Evolution and Selection of Quantitative Traits

B. Walsh and M. Lynch

Draft version 30 April 2010

Contents for Chapters Covered in Wageningen University Course, June 2010

CONTENTS

7. THE POPULATION GENETICS OF SELECTION

Single-locus Selection: Two Alleles .. 202
Viability Selection ... 202
Expected time for allele frequency change .. 204
Complications: Differential Viability Selection on the Sexes 205
Complications: Frequency-dependent Selection .. 206
Complications: Fertility Selection ... 206
Complications: Sexual Selection ... 206
Wright’s Formula .. 207
Adapative topographies and Wright’s formula ... 210
Single-locus Selection: Multiple Alleles ... 211
Marginal fitnesses and average excesses ... 211
Changes in genotypic fitnesses, W_{ij} .. 211
Changes in mean fitness and equilibrium values 212
Internal, corner, and edge equilibrium; Basins of attraction 213
Dynamics of response under viability and fertility selection 214
Wright’s Formula With Multiple Alleles .. 215
Selection on Two Loci ... 217
Dynamics of gamete frequency change .. 217
Gametic equilibrium values, linkage disequilibrium, and mean fitness 219
Particular fitness models .. 220
Phenotypic stabilizing selection and the maintenance of genetic variation ... 221
Theorems of Natural Selection: Fundamental and Otherwise 225
The classical interpretation of Fisher’s fundamental theorem 225
What did Fisher really mean? ... 228
Mean fitness, Wright’s adaptive topography, and Fisher’s fundamental theorem .. 229
Heritability values for characters correlated with fitness 229
Non-additive genetic variances and traits under selection 232
Robertson’s Secondary Theorem of Natural Selection 233
The secondary theorem under arbitrary epistasis 235
Selection on a Quantitative Trait Locus .. 237
A single gene underlies the character ... 237
Many loci of small effect underlying the character 238
A population-genetics derivation of the breeders’ equation 240
Correct quadratic terms for s_i .. 241

10. SHORT-TERM CHANGES IN THE MEAN:

1. THE BREEDERS’ EQUATION
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-generation Response: The Breeders' Equation</td>
<td>102</td>
</tr>
<tr>
<td>Response is the Change in Mean Breeding Value</td>
<td>102</td>
</tr>
<tr>
<td>The importance of linearity</td>
<td>103</td>
</tr>
<tr>
<td>Response under More General Parent-offspring Regressions</td>
<td>104</td>
</tr>
<tr>
<td>The Selection Intensity</td>
<td>106</td>
</tr>
<tr>
<td>The Robertson-Price Identity, $S = \sigma(w, z)$</td>
<td>106</td>
</tr>
<tr>
<td>Correcting for Reproductive Differences: Effective Selection Differentials</td>
<td>107</td>
</tr>
<tr>
<td>Expanding the Basic Breeders' Equation</td>
<td>108</td>
</tr>
<tr>
<td>Accuracy</td>
<td>108</td>
</tr>
<tr>
<td>Reducing Environmental Noise: Stratified Mass Selection</td>
<td>111</td>
</tr>
<tr>
<td>Reducing Environmental Noise: Repeated-measures Selection</td>
<td>112</td>
</tr>
<tr>
<td>Adjustments for Non-overlapping Generations</td>
<td>114</td>
</tr>
<tr>
<td>Maximizing Response Under the Breeders' Equation</td>
<td>115</td>
</tr>
<tr>
<td>Maximizing the Economic Rate of Response</td>
<td>116</td>
</tr>
<tr>
<td>Prelude to the multivariate breeders' equation</td>
<td>117</td>
</tr>
<tr>
<td>Truncation Selection</td>
<td>119</td>
</tr>
<tr>
<td>Selection intensities and differentials under truncation selection</td>
<td>119</td>
</tr>
<tr>
<td>Correcting the selection intensity for finite samples</td>
<td>120</td>
</tr>
<tr>
<td>Response in Discrete Traits: Binary Traits</td>
<td>123</td>
</tr>
<tr>
<td>The Threshold/Liability model</td>
<td>124</td>
</tr>
<tr>
<td>Logistic Regressions and the Logistic Distribution</td>
<td>127</td>
</tr>
<tr>
<td>Direct Selection on the Threshold T</td>
<td>129</td>
</tr>
<tr>
<td>Response in Discrete Traits: Poison-distributed Characters</td>
<td>131</td>
</tr>
<tr>
<td>Summary: Limitations of the Breeders’ Equation</td>
<td>133</td>
</tr>
</tbody>
</table>

11. **SHORT-TERM CHANGES IN THE MEAN:**

 2. PERMANENT VERSUS TRANSIENT RESPONSE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Versus Transient Response</td>
<td>139</td>
</tr>
<tr>
<td>Response with epistasis</td>
<td>140</td>
</tr>
<tr>
<td>Selection on autotetraploids</td>
<td>143</td>
</tr>
<tr>
<td>Ancestral Regressions</td>
<td>144</td>
</tr>
<tr>
<td>Response due to Environmental Correlations</td>
<td>147</td>
</tr>
<tr>
<td>Maternal Effects</td>
<td>149</td>
</tr>
<tr>
<td>Response Under Falconer’s Dilution Model</td>
<td>150</td>
</tr>
<tr>
<td>Other Models of Maternal Effects</td>
<td>155</td>
</tr>
</tbody>
</table>

13. **SHORT-TERM CHANGES IN THE VARIANCE**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in Variance Due to Linkage Disequilibrium</td>
<td>179</td>
</tr>
<tr>
<td>Changes in Variance Under the Infinitesimal Model</td>
<td>181</td>
</tr>
<tr>
<td>Within- and between-family variance under the infinitesimal model</td>
<td>183</td>
</tr>
<tr>
<td>Accounting for inbreeding and drift</td>
<td>185</td>
</tr>
<tr>
<td>Change in Variance Under Truncation Selection</td>
<td>185</td>
</tr>
<tr>
<td>Changes in correlated traits</td>
<td>187</td>
</tr>
<tr>
<td>Directional Truncation Selection: Theory</td>
<td>188</td>
</tr>
<tr>
<td>Directional Truncation Selection: Experimental results</td>
<td>190</td>
</tr>
<tr>
<td>Effects of epistasis: Does the Griffing effect overpower the Bulmer effect?</td>
<td>190</td>
</tr>
<tr>
<td>Double Truncation Selection: Theory</td>
<td>191</td>
</tr>
<tr>
<td>Double Truncation Selection: Experimental Results</td>
<td>194</td>
</tr>
<tr>
<td>Response under Normalizing Selection</td>
<td>195</td>
</tr>
<tr>
<td>Selection with Assortative Mating</td>
<td>196</td>
</tr>
</tbody>
</table>
Results using the infinitesimal model .. 196
Assortative mating and enhanced response 197
Disruptive selection, assortative mating, and reproductive isolation 199
Selection in the Presence of Heritable Variation in σ^2_E 199
Micro-environmental variance, developmental noise and canalization 200
Evidence for heritable variation in the environmental variance 201
Modeling genetic variation in σ^2_E .. 202
h^2_E, the heritability of the environmental variance 205
Translating the response in A_v into response in σ^2_E 206
Selection response in σ^2_E .. 207

24. THE INFINITESIMAL MODEL AND ITS EXTENSIONS 100
The Infinitesimal Model .. 101
Allele frequencies do not change under the infinitesimal model 101
Disequilibrium under the infinitesimal model 102
Dominance ... 102
Gaussian features of the infinitesimal .. 103
Not all limits are Gaussian ... 103
Modifications of the infinitesimal model 104
Gaussian Continuum-Of-Alleles Models 104
Infinite alleles and continuum-of-alleles models 104
Drift .. 105
Drift and a finite number of loci .. 107
Effective number of loci, n_e .. 108
Dynamics: σ^2_a and d change on different time scales 109
Response in stabilizing selection experiments: selection or drift? 110
How robust is the continuum-of-alleles model? 110
The Bulmer Effect Under Linkage .. 111
An approximate treatment ... 111
A more careful treatment .. 114
Response Under Non-Gaussian Distributions 116
Describing the genotypic distribution: Moments 116
Describing the genotypic distribution: Cumulants and Gram-Charlier series 119
Application: Departure from normality under truncation selection 121
Short-term response ignoring linkage disequilibrium 124
Short-term response ignoring allele frequency change 128
Summary: Where Does All This Modeling Leave Us? 130

25. LONG-TERM RESPONSE: DETERMINISTIC ASPECTS 134
Idealized Long-term Response in a Large Population 258
Deterministic Single-locus Theory .. 261
Lande’s model: a major gene in an infinitesimal background 266
Are major genes or polygenes more important for long-term response? .. 269
An Overview of Long-term Selection Experiments 271
Estimating selection limits and half-lives 271
General features of long-term selection experiments 272
Increases in variances and accelerated responses 275
Linkage effects ... 278
Conflicts Between Natural and Artificial Selection 281
Accumulation of lethals in selected lines 283
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected equilibrium frequency of recessive lethals</td>
<td>283</td>
</tr>
<tr>
<td>Lerner’s model of genetic homeostasis</td>
<td>287</td>
</tr>
<tr>
<td>Characterizing the Nature of Selection Limits</td>
<td>288</td>
</tr>
</tbody>
</table>

26. LONG-TERM RESPONSE: FINITE POPULATIONS 291

- Population Genetics of Selection and Drift | 292 |
- Drift and selection at a single locus | 292 |
- Fixation probabilities for alleles at QTL | 295 |
- Expected allele frequency in a particular generation | 296 |
- The Cohan effect: increased divergence under uniform selection | 297 |
- Results for two loci: the Hill-Robertson effect | 299 |
- The Effect of Selection on Effective Population Size | 302 |
- The expected reduction in N_e from directional selection | 303 |
- Molecular variation is reduced in regions of low recombination | 307 |
- Drift and Long-term Selection Response | 308 |
- Basic theory | 309 |
- Robertson’s theory of selection limits | 311 |
- Tests of Robertson’s theory of selection limits | 313 |
- Weber’s selection experiments on *Drosophila* flight speed | 317 |
- The Effects of Linkage on the Selection Limit | 319 |
- Optimal Selection Intensities for Maximizing Long-term Response | 323 |
- Effects of Population Structure on Long-Term Response | 326 |
- Founder effects and population bottlenecks | 326 |
- Population subdivision | 330 |
- Within-family selection | 333 |
- Asymptotic Response due to Mutational Input | 335 |
- Results for the infinitesimal model | 336 |
- Expected asymptotic response under more general conditions | 339 |
- Optimizing Asymptotic Selection Response | 342 |

VII. MEASURING SELECTION 3

28. INDIVIDUAL FITNESS AND THE MEASUREMENT OF UNIVARIATE SELECTON 301

- Episodes of Selection and the Assignment of Fitness | 301 |
- Fitness components | 302 |
- Assigning fitness components | 303 |
- Potential issues with assigning discrete fitness values | 305 |
- Assigning components of offspring fitness to their mothers | 305 |
- Concurrent episodes, reproductive timing and individual fitness λ_{ind} | 307 |
- Variance in Individual Fitness | 310 |
- Partitioning I across episodes of selection | 312 |
- Correcting lifetime reproductive success for random offspring mortality| 313 |
- Variance in mating success: Bateman’s principles | 314 |
- Some caveats in using opportunity of selection | 314 |
- Descriptions of Phenotypic Selection: Introductory Remarks | 316 |
- Fitness surfaces | 317 |
- Descriptions of Phenotypic Selection: Changes in Phenotypic Moments | 319 |
- Directional selection | 319 |
Quadratic selection .. 319
Gradients describe the local geometry of the fitness surface 321
Gradients appear in selection response equations 321
Partitioning changes in means and variances into episodes of selection 322
Choice of the reference population: “independent partitioning” 323
Standard errors for estimates of differentials and gradients 324
Descriptions of Phenotypic Selection: Individual Fitness Surfaces 325
Linear and quadratic approximations of $W(z)$ 326
Hypothesis testing and approximate confidence intervals 329
Power .. 331
Quadratic surfaces can be very misleading .. 331
Fitting other parametric fitness functions .. 332
Nonparametric approaches: Schluter’s cubic-spline estimate 333
The importance of experimental manipulation 334

29. MEASURING MULTIVARIATE SELECTION 370
Selection on Multivariate Phenotypes: Differentials and Gradients 370
Changes in the mean vector: the directional selection differential S 371
The directional selection gradient β 372
Directional gradients, fitness surface geometry and selection response 374
Changes in the covariance matrix: the quadratic selection differential C ... 375
The quadratic selection gradient γ 376
Quadratic gradients, fitness surface geometry and selection response 378
Fitness surface curvature and within-generation changes in variances and covariances 379
Multivariate Quadratic Fitness Regressions 380
Estimation, hypothesis testing and confidence intervals......................... 380
Regression packages and coefficients of γ 382
Geometric aspects .. 382
A brief digression: orthonormal and diagonalized matrices 383
Canonical transformation of γ .. 384
Are traits based on canonical axes “real”? 387
Strength of selection: γ_{ii} versus λ 388
Significance and confidence regions for a stationary point 388
Multivariate Nonparametric Fitness Surface Estimation 389
Projection pursuit regression ... 389
Thin-plate splines .. 390
Strength of Selection in Natural Populations 391
Kingsolver’s meta-analysis ... 392
Directional selection: strong or weak? .. 393
Quadratic selection: strong or weak? .. 396
Directional selection on body size and Cope’s law 397
Unmeasured Characters and Other Biological Caveats 397
Path Analysis and Fitness Estimation ... 399

VIII. SELECTION ON MULTIPLE CHARACTERS 3

30. MULTIVARIATE RESPONSE: CHANGES IN MEANS 1
The Multivariate Breeders Equation ... 1
CONTENTS

Overview of key features and concepts .. 1
Derivation of the multivariate breeders equation 4
The multivariate secondary theorem of natural selection 7
Response when the parent-offspring regression is multivariate linear 8
Bivariate Selection .. 9
 Correlated response to selection ... 10
 Indirect selection may give a larger response than direct selection 12
 Realized genetic correlations ... 13
 General bivariate selection ... 15
 Realized genetic correlations with bivariate selection 17
 Asymmetric correlated responses are frequently seen 18
Comparison of Multivariate Responses ... 18
 Standardization of response .. 19
 Mean standarization and evolvability ... 21
 Realized selection gradients .. 21
Evolutionary Constraints Imposed by Genetic Correlations 25
 Dynamics of quantitative traits on an adaptive topography 26
 What happens to mean fitness W? ... 27
 Constraints are given by the eigenstructure of G 27
 Trade-offs, developmental constraints, genetic correlations, and the Lande equation .. 30
Multivariate measures of evolvability ... 32
 Schluter's genetic line of least resistance, g_{max} 33
 Is there genetic variation in the direction of response? 36
 Blow's matrix subspace projection ... 37
 Conditional genetic variance and conditional evolvability 39

31. MULTIVARIATE RESPONSE: CHANGES IN COVARIANCES

Changes in G Under the Infinitesimal Model 1
 The dynamics of the disequilibrium matrix D 2
 The proportional change model for ΔP 3
 Within-generation changes G due to selection on variances and covariances ... 5
 Asymmetric correlated responses occurs under the infinitesimal model .. 6
 Response in G under a multivariate Gaussian fitness function 8
Allele Frequency Changes and Instability of Genetic Covariances 11
 Pleiotropic-based genetic correlations may become more negative over time ... 12
 Genetic covariances are more fragile than genetic variances 12
 It is difficult for antagonistic pleiotropy to maintain variation 13
 Hidden Pleiotropy: A zero genetic covariance can still harbor many pleiotropic alleles 15
Experimental Studies of the Response to Selection to Change Covariances 16
Genetic Models of Covariances ... 19
 Resource partitioning models: background 19
 James' analysis of changes in covariances under resource partitioning models ... 19
 Tradeoffs can lead to positive, as well as negative, covariances 21
 Björklund's analysis ... 22
 Optimization models, Functional Constraints, and G 23
Long-Term Directional Selection .. 26
 The infinitesimal model with drift .. 27
 The infinitesimal model with drift and mutation 28
 The balance between directional and stabilizing selection: infinitesimal model results 29
 Long-term response is a function of the distribution of allelic effects .. 30
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The balance between directional and stabilizing selection: Finite locus models</td>
<td>31</td>
</tr>
<tr>
<td>Long-term Quadratic Selection</td>
<td>32</td>
</tr>
<tr>
<td>Lande’s multivariate model of pleiotropic mutation-selection balance</td>
<td>33</td>
</tr>
<tr>
<td>γ and G</td>
<td>34</td>
</tr>
<tr>
<td>Model assumptions, genetic correlations, and hidden pleiotropy</td>
<td>35</td>
</tr>
<tr>
<td>Stability of G</td>
<td>36</td>
</tr>
<tr>
<td>32. COMPARISONS OF G AND ITS STABILITY</td>
<td>1</td>
</tr>
<tr>
<td>Changes in G Under Drift</td>
<td>1</td>
</tr>
<tr>
<td>Under additivity, G shows an expected proportional decrease</td>
<td>1</td>
</tr>
<tr>
<td>The experimental results of Phillips, Whitlock, and Fowler</td>
<td>2</td>
</tr>
<tr>
<td>Changes in G when non-additive genetic variance is present</td>
<td>5</td>
</tr>
<tr>
<td>The eigenstructure of G under drift and mutation</td>
<td>6</td>
</tr>
<tr>
<td>Comparing Covariance Matrices: Methodology</td>
<td>7</td>
</tr>
<tr>
<td>General issues of inference on G using a population sample</td>
<td>8</td>
</tr>
<tr>
<td>Identity, proportionality, common orientation, common scaling</td>
<td>9</td>
</tr>
<tr>
<td>Element-by-element tests</td>
<td>11</td>
</tr>
<tr>
<td>Roff’s jackknife MANOA approach</td>
<td>12</td>
</tr>
<tr>
<td>Roff’s T test</td>
<td>13</td>
</tr>
<tr>
<td>Mantel’s test and other matrix correlation approaches</td>
<td>14</td>
</tr>
<tr>
<td>Regression methods: tests of proportionality</td>
<td>15</td>
</tr>
<tr>
<td>Likelihood-based tests assuming multivariate normality: variance components</td>
<td>16</td>
</tr>
<tr>
<td>Likelihood-based tests assuming multivariate normality: Bertlett’s modified test</td>
<td>17</td>
</tr>
<tr>
<td>Random skewers: probing the geometry of G with responses to selection response</td>
<td>18</td>
</tr>
<tr>
<td>Comparison of shared geometry: the Flury hierarchy</td>
<td>19</td>
</tr>
<tr>
<td>Comparison of shared geometry: Krzanowski subspace comparison</td>
<td>24</td>
</tr>
<tr>
<td>Still no ideal solution</td>
<td>25</td>
</tr>
<tr>
<td>Comparing Covariance Matrices: Data</td>
<td>25</td>
</tr>
<tr>
<td>Conclusions</td>
<td>28</td>
</tr>
<tr>
<td>Estimating the Dimension of a Covariance Matrix</td>
<td>28</td>
</tr>
<tr>
<td>Leading eigenvalues are overestimated, smaller eigenvalues underestimated</td>
<td>29</td>
</tr>
<tr>
<td>Problems with bootstrap-based confidence intervals for eigenvalues and rank</td>
<td>30</td>
</tr>
<tr>
<td>Canonical decomposition of the estimated covariance matrix</td>
<td>32</td>
</tr>
<tr>
<td>Amemiya’s rank test</td>
<td>33</td>
</tr>
<tr>
<td>Reduced Rank estimates of G</td>
<td>34</td>
</tr>
<tr>
<td>Factor-analytic approaches for building reduced-rank estimates</td>
<td>35</td>
</tr>
<tr>
<td>Dimensionality of G: data</td>
<td>37</td>
</tr>
<tr>
<td>Eigenvalue-based measures of effective dimensionality</td>
<td>38</td>
</tr>
<tr>
<td>33. THEORY OF INDEX SELECTION</td>
<td>400</td>
</tr>
<tr>
<td>General Theory Selection on a Linear Index</td>
<td>400</td>
</tr>
<tr>
<td>Genetic variance, heritability, and response of an index</td>
<td>400</td>
</tr>
<tr>
<td>Response in the individual components of the index</td>
<td>402</td>
</tr>
<tr>
<td>The retrospective index</td>
<td>403</td>
</tr>
<tr>
<td>The selection and response indices may contain different traits</td>
<td>404</td>
</tr>
<tr>
<td>Changes in the additive variance of I due to index selection</td>
<td>405</td>
</tr>
<tr>
<td>Changes in G and P under index selection</td>
<td>406</td>
</tr>
<tr>
<td>Optimizing the Expected Response of a Linear Index</td>
<td>408</td>
</tr>
<tr>
<td>The index of selection usually does not equal the index of response</td>
<td>408</td>
</tr>
<tr>
<td>Selection and response indices with non-overlapping traits</td>
<td>409</td>
</tr>
</tbody>
</table>
CONTENTS

The Smith-Hazel index .. 411
Properties of the Smith-Hazel Index .. 412
Other useful results for the Smith-Hazel index 414
Estimated, base, and Elston indices 414
The Hayes-Hill transformation: detecting flaws in the estimated index 418
“Bending” and “rounding” corrections of the estimated index 419
Constraints on \(R \) and \(S \) given a specified selection intensity 420
Restricted and Desired-gains Indices 421
Restricted indicies .. 421
Desired-gains indicies ... 423
Summary of Linear Selection Indices 426
Nonlinear Selection Indices ... 427
Specific issues with nonlinear indices 427
Quadratic indices ... 428
Linear indices for nonlinear merit 431
Exact optimization of nonlinear indices 433
Optimal weights depend on the length of the experiment 433
Sequential Approaches: Tandem Selection and Independent Culling 434
Tandem selection ... 434
Independent culling ... 435
Selection of extremes ... 437
Relative Efficiencies of Index Selection, Independent Culling, and Tandem Selection ... 438
Theory ... 438
Data ... 440
Multistage Selection .. 441
Optimal values for multistage cullings 441
Cotterill and James’ approximately optimal two-stage selection 442
Multistage index selection ... 443
Xu and Muir’s method of transformed culling
and orthogonal index selection ... 443

34. SOME APPLICATIONS OF INDEX AND MULTIPLE-TRAIT SELECTION 455

Improving the Response of a Single Character Using a Selection Index 455
General theory .. 456
More detailed analysis of two special cases 458
Repeated measures of a character 460
Using Information From Relatives 461
General Theory ... 461
Information from a single relative 462
Constructing selection indices when the individual itself is not measured 463
Within and Between Family Selection 465
Lush’s index .. 466
Osborne’s index ... 470
Selection on a Ratio .. 471
Approximate linear indices for ratio selection 472
Other linear-based indices for ratio selection 474
Which method is best? ... 474
Selection directly on a ratio: selection differentials and response 475
Selection and Sexual Dimorphic Traits 479
Components of the genotype × sex interaction variance .. 480
Selection in sex-limited traits .. 480
Differential selection across the sexes ... 480
Sex-specific transmission differences ... 481
The joint response for a single dimorphic trait .. 481
Response with sex-linkage ... 485
Sexual dimorphism: a correlated or direct response? .. 486
Sexual dimorphism in size: Rensch’s rule .. 487
Selection on a vector of sexually dimorphic traits ... 488
Selection of the Environmental Variance σ^2_E .. 490
The bivariate Mulder-Bijima-Hill Model: Estimation ... 490
The bivariate Mulder-Bijima-Hill Model: Response in σ^2_E 490
Extensions of the Mulder-Bijima-Hill Model: Accounting for skew 490
Extensions of the Mulder-Bijima-Hill Model: Family and Sire-selection 490
Changes in the genetic variances and covariance for A_m, A_v 490

A2. INTRODUCTION TO BAYESIAN STATISTICS .. 21
Bayes’ theorem ... 21
From Likelihood to Bayesian Analysis .. 23
Marginal Posterior Distributions ... 24
Summarizing the Posterior Distribution .. 24
Highest Density Regions (HDRs) ... 25
Bayes Factors and Hypothesis Testing .. 25
The Choice of a Prior ... 27
Diffuse Priors ... 28
Sufficient Statistics and Data-transformed likelihoods ... 28
The Jeffreys’ Prior .. 29
Posterior Distributions Under Normality Assumptions .. 31
Known Variance and Unknown Mean .. 31
Gamma, Inverse-Gamma, χ^2 and χ^{-2} distributions .. 33
Unknown Variance, Inverse-χ^2 priors ... 34
General case: unknown mean and variance .. 35
Conjugate Priors .. 35
The Beta and Dirichlet Distributions ... 36
Wishart and Inverse-Wishart Distributions ... 36
Conjugate Priors for the Exponential Family of Distributions 37

A3. MCMC METHODS AND BAYESIAN ANALYSIS .. 39
Monte Carlo Integration .. 39
Importance Sampling ... 40
Introduction to Markov Chains .. 40
The Metropolis-Hastings Algorithm .. 43
Metropolis-Hasting Sampling as a Markov Chain .. 45
Burning-in the Sampler .. 46
Simulated Annealing ... 47
Choosing a Jumping (Proposal) Distribution .. 48
Convergence Diagonistics ... 49
Autocorrelation and Sample Size Inflation .. 49
Tests for Convergence .. 50
One Long Chain or Many Smaller Chains? ... 51
x CONTENTS

The Gibbs Sampler ... 51
Using the Gibbs Sampler to Approximate Marginal Distributions 53
The Monte Carlo Variance of a Gibbs-Sampled Based Estimate 54
Convergence Diagonistics: The Gibbs Sampler 55

A4. THE GEOMETRY OF VECTORS AND MATRICES:
 EIGENVALUES AND EIGENVECTORS ... 59
 The Geometry of Vectors and Matrices .. 59
 Comparing vectors: lengths and angles 59
 Matrices describe vector transformations 61
 Orthonormal matrices ... 62
 Eigenvalues and eigenvectors .. 63
 Properties of symmetric matrices .. 65
 Correlations can be removed by a matrix transformation 67
 Canonical axes of quadratic forms .. 68
 Implications for the multivariate normal distribution 70
 Principal components of the variance-covariance matrix 71
 Testing for Multivariate Normality ... 73
 Graphical tests: Chi-square plots .. 73
 Mardina’s test: Multivariate skewness and kurtosis 75

A5. DERIVATIVES OF VECTORS AND VECTOR-VALUED FUNCTIONS 79
 Derivatives of Vectors and Vector-valued Functions 79
 The hessian matrix, local maxima/minima, and multidimensional Taylor series .. 83
 Optimization under constraints .. 86