract a subset showing the most support for their alternative hypotheses
for further consideration. In such cases, we are often more concerned with Type-II errors, as
the penalty of including a test that is from the null may be less than the penalty of excluding
a test that is not from the null. In such settings, we would like to calculate the number n0 of
tests (or equivalently the fraction π0 = n0/n) of true nulls among the n tests. The first step
towards doing so is to ask if the observed number of significant tests is excessive under the
global null hypotheses (all tests are from true nulls).

How Many False Positives?

Suppose we perform n independent tests, each with a type I error rate α. If all tests are
from their respective null hypotheses, the number j of false positives is Binomial with α the
probability of a “success” (a false positive) and n the number of trials,

Pr(j false positives) =
n!

(n− j)! j!
(1− α)n−j αj (A4.5)

For n large and α small, this is closely approximated by the Poisson, with Poisson parameter
nα (the expected number of false positives),

Pr(j false positives) ' (nα)je−nα

j!
(A4.6)

Example A4.5. Suppose 250 independent tests are performed, each with α = 0.025 (a 2.5%
chance of declaring a result from the null hypothesis to be significant), and 15 tests are declared
significant by this criteria. Is this number greater than expected by chance? The expected
number of significant tests under the global null hypothesis is nα = 250 · 0.025 = 6.25.
From Equation A4.5 the probability of observing 15 (or more) significant tests is

250∑
j=15

Pr(j false positives) =
250∑

j=15

250!
(250− j)! j!

(1− 0.025)250−j 0.025j
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We could either sum this series directly or use the cumulative distribution function for a bino-
mial, which is many statistical packages. In R, the probability that a binomial with parameters
n and p has a value of i or less is obtained by pbinom(i,n,p) . The probability of 15 or
greater is one minus the probability of 14 or less, or 1- pbinom(14,250,0.025) . Rreturns
0.00177. Given that there is only a 0.2% of seeing this many significant tests under the global
null, we expect some of these significant tests to be true discoveries (the null hypothesis is
incorrect), not false positives. The critical question, of course, is which ones?

Testing for an excessive number of significant tests is a rather crude indicator of the
actual number n0 of the n tests that are true nulls. It is very possible that n0 < n and yet we
would not detect an excess of significant tests by the above method. Likewise, if an excessive
number is detected, what really can we say about n0 other than n0 < n? For instance,
Example A4.5 shows an excess of 9 significant tests (observed 15, expected 6), but clearly
assuming n0 = n−9 is a bit naive. Finally, the outcome varies with our choice of α. One could
easily imagine an excess of significant tests using α = 0.05, but not when using α = 0.01.
Ideally, we would like to have an estimate for n0 that is independent of the choice of α.

Such estimators readily follow from the key idea in this Appendix, namely that if the
null is correct, draws of p values follow a uniform over (0,1). A more careful examination of
the empirical distribution of p values over our sample of tests, rather than simply how many
we declare significant, is the key to obtaining estimates of n0.

Figure A4.1: A Schweder-Spjøtvoll plot is one approach for detecting departures from a
uniform distribution of p values. The p values are ordered from smallest p(1) to largest p(n),
and one plots their rank as a function of 1 − p. Under a uniform, the result is a straight line
passing through the origin and the point (1, n). The upper curve, generated by randomly
sampling all n = 100 values from a uniform (0,1), fits the pattern. The lower curve, generated
by simulating p values for 80 true nulls and 20 tests where the alternative was correct, shows
an inflation of p values near zero (1 − p values near one). This results in a strong departure
from linearity near one. Ignoring this upturn and extrapolating the linear fit for the values
below this inflection point gives an approximate value of 80 for 1 − p = 1, which is our
estimate of n0.

Schweder-Spjøtvoll plots

A simple graphical approach using the empirical distribution of p values was suggested by
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Schweder and Spjøtvoll (1982). If one rank-orders the p values from the smallest p(1) to the
largest p(n), a plot of p(i) versus i is a straight line under a uniform. Since our interest is
usually in detecting an excessive number of small p values (as would be expected if n0 < n),
Schweder and Spjøtvoll suggest plotting 1− p(i) values on the horizontal axis, and ranks of
these [which are the reverse of the ranks of the p(i)] on the vertical axis. For example, the
first point is (1 − p(n), 1), the second (1 − p(n − 1), 2), · · ·, and the nth (1 − p(1), n). If all of
the p values are indeed generated from null hypotheses, these are draw from a uniform and
the resulting plot will be a straight line (upper curve in Figure A4.1). Conversely, if some of
the p values are draw from hypotheses where the null is false, we expect an excess of small p
values, and hence an overabundance of 1− p values near one (lower curve in Figure A4.1).

In addition to providing a quick visual check as to whether the p values follow a uniform,
Schweder and Spjøtvoll suggest that these plots can also estimate n0. One fits the best straight
line until the upturn near one appears, extrapolating this line to obtain the n value for 1−p = 1
estimates the number of true null hypotheses, n0. As shown in Figure A4.1, this gives a value
very close to 80, the correct number of true nulls used to generate this example.

Estimating no: Subsampling from a Uniform Distribution

As suggested by the Schweder-Spjøtvoll plot, the distribution of p values offers insight into
the number of truly null hypotheses n0. While this plot offers either a simple visual, or
a more formal regression-based, estimator of n0, it tends to overestimate the number of
nulls. A number of other estimators have been suggested, again based on the distribution
of p values for those tests under the null being uniform. Recall that the histogram from a
sufficiently large number of draws from this distribution is flat, as all values are equally
likely (Figure A4.2A). However, if the null is false for all tests, then the distribution of p
values is shifted away from uniform, usually with a skew towards smaller values (Figure
A4.2B), but potentially also skewed towards one (for example, if one-tailed tests are used
when a two-tailed test is appropriate, Figure A4.2C).

Figure A4.2: Simulated distribution of p values based on 5000 tests for samples of 25 draws
from a normal distribution with mean µ and variance one. The null hypothesis is H0 : µ ≤ 0.
A: The distribution of p values when µ = 0 (the null is correct) is uniform. B: The distribution
when µ = 0.2 is skewed towards an excess of values near zero. C: The distribution when
µ = −0.2 is skewed towards an excess of values near one.

If the collection of tests contains some alternative hypotheses mixed in with true nulls,
we expect the distribution to be a mixture, with fraction π0 = n0/n being draws from
a uniform and (1 − n0/n) from some other distribution. Figure A4.3 plots the empirical
distribution of p values from a study by Mosig et al. (2001) on marker-trait associations.
While the middle of the distribution appears to be consistent with random sampling around
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a flat average, there is a large excessive of values near zero.

Figure A4.3: An empirical distribution of p values, from a study by Mosig et al. (2001). The
number of p values in each of ten bins (of length 0.1) are given above the bars. Note the large
excess of values near zero.

One simple approach for estimating n0 is to use the average height for middle values in
the p-value histogram. Presumably, these are almost entirely drawn from null hypotheses,
while this may not be the case for values near zero (and potentially one). Recall that the
probability density function φu for a uniform over (0,1) has a very simple form,

φu(p) =
{

1 for 0 ≤ p ≤ 1
0 otherwise

(A4.7a)

If there are n0 truly null tests, then the expected number of p values from these tests falling
within an interval 0 ≤ a < b ≤ 1 is just

n0

∫ b

a

φu(p) dp = n0

∫ b

a

1 · dp = n0(b− a) (A4.7b)

Hence

n̂0(a, b) =
Number of p(i) values in (a, b)

b− a
(A4.7c)

Likewise, an estimate for the fraction π0 = n0/n of true nulls is

π̂0(a, b) =
Number of p(i) values in (a, b)

n(b− a)
(A6.7c)

=
fraction of p(i) values in (a, b)

b− a
(A6.7d)

Example A4.5. Using the data in Figure A4.3, what is n0? Consider bins centered around
p = 0.05. Using the three binds 0.4, 0.5, and 0.6, a total of 60 + 46 + 48 = 155 tests have p
values in this interval. From Equation A4.7b, 155 = n0 · 0.3 or n0 = 155/0.3 = 516, and
hence a fraction π0 = n0/n = 516/644 = 0.80 of the tests are true nulls. Using the bins 0.3
to 0.8 gives n0 = 322/0.6 = 537, giving π0 = 0.83. Hence, it appears that around 80% of the
tests are consistent with true nulls. Mosig et al. (2001; also see Nettleton et al. 2006) using an
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iterative approach (also based on bin counts in the p-value histogram) arrived at an estimate
of n0 = 500 (78%).

Storey and Tibshirani (2003) considered the number of p values exceeding some tuning
value λ (so that a = λ and b = 1 in Equation A4.7b). Their logic being that for large values
of λ, most of these draws are from the uniform corresponding to draws from the null. Let
π̂0(λ) denote the estimated based on using the tuning value λ, then

π̂0(λ) =
Number of p(i) values > λ

n(1− λ)
(A4.8a)

and

n̂0(λ) = n · π̂0(λ) =
Number of p(i) values > λ

1− λ
(A4.8b)

By focusing on the interval (λ, 1), the Storey-Tibshirani estimator is potentially biased when
there are an excess of p values near one. This can happen for a variety of reasons, such as
inappropriate assumptions for the test statistic (e.g., the use of one-sided tests when two-
sided tests are more appropriate). Both Equation A4.7c and the Storey-Tibshirani estimator
(Equation A4.8b) rely on tuning parameters (a, b and λ) which define the region of the
distribution of p values assumed to be drawn from a uniform (i.e., almost all p values in this
interval are assumed to be generated under the null). Nettleton et al. (2006) reviews these
and other approaches for estimating n0 from sampling parts of a presumed uniform and
compares their strengths and weaknesses.

One significant concern is that when tests are correlated, this can result in either an
under- or over-dispersion of p values under the global null hypothesis, resulting in significant
departure from a uniform distribution (Efron 2007, Hu et al. 2011, Leek and Storey 2011).
This in turn compromise estimates of n0. Corrections for dealing with correlated tests have
been proposed (e.g., Owen 2005; Efron 2007; Leek and Storey 2007, 2008). As discussed
earlier, the approach of Leek and Storey for first accounting for dependence in the data
before computing individual p values seems the most promising and results in a uniform
distribution of p values under the global null.

Estimating no: Mixture Models

Allison et al. (2002) suggested that π0 can be estimated by treating the distribution of p
values as a mixture, π0 of which come from a uniform (and hence distribution function φu)
while the remainder (1−π0) are from the distribution φA(p) of p values when the alternative
hypothesis is true. While the general form of φA(p) is unknown, a very flexible distribution
to model it is the beta (Appendix 2),

φA(p) =
Γ(a + b)
Γ(a) Γ(b)

pa−1(1− p)b−1 (A4.9a)

Under the alternative, we expect an increase in p values near zero, which occurs when a < 1.
Likewise, the beta can easily accommodate an increase in p values near one as well (b < 1).
When a = b = 1, this simply reduces to a uniform. Allison et al. suggested to fit the actual
shape by using the data to obtain ML estimates of a and b, as well as our desired parameter
π0. The resulting likelihood function for a single p value becomes

`(p) = (1− π0) φA(p) + π0 φu(p) = (1− π0)
Γ(a + b)
Γ(a) Γ(b)

pa−1(1− p)b−1 + π0, (A4.9b)
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with the resulting total likelihood over n p values (from independent tests) becoming

`(p) =
n∏

i=1

`(pi) (A4.9c)

Standard ML methods (LW Appendix 2) are used to solve for a, b, π0. More generally, one
can fit k separate beta distributions for φA(p), using ML to estimate the mixture proportions
and parameter values, see Allison et al. (2002) for details.

Figure A4.4: The empirical distribution of p values can be treated as a mixture model
of a uniform plus a beta (whose shape parameters a and b can be estimated via ML), see
Equation A4.9b. In this hypothetical example, a uniform (horizontal dashed line) and a beta
with (a < 1, b = 1), dashed curve, when weighted yield the mixture distribution (solid curve)
that fits the empirical distribution of the p values.

While normally hypotheses testing under a maximum likelihood framework is done
using the likelihood ratio (LR) test (LW Appendix 2), this is not appropriate for tests of the
number of components in a mixture, as LR does not approach a limiting χ2 distribution
(McLachlan 1987). While a modified LR tests for mixtures can be constructed that is better
behaved (Chen et al. 2001), Allison et al. used a bootstrap approach (McLachlan 1987; Schork
1992). Here, one first uses the original distribution of p values to compute a LR test statistic
for the null of a uniform versus the alternative of a mixture. One then generates parametric
bootstrap samples by drawing n p values from the null distribution (here a uniform) and
then using this simulated dataset to compute a LR test statistic for a mixture. This is done
several thousand times to generate an approximate distribution of the LR statistic under
the null, which is used to assess significance. For example, if only 0.25% of the bootstrap
LR values are equal to (or exceed) the LR value for the original data, the significance is
approximately 0.25%. Likewise, approximate standard errors for π0 can be generated using
a conventional bootstrap approach. One samples the original p values with replacement to
generate a bootstrap sample of size n. This is used to estimate π0 (and the other parameters)
under a standard ML framework. A thousand or more bootstrap samples are generated, and
the variation across estimates of π0 (or any other parameter) over these samples provides an
approximate estimate of the sampling variance.

Finally, while a beta (or weighted sum of betas) can be used as the functional form for φA,
another approach is to use a non-parametric estimator for this unknown density function.
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This can be done using a kernel density estimator, where the form of an unknown density
is estimated by using the observed number of counts within a series of bins spanning the
distribution in conjunction with an appropriate smoothing function. This approach has been
used by Robin et al. (2007) and Guedj et al. (2009).

FDR: THE FALSE DISCOVERY RATE

We can loosely group issues of multiple comparisons into three problems, two of which
have been discussed: combining p values from independent tests of the same hypothesis
and control of the overall false positive rate for a collection of different tests from the same
experiment (Bonferroni corrections and their extensions). Such corrections are appropriate
when we expect only a few of the many hypotheses being false. An alternate setting is
that some substantial fraction of the tests are indeed expected to be false. In such cases, even
sequential Bonferroni correction are likely too stringent, resulting in too many false negatives
(Type II errors, failure to reject a false hypothesis). A different approach is required in these
settings, and this is the false discovery rate, or FDR, introduced by Benjamini and Hochberg
(1995).

The FDR is the fraction of false positives among all tests declared significant. The mo-
tivation for using the FDR is that we may be conducting a very large number of tests, with
those being declared significant being subjected to further studies. An example would be
searching for differential expression over a huge set of genes on a microarray. The goal of the
initial analysis is to take a large number of candidates and distill a reduced set for further
analysis that is highly enriched for true positives. In such cases, we are more concerned with
making sure all possible true alternatives are included in this reduced set, and we are willing
to accept some false positives to accomplish this goal. However, we also don’t want to be
completely swamped with false positives. The idea is that the statistical procedure results
in a significant enrichment of true positives (differentially-expressed genes in our example),
while controlling the fraction of false positives within this enriched set by specifying a value
δ for the FDR. Choosing an FDR of 5% means that (on average) 5% of the genes we declare
as being significant are actually false positives. The flip side is that 95% of those genes (tests)
declared significant do indeed have differential expression. Hence, screening genes with an
FDR of 5% results in a significant enrichment of genes that are truly differentially expressed.

To formally motivate the FDR, suppose a total of n hypotheses are tested, S of which
are judged significant (the p value for that test is less than or equal to some threshold value
τ ). If we had complete knowledge, we would know that n0 of the hypotheses have the null
true and n1 = n − n0 have the alternative true, and we might find that F of the true nulls
were called significant while T of the alternative true were called significant,

Called significant Called not significant Total
Null true F n0 − F n0

Alternative true T n1 − T n1

Total S n− S n

For this experiment, the false discovery rate is the fraction of tests called significant that are
actually true nulls, FDR = F/S. (The term discovery follows in that a significant result
can be considered as a discovery for future work.) As a point of contrast, the normal type
I error (which we can also call the false positive rate, or FPR), is the fraction of true nulls
called significant, is F/n0. Note the critical distinction between these two in that while the
numerator of each is F , the denominators are considerably different — the total number S of
tests called significant (for FDR) versus the number n0 of hypotheses that are truly null (FPR).
As the threshold value τ is changed, so is F/S. To obtain an FDR of δ over our experiment,
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τ is adjusted to find its largest value such that some expectation of F/S is bounded above
by δ. Finally, Gadbury et al. (2004) define the expected discovery rate (EDR) as T/n1 (the
fraction of all true discoveries declared as significant), which is the analogue of statistical
power in this setting.

Another way to see the distinction between the false positive and false discovery rates
is to consider them as probability statements for a single test involving hypothesis i. For the
FDR we condition on the test as being significant,

FDR = Pr(i is truly null | i is significant) = δ (A4.10a)

where for the false positive rate, we condition on the hypothesis being null,

FPR = Pr(i is significant | i is truly null) = α (A4.10b)

Table A4.1. Summary of the multiple comparisons parameters used in this Appendix. F denotes the
number of false positives — tests under the null that are declared significant.

Parameter Definition

α Comparison-wise Type one error (false positive)
β Type two error (false negative), 1− β = power
π Family-wide Type one error, Pr(F > 0) = π
δ False discovery rate
π0 Fraction of all hypotheses that are null
p Probability of the test statistic under the null
p(k) k-th smallest p value of the n tests

Table A4.1 reminds the reader of the various test parameters that arise when multiple com-
parisons are considered. We now show how these various parameters are related. The rela-
tionship between α, π, and F is as follows. Suppose we have set the false positive rate (i.e.,
the Type I error rate) for an individual test at α. Such a p value threshold only guarantees
that the expected number of false positives is bounded above by E[F ] ≤ α ·n. For n indepen-
dent tests, a π-level experiment-wide false positive error (setting α = π/n, the Bonferroni
correction) implies Pr(F ≥ 1) ≤ π, i.e., the probability of at least one false positive is π. To
show how α, β, π0, and δ are related, we first need to introduce the concept of the posterior
error rate.

Morton’s Posterior Error Rate (PER) and the FDR

Fernando et al. (2004) and Manly et al. (2004) have noted that FDR measures are closely
related to Morton’s (1955) posterior error rate (PER), originally introduced in the context of
linkage analysis in humans. Morton’s PER is simply the probability that a single significant
test is a false positive,

PER = Pr(F = 1 |S = n = 1) (A4.11)

The connection between FDR and PER is that if we set the FDR to δ then the PER for a randomly-
drawn significant test is also δ.

Framing tests in terms of the PER highlights the screening paradox (Manly et al. 2004),
“type I error control may not lead to a suitably low PER”. For example, we might choose
α = 0.05, but the PER may be much, much higher, so that a test declared significant may
have a much larger probability than 5% of being a false-positive. The key is that since we
are conditioning on the test being significant (as opposed to conditioning on the hypothesis being
a null, as occurs with α), S could include either false positives or true positives, and the
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relative fractions of each (and hence the probability of a false positive) is a function of the
single test parameters α and β and fraction π0 of null hypotheses. To see this, apply Bayes’
theorem (Equation A2.1),

Pr(F = 1 |S = n = 1) =
Pr(false positive | null true) · Pr(null)

Pr(S = n = 1)
(A4.12)

Consider the numerator first. Let π0 = n0/n be the fraction of all hypotheses that are truly
null. The probability that a null is declared significant is just the type I error α, giving

Pr(false positive | null true) · Pr(null) = α · π0 (A4.13a)

Now, what is the probability that a single (randomly-chosen) test is declared significant?
This event can occur because we pick a null hypothesis (π0) and have a type I error (α) or
because we pick an alternative hypothesis (1 − π0) and avoid a type II error. For the later,
the power is just T/n1, the fraction of all alternatives called significant. Writing power as
1− β (β being the type II error), the resulting probability that a single (randomly-draw) test
is significant is just

Pr(S = n = 1) = απ0 + (1− β)(1− π0) (A4.13b)

Thus,

PER =
α · π0

α · π0 + (1− β) · (1− π0)
=

(
1 +

(1− β) · (1− π0)
α · π0

)−1

. (A4.14b)

Figure A4.5 plots for for various values of π0 and β.

Figure A4.5. Plot of the posterior error rate (Equation A4.14) for α = 0.05 as a function of
the fraction π0 of null hypotheses and the type II error β (one minus the power). Upper curve
corresponds to β = 0.9 (10% power), middle to β = 0.7 (30% power), and lower curve to
β = 0 (100% power).

Example A4.6. In Morton’s original application, since there are 23 pairs of human chromo-
somes, he argued that two randomly-chosen genes had a 1/23 ' 0.05 prior probability of
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linkage, i.e., 1 − π0 = 0.05 and π0 = 0.95. Assuming a type I error of α = 0.05 and 80%
power to detect linkage (β = 0.20), this would give a PER of

0.05 · 0.95
0.05 · 0.95 + 0.80 · 0.05

= 0.54

Hence with a type I error control of α = 0.05%, a random test showing a significant result
(p ≤ 0.05) has a 54% chance of being a false-positives. This occurs because most of the
hypotheses are expected to be null — if we draw 1000 random pairs of loci, 950 are expected
to be unlinked, and we expect 950 · 0.05 = 47.5 of these to show a false-positive. Conversely,
only 50 are expected to be linked, and we would declare 50 · 0.80 = 40 of these to be significant,
so that 47.5/87.5 = 0.54 of the significant results are due to false-positives.

What value for α is needed under the above parameters to given a PER of 0.05? Solving for
α in

α · 0.95
α · 0.95 + 0.80 · 0.05

= 0.05

gives α = 0.0022. Hence, setting this as the type I error gives a PER of five percent.

The type I error rate of a test and the PER for a significant test, which are often assumed
to be the same, are actually very different. The PER is a function of the power of a test and
the fraction of tests that are truly null, as well as the type I error. Manly et al. (2004) note that
the PER is acceptably low only if 1−π0 (the fraction of alternative hypotheses) is well above
α.

Example A4.7. Suppose we set α = 0.005 for each test, and suppose that the resulting
power is essentially 1 (i.e. β ' 0). Consider 5,000 tests under two different settings. First,
suppose that the alternative is very rare, with n1 = 1 (π0 = 0.9998). Under this setting, we
expect 4,999 · 0.005 = 24.995 false positives and one true positive (1·(1− β) = 1), giving the
expected PER as

PER =
24.995

24.995 + 1
= 0.961

Thus a significant test has a 96.1% probability of being a false-positive.

Now suppose that the alternative is not especially rare, for example n1 = 500 (π0= 0.9). The
expected number of false positives is 4500 · 0.005 = 22.5, while the expected number of true
positives is 500, giving an PER of

PER =
22.5
522.5

= 0.043

The PER is thus rather sensitive to π0, the fraction of all hypotheses which are null. If π0 is
essentially 1, an PER of δ is obtained using the Bonferroni correction, α = δ/n. However, if
π0 departs even slightly from one (i.e., more than a few of the hypotheses are correct), then the
per-test level of α to achieve a desired PER rate is considerable larger (i.e., less stringent) than
that given by the Bonferroni correction, i.e., α(δ) > δ/n. For example for a 0.04 experiment-
wide error rate, p = 0.04/5000 = 8 × 10−6, roughly 625 times the value of p = 0.005
required for a 4% FDR, greatly increasing power under the FDR framework.
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Thinking in terms of the PER allows us to consider multiple comparisons in a continuum
from Bonferroni-type corrections to using FDR to control the PER. If π1 = 1−π0 is very small,
most hypotheses tested are nulls and we wish to control the overall false positive rate with a
Bonferroni-type correction. However, as some fraction of the hypotheses are expected to be
false (1−π0 is modest to large), then using FDR corrections makes more sense for controlling
the PER.

A Technical Aside: Different Definitions of False Discovery Rate

While the false discovery rate for any experiment is just F/S, there are several subtly different
ways to formally define the expectation of this ratio. The original notion of a false discovery
rate is due to Benjamini and Hochberg (1995), with modifications suggested by a number of
other workers, most notable Storey (2002) and Fernando et al. (2004), see Table A4.2.

Table A4.2 Measures of false discovery, after Manly et al. (2004).

Name Definition Reference

FDR False discovery rate E(F
S |S > 0) Pr(S > 0) Benjamini and Hochberg (1995)

pFDR Positive false E(F
S |S > 0) Storey (2002)

discovery rate

PFP Proportion of E(F )/E(S) Fernando et al. (2004)
false positives

PER Posterior error rate Pr(F = 1 |S = n = 1) Morton (1955)

FPR False Positive rate Pr(F > 0)

While technically the distinction between these different false discovery rates is important,
when actually estimating a false discovery rate from a collection of p values, one is usually
left with an expression of the form E(F )/E(S), the expected number of false positives to
the expected number of significant tests. Strictly speaking, this is the proportion of false
positives (PFP).

The main operational differences between the different false discover rates are (i) the
original method of Benjamini and Hochberg (1995), which assumes n = n0 (all hypotheses
are nulls), and (ii) all other estimators which assume n0 is not necessarily one and thus also
attempt to estimate either π0 or n0, and then use these to estimate the false discovery rate.

The Benjamini-Hochberg FDR Estimator

The original estimate for the FDR was introduced by Benjamini and Hochberg (1995). Letting
p(k) denote the k-th smallest of the p values, then the false-discovery rate δk for hypothesis
k is bounded by

np(k)
k
≤ δk (A4.15a)

In particular, if we wish an FDR of δ for the entire experiment, then we reject (i.e., declare as
significant) all hypotheses that satisfy

p(k) ≤ δ
k

n
(A4.15b)
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Example A4.8. Consider again the 10 ordered p values from Example A4.4, and compute
n p(k)/k = 10 p(k)/k,

i 1 2 3 4 5 6 7 8 9 10
p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350

10p(k)
k 0.0200 0.0225 0.0200 0.0200 0.0170 0.0150 0.0250 0.0313 0.1172 0.5350

Thus, if we wish an overall FDR value of δ = 0.05, we would reject hypotheses when
n p(k)/k ≤ δ = 0.05, which are H(1) - H(8). Notice that this rejects more hypotheses than
under any of the sequential Bonferonni methods (Example A4.4).

We formally develop a more general estimate for the FDR below, but the basic idea
leading to Equation A4.15a is as follows. Suppose we set a threshold value p(k), declaring a
test to be significant if its p value is at or below τ = p(k), in which case k of the hypotheses
will be declared significant (as p(k) is the k-th smallest p value), and S = k. Likewise, if all
n of the hypotheses are null, then the expected value of F (the number of false positives) is
just n p(k). The resulting fraction of all rejected hypotheses that are false discoveries is just
F/S = n p(k)/k, yielding Equation A4.15a.

This simple (heuristic) derivation shows why the original Benjamini-Hochberg estimate
of the FDR is conservative, as in those settings in which one applies the FDR criteria, the
expectation is that some fraction of the hypotheses are not null, and so n0 < n. The correct
estimator of the expected number of rejected null hypotheses is n0p(k), leading to a more
generalized estimate of the FDR where n̂0 replaces n (e.g., Equations A4.7-A4.9). For example,
Equation A4.15a becomes

δ̂k =
n̂0 p(k)

k
(A4.16)

A (Slightly More) Formal Derviation of the Estimated FDR

Following Storey and Tibshirani (2003), consider the expected FDR for an experiment where
we declare a hypothesis to be significant if its p value is less than or equal to some threshold
value τ . Obviously, as τ becomes smaller, the FDR is smaller (as significant nulls become
increasingly less likely). However, if τ is set too small, we lose power (e.g., suppose we
set τ = π/n, the Bonferonni correction). What we would like to do is to find the expected
value of the FDR as a function of the chosen threshold τ to allow us to optimally tune this
parameter to control the desired FDR. With a large number of tested hypotheses,

E[FDR(τ)] = E

[
F (τ)
S(τ)

]
' E[F (τ)]

E[S(τ)]
(A4.17)

A simple estimate of E[S(τ)] is given by the observed number of significant tests when the
threshold is τ .

To obtain an estimate for E[F (τ)] we again use the distribution of p values under the
null following a uniform (0, 1) distribution. Hence,

Pr(p ≤ τ |null hypothesis) =
∫ τ

0

φu(p)dp = τ (A4.18)

where φu(p) is the uniform probability density function for p values under the null (Equation
A4.7a). Hence, if n0 of the n tests are truly null, then

E[F (τ)] = n0 · Pr(p ≤ τ |null hypothesis) ' n0 · τ (A4.19)
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Hence,
E[FDR(τ)] =

n0 · τ
S(τ)

(A4.20)

Setting τ = p(k), then S(τ) = k, and Equation A4.20 becomes n0 p(k)/k, recovering Equation
A4.16. Using the Storey-Tibshirani estimator (Equation A4.8b), an estimated value for the
FDR using threshold value τ (and based on tuning parameter λ) becomes

F̂DR(τ) = n0 ·
τ

S(τ)
=

(
Number of p(i) values > λ

1− λ

)
·
(

τ

Number of p(i) values ≤ τ

)
(A4.21)

Ideally, over a reasonable range of λ values, we expect this estimate be reasonably stable.
If λ is set too large, the likelihood that almost all values correspond to draws from a null is
countered by the much smaller sample size (and hence larger sampling error) from using
such a small fraction of the total data.

Under a mixture model setting (e.g., Equation A4.9), the false discover rate given sig-
nificance threshold τ is simply the fraction of all true positives declared significant to the
fraction of all tests declared significant (i.e., those tests for which p ≤ τ ). This can be estimated
directly from the parameters of the mixture distribution,

FDR(τ) =
π0 cdfU (τ)

π0 cdfU (τ) + (1− π0) cdfA(τ)
=

π0 τ

π0τ + (1− π0)cdfA(τ)
, (A4.22)

where cdf denotes the cumulative distribution function,

cdfU (x) =
∫ x

0

φU (p)dp = x, cdfA(x) =
∫ x

0

φA(p)dp

Storey’s q Value

While we can control the FDR for an entire set of experiments, we would also like to have
an indication of the FDR for any particular experiment (or test) within this family of tests.
Intuitively, tests with smaller p values should also have smaller associated FDR values.

Storey (2002; Storey and Tibshirani 2003) introduced the concept of a q value (as opposed
to the p value) of any particular test, where q is the expected FDR rate for tests within the
current experiment whose p values are least as extreme as the test of interest. The estimated q
value is a function of the p value for that test and the distribution of the entire set of p values
from the family of tests being considered,

q̂ [p(i)] = min
τ≥p(i)

F̂DR(τ) (A4.23)

Example A4.9: As example of the interplay between the family-wide error rate π, and the
individual p and q values for a particular test, consider Storey and Tibshirani ’s (2003) analysis
of a microarray data set from Hedenfalk et al. comparing BRCA1 and BRCA2 mutation positive
breast cancer tumors.

A total of 3,226 genes were examined. Setting a critical p value of α = 0.001 detects 51
significant genes. (i.e., those with differential expression between the two types of tumors).
Assuming the hypotheses being tested are independent (which is unlikely as expression is
likely highly correlated across sets of genes), the probability of at least one false positive is
π = 1− (1− .0001)3226 = 0.96, while the expected number of false-positives is 0.001· 3226
= 3.2, or 6% (3.2/51) of the declared significant differences.
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Setting a FDR rate of δ = 0.05, Storey and Tibshirani detected 160 genes showing significant
differences in expression. Of these 160, 8 (5%) are expected to be false-positives. Compared to
the Bonferroni correction (51 genes, 6% false positives), over three times as many genes are
detected, with a lower FDR rate. Further, Storey and Tibshirani estimated the fraction π0 of
nulls (genes with no difference in expression) at 67%, so that 33% (or roughly 1000 of the 3226
genes) are likely differentially expressed.

To contrast the distinction between p and q values, consider the MSH2 gene, which has q value
of 0.013 and p value of 5.50 · 10−5. This p value implies that the probability of seeing at least
this level of difference in expression given the null hypothesis (no difference in expression)
is 5.50 · 10−5. Conversely, q = 0.013 says that for this experiment 1.3% of genes that show
differences in expression that are as, or more, extreme (i.e., whose p values are at least as small)
as that for MSH2 are false positives.

As a technical aside, why do we use minτ≥p(i) F̂DR(τ) instead of simply setting qi =
F̂DR(p(i))? Recall Example A4.8, where the Benjamini-Hochberg estimator for FDR value
was used (which differs from other FDR estimators by a constant, n0/n). Notice that the
smallest FDR occurs for hypothesis 6 (1.5%), and not for smaller p values. This reflects the
tradeoff where increasing the threshold p ≤ τ for significant results in declaring more tests
as significant, so that the ratio τ/S(τ) need not monotonically increase as τ increases. As
example A4.8 shows, setting the threshold τ above the p(i) value may actually result in a
smaller q value, and hence Storey’s definition.

Closing Caveats in using the FDR

While controlling the FDR is a very powerful approach for many multiple comparison prob-
lems, it is not a panacea. One concern is correlations among tests. As mentioned, in this case
the null distribution of p values can significantly depart from a uniform, giving biased esti-
mates of π0 (and thus FDR). Further, recall that FDR control is accomplished by controlled
the expected value of the FDR (or some closely related measure such as the PFP). The variance
in the FDR across independent experiments can be considerable, especially when tests are
correlated (Owen 2005; Leek and Storey 2011). One approach for treating these concerns is to
use Leek and Storey’s (2007, 2008) surrogate variable analysis to account for dependencies
among the data before the actual p values for individual tests are obtained.

A second issue is a bit more subtle. Consider a standard QTL mapping experiment (LW
Chapter 15) wherein a controlled cross is made between two lines (typically inbred) and
one looks for marker-trait associations in the resulting F2 (or other) progeny by scanning
for linkage signals across a number of linked markers that span each chromosome. For each
marker, the null hypothesis is no linkage to a QTL influencing the trait, while the alternative
is that the marker is linked to a QTL. As noted by Chen and Storey (2006), the linkage signal
from a QTL influences essentially all the markers on the chromosome on which it resides,
and so as a group they all satisfy the same hypothesis. Either all are nulls (unlinked to a QTL)
or failures of the null (linked to a QTL, albeit with differing degrees of a linkage signal).
As such, an investigator can arbitrary obtain any level by simply adding or subtracting
linked markers, and FDR control is not appropriate for this setting. To a much lesser extent,
this same issue occurs in genome wide association studies among sets of extremely tightly
linked SNPs. However, since the linkage signal in these cases is the persistence of linkage
disequilibrium (LD) over large number of generations, any common signal is restricted to
a set of very tightly linked markers, rather than an entire chromosome, and control of FDR
among such clusters is appropriate.



CORRECTIONS FOR MULTIPLE TESTS 81

References

Allison, D. B., G. L. Gadbury, M. Heo, J. R. Fernandez, C.-K. Lee, T. A. Prolla, and R. Weindruch.
2002. A mixture model approach for the analysis of microarray gene expression data. Computational
Statistics and Data Analysis 39: 1-20. [A4]

Benjamini, Y., and Hochberg, T. 1995. Controlling the False Discovery Rate: a practical and powerful
approach to multiple testing. J. Royal Stat. Soc. B 85: 289–300. [A4]

Benjamini, Y., and Hochberg, T. 2000. On the adaptive control of the false discovery rate in multiple
testing with independent statistics. J. Educ. Behav. Stat. 26: 60–83. [A4]

Chen, H., J. Chen, and J. D. Kalbfleisch. 2001. A modified likelihood ratio test for homogeneity in finite
mixture models. Stat. Meth. 63: 19–29. [A4]

Chen, L., and J. D. Storey. 2006. Relaxed significance criteria for linkage analysis. Genetics 173: 2371–
2381. [A4]

Dickersin, K., Y.-I. Min, and C. L. Meinert. 1992. Factors influencing publication of research results:
follow-up of applications submitted to two institutional review boards. J. Amer. Med. Assoc. 267:
374–378. [A4]

Easterbrook, P. J., R. Gopalan, J. A. Berlin, and D. R. Matthews. 1991. Publication bias in clinical research.
The Lancet 337: 867–872. [A4]

Efron, B. 2007. Correlation and large-scale simultaneous significance testing. J. Amer. Stats Assoc. 102:
93–103. [A4]

Fernando, R. L., D. Nettleton, B. R. Southey, J. C. M. Dekkers, M. F. Rothschild, and M. Soller. 2004.
Controlling the proportion of false positives in multiple dependent tests. Genetics 166: 611-619. [A4]

Fisher, R. A. 1932. Statistical methods for research workers. Oliver and Boyd, Edinburgh. [A4]

Gadbury, G. L., G. P. Page, J. Edwards, T. Kayo, T. A. Prolla, R. Weindruch, P. A. Permana, J. D. Mountz,
and D. B. Allison. 2004. Power and sample size estimation in high dimensional biology. Stat. Methods
Med. Res. 13: 325–338. [A4]

Gadbury, G. L., Q. Xiang, L. Yang, S. Barnes, G. P. Page, and D. B. Allison. 2008. Evaluating statistical
methods using plasmode data sets in the age of massive publich databases: An illustration using
false discovery rates. PLoS Genetics 6: e1000098. [A4]

Genovese, C., and L. Wasserman. 2002. Operating characteristics and extensions of the false discovery
rate procedure. Journal of the Royal Statistical Society Series B: 64: 499–517. [A4]

Guedj, M., S. Robin, A. Celisse, and G. Nuel. 2009. Kerfdr: a semi-parametric kernel-based approach
to local false discovery rate estimation. BMC Bioniformatics 10: 84. [A4]

Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:
800–802. [A4]

Holm, S. 1979. A simple sequential rejective multiple test procedure. Scand. J. Statistics 6: 65–70. [A4]

Hommel, G. 1988. A stagewise rejective multiple test procedure on a modified Bonferroni test.
Biometrika 75: 383 – 386. [A4]

Hommel, G. 1989. A comparison of two modified Bonferonii procedures. Biometrika 76: 624-625. [A4]

Hu, X., G. L. Gadbury, Q. Xiang, and D. B. Allison. 2011. Illustrations on using the distribution of a
p-value in high dimensional data analysis. Adv. Appl. Stat. Sci. 1: 191–213. [A4]

Leek, J. T., and J. D. Storey. 2007. Capturing heterogeneity in gene expression studies by surrogate
variables. PLoS Genetics 3: e161. [A4]

Leek, J. T., and J. D. Storey. 2008. A general framework for multiple testing dependence. Proc. Natl.
Acad. Sci. 105: 18718–18723. [A4]

Leek, J. T., and J. D. Storey. 2011. The joint null criterion for multiple hypothesis tests. Stat. Appl. Gen.
Mol. Biol. 10: Issue 1, Article 28. [A4]



82 APPENDIX 4

Liptak, T. 1958. On the combination of independent tests. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 3:
171–197. [A4]

Manly, K. F., D. Nettleton, and J. T. G. Hwang. 2004. Genomics, prior probability, and statistical tests
of multiple hypotheses. Genome Res. 14: 997–1001. [A4]

McLachlan, G. J. 1987. On bootstapping the likelihood ratio test statistic for the number of components
in a normal mixture. Appl. Stat. 36: 318–324. [A4]

Morton, N. E. 1955. Sequential tests for the detection of linkage. American Journal of Human Genetics 7:
277–318. [A4]

Mosig, M. O., E. Lipkin, G. Khutoreskaya, E. Tchourzyna, M. Soller, and A. Friedmann. 2001. A whole
genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle,
by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery
rate criterion. Genetics 157: 1683-1698. [A4]

Mosteller, F., and R. R. Such. 1954. Selected quantitative techniques. In, G. Lindzer (ed), Handbook of
social psychology, Vol. 1, pp. 289–334. Addison-Wesley, Cambridge, Ma. [A4]

Nettleton, D., J. T. G. Hwand, R. A. Caldo, and R. P. Wise. 2006. Estimating the number of true null
hypotheses from a histogram of p values. J. Agr. Biol. Envir. Stats 11: 337–356. [A4]

Owen, A. B. 2005. Variance of the number of false discoveries. J. R. Statist. Soc. B 67: 411–426. [A4]

Pearson, E. S. 1938. The probability transformation for testing goodness of fit and combining indepen-
dent tests of significance. Biometrika 30: 134–148. [A4]

Rice, W. H. 1990. A consensus combined p-value test and the family-wide significance of component
tests. Biometrics 46: 303–308. [A4]

Robin, S., A. Bar-Hen, J. J. Daudin, and L. Pierre. 2007. A semi-parametic approach for mixture models:
application to local false discovery rate estimation. Comput. Statist. and Data Analysis 51: 5483–5493.
[A4]

Schweder, T., and E. Spjøtvoll. 1982. Plots of p-values to evaluate many tests simultaneously. Biometrika
69: 493–502. [A4]

Schork, N. 1992. Bootstrapping likelihood ratios in quantitative genetics. In R. Lepage and L. Billard
(eds.), Exploring the limits of the bootstrap, pp. 389–393. Wiley, New York. [A4]

Shaffer, J. P. 1995. Multiple hypothesis testing. Ann. Rev. Psychol. 46: 561–584. [A4]

Simes, J. R. 1986. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:
75–754. [A4]

Storey J.D. 2002. A direct approach to false discovery rates. J. Royal Stat. Soc. Series B: 64: 479–498. [A4]

Storey J.D. 2003. The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of
Statistics 31: 2013-2035. [A4]

Storey J.D., J. E. Taylor, and D. Siegmund. 2004. Strong control, conservative point estimation, and
simultaneous conservative consistency of false discovery rates: A unified approach. J. Royal Stat.
Soc., Series B 66: 187-205. [A4]

Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad.
Sci. 100: 9440–9445. [A4]

Stouffer, S. A., E. A. Suchman, L. C. DeVinney, S. A. Star, and R. M. Williams Jr. 1949. The American
solder, Vol. 1: Adjustment during army life. Princeton University Press , Princeton. [A4]

Tippett, L. H. 1931. The methods of statistics. Williams and Norgate, London. [A4]

Whitlock, M. C. 2005. Combining probability from independent tests: the weighted Z-method is
superior to Fisher’s approach. J. Evol. Biol. 18: 1368–1373. [A4]


