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There is a rich population genetics theory on tests for whether an observed pattern of polymorphism,
or an observed between-species difference (or both) can be accounted for with a standard drift model.
Rejection of this hypothesis offers the possibility that selection may play a role, but (as we will see)
other forces (such as population history) can also cause strong deviations from the neutral model,
especially when attempting to account for an observed pattern of polymorphism.

Basic Logic of Sequence-Based Selection Tests

There are a huge (and every growing!) number of tests, so we will focus here on some of the
classic tests as well as the general logic behind these. We can loosely group tests into two classes:
These using population data and those using phylogenetic data. Tests using population data rely
on that nature and amount of within-species polymorphisms and (in some cases) between-species
divergence. These tests attempt to detect selection at a target region or gene. In contrast, the latest
generation of phylogenetic tests go beyond trying to detect selection on a gene, attempting to further
locate specific amino acids residues that have been under positive selection.

Logic Behind Polymorphism-Based Tests

In nutshell, the logic is time. If a locus has been under positive selection, it will have a more recent
common ancestor (MRCA) than a sequence under pure drift. Conversely, if a locus is experiencing
balancing selection, two random sequences will, on average, have a MRCA more distantly relative to
pure drift. This difference in time to MRCA has consequences on levels of standing polymorphism
(shorter the MRCA, the less the polymorphism). The time back to the MRCA also influences the
length of a region under linkage disequilibrium. The longer the time, the shorter the expected block
of disequilibrium around a gene. Hence, reduced level of polymorphism and/or longer blocks of
disequilibrium relative to a neutral model are both potential signals of directional selection. Finally,
selection shifts the frequency spectrum of alleles, which is the number of alleles in each frequency
category, either producing too many rare alleles (alleles older than expected) or too many alleles at
intermediate frequencies relative to pure drift (alleles younger than expected).

Figure 8.1. Coalescent times under pure drift and two types of selection. Under balancing selection (over-
dominance), the time back to the most recent common ancestor (MRCA) is longer than under pure drift. Under
directional selection (often called a selective sweep), an allele sweeps through a population far quicker than
under drift and hence has a more recent MRCA.
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Recombination and Polymorphism

An important observation, first made in Drosophila, is that regions with reduced recombination (such
as near centromeres and telomeres) tend to show reduced levels of polymorphism. If one plots the
level of polymorphism within a sequence window versus the recombination rate in that window, a
significant positive relationship is seen.

The initial explanation for this phenomena is that this is a signal of a selective sweep, with a
linked site having a favorable mutation arising that sweeps through the population. In a region of
reduced recombination, the size of the hitchhiking region (that part of the genome dragged along
because of insufficient recombination with the selected locus) increases with decreasing recombina-
tion rate. Hence, regions of low recombination essentially have a higher chance of hitchhiking, as
(everything else being equal), they contain more closely linked genes and hence more chances for
favorable alleles to arise.

Put another way, the effect of frequent selective sweeps within a linked region is to lower
the effective population size in that region. This results in decreased times to MRCA and hence
less polymorphism. It is important to note, however, that while linkage may reduce the levels of
standing variation through their reductions in Ne, linkage has essentially no effect on the average
substitution rate at linked sites. This is because (Lecture 7), the rate of divergence between neutral
sites is a function of the mutation rate, independent of population size.

A second explanation has been offered for the positive correlation between polymorphism and
recombination rate, namely background selection. Here, selection against deleterious mutations
also reduces the effective population size in a linked region around the selected site. Highly dele-
terious alleles have little impact, as such mutations are removed almost immediately. However,
slightly deleterious mutations may drift up to low (but not rare) frequencies, and their removal
has a larger impact. While the effect for any single removal may be minor, there are a lot more
deleterious mutations arising within a region than beneficial ones, and hence background selection
can potentially have a very significant effect. Further, it is very difficult to distinguish between
selective sweeps (selection for a new alleles) and frequent background selection (selection against
new alleles), although we discuss some approaches for this.

Figure 8.2. The impact of selection on variability at surrounding neutral sites. The vertical axis plots
heterozygosity, the horizontal genome location. The upper graph shows the effect of a selective sweep, which
results in a decrease in linked neutral polymorphisms around the selected locus (indicated by the filled circle).
The width is a function of recombination (smaller c = larger width), selection (larger s = large width) and
time of the sweep (longer the time since the sweep, the smaller the width). Plots such as this are generate by
computing the variation in a window (of, say 100-1000 bases) that we slide along the genome. The lower graph
shows that balancing selection results in an increase in the level of linked neutral polymorphisms.
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Figure 8.2 shows another feature of recombination, with a decrease in variation at linked neutral sites
around a locus under a selective sweep and an increase around a locus under balancing selection.
While such a sliding window scan can be information, it is not definite proof of selection, as a local
decrease (increase) in the mutation rate can also generate these patterns.

Logic Behind Divergence Tests

The simple logic behind many divergence-based (or phylogenetic comparison) tests (comparisons
of a single sequence of the target gene from a collection of different species) is to examine KA/Ks

ratios. KA refers to the substitution rate for replacement changes, while Ks refers to the substitu-
tion rate for synonymous changes. Under the strict neutral theory, KA/Ks ratios should be one
(after suitable adjustment accounting for the fact that a random change is more likely to give a
replacement mutation than a synonymous one). In most settings, when averaging over an entire
protein, one typically sees a KA/Ks ratio significantly less than one. This is evidence of selection,
but this is expected under Kimura’s neutral theory, being a reflection of the selective constraints
on the sequence (i.e., purifying selection). Many to most replacement mutations are deleterious.
Conversely, there are cases for some genes where particular regions show aKA/Ks ratio above one.
This suggests that these substitutions might be favored by selection. We can think about this by
considering the expected substitution rate ratio. For a neutral site, 2Nµneu is the expected number
of mutations that arise per generation, each of which has probability 1/(2N) of being fixed, giving
(Lecture 7) the neutral substitution rate as

dneu/t = µneu (8.1a)

Conversely, with favorable mutations, the expected number of such new mutations each generation
is 2Nµfav , however, their chance of fixation is now 2s, twice their selective advantage, giving

dfav/t = 2Nµfav · 2s = 4Nsµfav (8.1b)

The resulting ratio of favorable/neutral rates becomes

dfav
dnue

=
4Nsµfav
µnue

= 4Ns
µfav
µnue

(8.1c)

Hence, even though favorable mutations are expected to be far less frequent, provided 4Nsµfav >
µnue, KA/Ks > 1 is expected. While KA/Ks ratios greater than one for entire sequences are rare,
such ratios can sometimes be found embedded within a sequence, for example at the critical residues
a protein that may interact with some new target.

Logic Behind Joint Polymorphism and Divergence Tests

Under the neutral theory, the heterozygosity is a function of θ = 4Neµ, while divergence is a
function of µt. Tests jointly using information on within-species polymorphism and between-
species divergence make use of these two different measures to test for concordance with neutral
expectations. Under pure drift the amount of within-population heterozygosity and between-
population (or species) divergence is positively correlation, as both are function of µ. From Lecture
7, the standing heterozygosity and between-population divergence for the ith locus under drift are

Hi = 4Neµi, di = 2tµi (8.2a)

Hence,
Hi

di
=

4Neµi
2tµi

=
2Ne
t

(8.2b)
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Thus if we compare several loci both within the same population and between the same populations,
the H/d ratio should be the same (subject to random sampling), as under pure drift this ratio has
expected value Ne/t, which should be similar (if not identical) across loci (under the pure drift
model). Variations on this theme have been proposed, as we detail below.

Tests Based Strictly on Within-Population Variation

There are a large number of tests that compare different features of standing variation (such as
number of alleles versus average pair-wise distance between alleles). Two sequence evolution
frameworks are generally used as the basis for such compairson: the infinite alleles and infinite
sites models. The key assumption of both models is that each mutation generates a new sequence,
and hence leaves a unique signature. Such is not the case when using microsatellite (or STR)
markers, as these follow a step-wise mutation model. When analyzing such markers, this very
different mutation process must be explicitly modeled into the analysis.

So how are the two basic models different? Given a DNA sequence, an infinite alleles framework
would treat each haplotype as a different allele (under the assumption of no intra-genic recombina-
tion), while the infinite sites framework looks at each position in the sequence separately. Figure 8.3
shows the difference. In this sample of five sequences, there are three haplotypes (and hence three
alleles in the infinite alleles framework). However, in an infinite sites framework, looking over the
six sites, we find that only two of these sites are segregating.

Figure 8.3. A sample of five sequences, showing three haplotypes but only two segregating sites.

Polymorphism-based tests compare the frequency of alleles with their expectations under the
neutral model. Two typical departures are seen: (i) an excess of common alleles and a deficiency of
rare alleles (alleles younger than expected) and (ii) a deficiency of common alleles and an excess of
rare alleles (alleles older than expected). Pattern (i) would be expected under directional selection,
when the coalescent times have been shrunk by a selective sweep. Pattern (ii) would be expected
under stabilizing selection, where the coalescent times are longer than expected under drift. The
problem is that these patterns can also be generated by demographic events as well. A population
bottleneck and/or recent population expansion can generation pattern (i), while population sub-
division can generate pattern (ii). Thus polymorphism-based tests contrast the null (strict neutral
model with constant population size) against a composite alternative hypothesis: selection and/or
departures from a single random-mating population of constant size.

Obviously this is a serious limitation. However, demographic effects should leave a constant
signature throughout the genome, while selection events leave a unique signature against this
background. Hence, recent whole-genome scans of selection have performed polymorphism-based
tests scanning a large, dense set of markers spanning the genome, and use this information to
generate a null distribution of the test statistic given the population history. Selection is suggested
by looking at the extreme outliers against this null distribution.
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The Infinite Alleles Model: Ewen’s Sampling Formula

A classic result from population genetics is Ewen’s Samplng Formula (Evens 1972): under the
infinite alleles model, the probability that we see K alleles (haplotypes) in a sample of size n is

Pr(K = k) =
|Skn | θk
Sn(θ)

(8.3a)

where
Sn(θ) = θ(θ + 1)(θ + 2) · · · (θ + n− 1) (8.3b)

and Skn is the coefficient on the θk term in the polynomial given by Sn(θ). (Skn is called a Stirling
number of the first kind). The probability that only a single allele is seen in our sample is

Pr(K = 1) =
(n− 1)!

(θ + 1)(θ + 2) · · · (θ + n− 1)
(8.3c)

From Equation 8.3a, the mean and variance for the number of alleles can be found to be

E(K) = 1 + θ ·
n∑
j=2

1
θ + j − 1

(8.4a)

and

σ2(K) = θ ·
n−1∑
j=1

j

(θ + j)2
(8.4b)

The Infinite Sites Model

The building blocks for many of the early tests of neutrality are based on summary statistics from
the infinite sites model. This model is the logical extension of the infinite alleles model to a DNA
sequence, essentially treating each nucleotide as a new locus (or site). The infinite sites model
assumes that each new mutation introduces a new site (i.e., only one mutation per site). This is
not an unreasonable model unless we are scoring STR loci, which have high mutation rates and the
very real possibility of back mutations (Lecture 3).

The typical setting is a sample of n sequences are taken from a population, with the goal of
estimating θ = 4Neµ. Three common summary statistics are used for this purpose. The first is S, the
number of segregating sites in sample. The second is k, the average pairwise difference between
any two random sequences. The final is η, the number of singletons. The expected values and
sample variances for these summary statistics are as follows:

Statistic Expected Value Sample Variance

S = number of E[S] = anθ σ2(S) = anθ + bnθ
2

segregating sites

k = average number of E[k] = θ σ2(k) = θ
n+ 1

3(n− 1)
+ θ2 2(n2 + n+ 3)

9n(n− 1)
pairwise differences

η = number of singletons E[η] = θ
n

n− 1
σ2(η) = θ

n

n− 1
+ θ2

[
2an
n− 1

− 1
(n− 1)2

]
where

an =
n−1∑
i=1

1
i

and bn =
n−1∑
i=1

1
i2

(8.5)
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Under pure drift, the following three are all estimators of θ,

θ̂S =
S

an
, θ̂k = k, θ̂η =

n− 1
n

η (8.6)

θ̂S is called with Waterson estimator for θ (Watersons, 1975). Proposed tests for neutrality contrasts
pairs of these estimates, with Tajima’s (1989) test comparing estimates based on S and k, while two
tests proposed by Fu and Li (1993) contrasts estimates based on S and k with those based on η.

Example 8.1. Suppose we sample 10 alleles from a population and observeS = 12, k = 4, and η = 3
What are the estimates of θ given these three summary statistics?

θ̂S =
S

a10
, a10 =

9∑
i=1

1
i

= 2.83, giving θ̂S =
12

2.83
= 4.24

θ̂k = k = 4

θ̂η =
n

n− 1
η =

10
9
· 3 = 3.33

Tajima’s D Test

One of the first, and most popular, polymorphism-based test is Tajima’s (1989) D test, which contrasts
θ estimates based on segregating sites (S) versus average pairwise difference (k),

D =
θ̂k − θ̂S√

αDS + βDS2
(8.7a)

where

αD =
1
an

(
n+ 1

3(n− 1)
− 1
an

)
− βD (8.7b)

βD =
1

a2
n + bn

(
2(n2 + n+ 3)

9n(n− 1)
− n+ 2

ann
+
bn
a2
n

)
(8.7c)

Tajima’s motivation for this test was his intuition that there is an important difference between
the number of segregating sites S and the average number k of nucleotide differences. For the
former we simply count polymorphic sites (independent of their frequencies), while the later is
a frequency-weighted measure. Hence, S is much more sensitive to changes in the frequency of
rare alleles, while k is much more sensitive to changes in the frequency of intermediate alleles.
A negative value of D indicates too many low frequency alleles, while a positive D indicates too
many intermediate-frequency alleles. Expressed another way, D is a test for whether the amount
of heterozygosity is consistent with the number of polymorphisms. Under selective sweeps (and
background selection and population expansion), heterozygosity should be significant less than
predicted from the number of polymorphisms.

Example 8.2. Two interesting examples were offered by Tajima (1989). First, Aquadro and Greenberg
looked at 900 base pairs in the mitochondrial DNA of seven humans, finding 45 segregating sites and
an average number of nucleotide differences between all pairs of 15.38. Here

a7 =
6∑
i=1

1
i

= 2.45, b7 =
6∑
i=1

1
i2

= 1.49

Lecture 8, pg. 6



θ̂S =
S

an
=

45
2.45

= 18.38, θ̂k = k = 15.38

βD =
1

2.452 + 1.49

(
2(72 + 7 + 3)
9 · 7(7− 1)

− 7 + 2
7 · 2.45

+
1.49
2.452

)
= 0.0417

αD =
1

2.45

(
7 + 1

3(7− 1)
− 1

2.45

)
− 0.0417 = −0.0269

D =
θ̂k − θ̂S√

αDS + βDS2
=

15.38− 18.38√
−0.0269 · 45 + 0.0417 · 452

= −0.3288

Table 2 of Tajima (1989) gives the 95% confidence interval on D under strict neutrality for n = 7 as
-1.608 to 1.932, so this value is not significantly different from its neutral expectations.

Second, Miyashita and Langley examined 64 samples of a 45-kb region of the white locus in D.
melanogaster. Taking large insertions/deletions as the polymorphic sites, they found S = 454 and
k = 0.94, which gives D = −2.0709. Given that the 95% confidence interval under neutrality is
-1.795 to 2.055, this locus shows evidence of either directional selection or a population bottleneck (or
expansion).

Fu and Li’s D* and F* tests

Fu and Li (1993) introduced two tests, based on the two other contrasts of the three infinite-sites
θ estimators (Equation 8.6). Their D* test compares the segregating sites (S) versus singletons (η)
estimator of θ,

D∗ =
θ̂S − θ̂η√
α∗S + β∗S2

(8.8a)

α∗ =
1
an

(
n+ 1
n
− 1
an

)
− β∗ (8.8b)

β∗ =
1

a2
n + bn

(
bn
a2
n

− 2
n

(
1 +

1
an
− an +

an
n

)
− 1
n2

)
(8.8c)

While their F* test compares the average pair-wise divergence (k) versus singletons (η) estimator of
θ,

F ∗ =
θ̂k − θ̂η√

αFS + βFS2
(8.9a)

αF =
1
an

(
4n2 + 19n+ 3− 12(n+ 1)an+1

3n(n− 1)

)
− βF (8.9b)

βF =
1

a2
n + bn

(
2n4 + 110n2 − 255n+ 153

9n2(n− 1)
+

2(n− 1)an
n2

− 8bn
n

)
(8.9c)

These expression are from Simonsen et al (1995), with Equation 8.9c correcting a typo in the original
Fu and Li paper. Critical values are tabulated by Fu and Li (1993). While these tests are fairly
widely used, Simonsen et al. (1995) found that they are not as powerful as Tajima’s test for detect-
ing a selective sweep or population structure departures (bottlenecks or population subdivision).
However, Fu (1997) found that both tests have more power than Tajima’s D for detecting signals of
background selection.

Depaulis and Veuille’s K and H tests

Depaulis and Veuille (1998) offered two interesting tests that, in effect, look at the sequence data
from both the infinite alleles and infinite sites perspectives. Specifically, they looked at two infinite
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allele measures, the number of haplotypes K (read alleles) and the diversity of haplotypes H (read
heterozygosity of alleles), where

H = 1−
K∑
i=1

p2
i , where pi = frequency of ith haplotype (8.10)

They compared the observed values of these two statistics conditioned on the number S of seg-
regating sites (infinite sites model). Their K test and H test compare, respectively, the observed
values ofK andH with the neutral values expected given S. Hypothesis testing was accomplished
by simulating neutral coalescents conditioned on the observed values of S and sample size n, and
Depaulis and Veuille present tables for sample sizes up to n = 60. Also see Wall and Hudson (2001)
for commentary on their simulation approach.

Fu’s W and FS Tests

Fu (1996, 1997) offered a number of tests of selection, with a goal of offering more refined test for
specific settings, such as too few alleles or too many alleles. We consider on two of his proposed
tests here.

Fu’s W test (1996) is based on Ewen’s sampling formula (Equation 8.3a). Suppose we have an
estimate θ̂ of θ and we observe k alleles in our sample. The probability of seeing k (or fewer) alleles
in our sample is just

W = Pr(K ≤ k) =
k∑
i=1

Pr(K = k | θ̂ ) =
k∑
i=1

|Skn | θ̂ k

Sn( θ̂ )
(8.11)

where
Sn( θ̂ ) = θ̂ ( θ̂ + 1)( θ̂ + 2) · · · ( θ̂ + n− 1)

the W test is essentially a test for an deficiency of rare alleles, and hence is a one-sided test. Fu’s
test uses the Watterson (1975) estimator θ̂ = S/an, where S is the number of segregating sites. Fu
(1996) showed that the W test is more powerful that Tajima’s D and Fu and Li’s D∗ and F ∗ tests for
detecting samples from a structured population (as also occurs with overdominant selection).

Fu’s FS test (1997) is the compliment of his W test, being a test for excess rare alleles. It starts
by computing the probability of seeing k or more alleles in our sample,

S′ = Pr(K ≥ k) =
n∑
i=k

|Skn | θ̂ k

Sn( θ̂ )
(8.12a)

but now using θ̂k, the estimator of θ based on average number of pairwise differences. Fu notes that
S′ is not an optimal test statistic because its critical point are often too close to zero. Because of this,
the test statistic S is the logistic of S′,

FS = ln
(

S′

1− S′

)
(8.12b)

FS is negative when there is an excess of rare alleles (as occurs with an excess of recent mutations
as would occur with a selective sweep or population expansion), with a sufficiently large negative
value being evidence for selection. Hence, FS is a one-sided test. Fu (1997) showed that FS is more
powerful that Tajima’s and Fu and Li’s tests for detecting population growth/selective sweeps.
Conversely, Fu and Li’s tests are more power for detecting background selection.
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Fay and Wu’s H Test

Fay and Wu (2000) and Kim and Stephan (2000) note that a distinct signal is left by a selective sweep
that is not left by background selection. Specifically, it is common to see alleles that have newly
arise by mutation at high frequency following a sweep (as they hitched along for the ride). With
background selection, this feature is not expected. This is the basis for Fay and Wu’s H test, which
disproportionate weights derived alleles at high frequency. Their test requires an outgroup so that
one can access whether an allele occurs in the outgroup or has recently been derived by mutation.
Such derived alleles are expected to be at lower frequency (as under neutrality, the frequency of
an allele is a rough indicator of its age, with older alleles being more frequent). The test processed
as follows. Let Si denote the number of derived mutants found i times in our sample of size n.
For example, if there are 5 unique (derived) alleles, 4 alleles each appearing twice, and one allele
appearing 5 times in our sample of size 18, then S1 = 5, S2 = 4, S5 = 1. The estimate of θ from the
average pair-wise difference expressed in terms of the Si is

θ̂k = 2
n−1∑
i=1

Si i(n− i)
n(n− 1)

(8.13a)

while an estimate of θ weighted by homozygosity is

θ̂H = 2
n−1∑
i=1

Si i
2

n(n− 1)
(8.13b)

Fay and Wu’s H test is given (ala D, D∗, and F ∗) by the scaled difference of θ̂H − θ̂k.
Given that Day and Wu’s test weights derived allele at high frequency, a significant H and

D test is consistent with a selective sweep, while a significant D test, but not a significant H test
suggests background selection or demographic features more likely accounts for the departure from
neutrality.

Genome-Wide Polymorphism Tests

As mentioned several times, polymorphism-based tests suffer in that we reject the null hypothesis
(neutrality), we are left with a composite alternative hypothesis that not only includes selection
but also include departures from the standard demographic assumptions (a single random mating
constant size population). Given this, much thought has gone into trying to estimate the coalescent
process under neutrality, but allowing for the population structure inherent in the data. One ap-
proach is to make some assumptions about the demography, and then use these to generate a neutral
coalescent under this structure, from which we can obtain a null distribution for comparison. More
recently, a number of workers have used Cavalli-Sforza’s (1966) idea that all of the genome experi-
ences the same demography (focusing here on the autosomal chromosomes). Hence, markers across
the genome provide useful information on the null distribution. Using this approach, one could
scan a huge number of loci, under the assumption that the vast bulk are essentially neutral (i.e., not
under strong directional selection), and hence these can be used to generate the null distribution.
Outliers in this null indicate potential loci under selection.

The Ghost of Lewontin-Krakauer: Genome Wide FST -based Scans

One of the very first tests for selection with sequence data was proposed by Lewontin and Krakauer
(1973), who looked at allele frequencies values in different populations by computing Wright’s Fst
statistic. Fst is basically the fraction of between-group variation, the between-group variance di-
vided by the total variance. The Fst value for the data was compared with the expected neutral
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value. Lewontin and Krakauer reasoned (correctly) that if differential (directional) selection was
occurring in the different populations, this would generate a larger than expected Fst value. Like-
wise, if overdominant selection was operating, the between-population divergence would be less
than expected. While their logic was sound, their test was heavily criticized, as the null distribu-
tion under neutrality depends very heavily on details of the (unknown) population structure. As
a result, this test died a quick death. However, we are now starting to see its ghost reappear in the
literature.

Several scans for selected loci in the human population have looked at the Fst (or a related
measure Rst for STR loci) values over a very large number of sites, taking outliers from this distri-
bution as indicators of potential loci under selection. For example, Akey et al. (2002) used 26,530
SNPs (single nucleotide polymorphisms) in three human populations, computing Fst values for
each, generating 174 candidate loci. Kayser et al. (2003) looked at 322 STR (short tandem repeats
= microsatellite) loci in both Africans and Europeans. Of these, 11 showed usually high values.
As a check, they then sequenced a nearby STR (for each of the candidates), finding that these new
(and tightly linked) loci also have Rst values larger than average. Storz et al. (2004) looked at 624
autosomal markers in multiple human populations, finding 13 that appeared to be outliers.

The Linkage Disequilibrium Decay (LDD) Test

As mentioned, one feature of selective sweeps is that they have an excess of newly-derived alleles
at high frequency. We have alread (Fay and Wu) seen one specific test for this. A second class of
tests is offered by the following observation. Under a selective sweep, since some alleles are at
much higher frequencies than their age would suggest under a neutral model, these alleles should
also have longer regions of linkage disequilibrium. Again, the key here is time. The more time,
the smaller the window of disequilibrium. If a sweep moves an allele quickly to high frequency,
the amount of disequilibrium, given its frequency, should be excessive relative to a neutral model.
This is the basis for the Linkage Disequilibrium Decay, LDD Test of Wang et al. (2006). They
applied this idea on a massive human data set of 1.6 million SNPs, resulting in 1.6% of the markers
showing some signatures of positive selection. Simulation studies by Wang et al. found that the
LDD test effectively distinguishes selection from population bottlenecks and admixture (population
structure).

All genome-based test have an important caveat. The large number of markers used are typically
generated by looking for polymorphisms in a very small, and often not very ethnically-diverse,
sample. As a consequence, there is a strong ascertainment bias inherent with these markers (for
example, an excess of intermediate-frequency markers). If such biases are not accounted for, they
can skew genome-wide tests (Nielsen 2005).

Joint Polymorphism and Divergence Tests

McDonald-Kreitman Test

One of the most straightforward tests of selection when one has both polymorphism and divergence
data was offered by McDonald and Kreitman (1991). Their basic logic was very similar to that leading
to Equation 8.2. Consider a single locus, were we contrast the polymorphism and divergence rate
at synonymous versus replacement sites. The ratio of expected divergence between synonymous
vs. replacement sites is

dsyn
drep

=
2tµsyn
2tµrep

=
µsyn
µrep

(8.14a)
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Likewise the ratios of heterozygosity at the two locations is

Hsyn

Hrep
=

4Neµsyn
4Neµrep

=
µsyn
µrep

(8.14b)

Hence, these two ratio have the same expected value. We note that McDonald and Kreitman
provide a more general derivation of 8.14a, replacing 4Ne (the equilibrium value) by Ttot, the total
time on all of the within-species coalescent branches, so that any effects of demography cancle.
Hence, the McDonald-Kreitman is not affected by population demography (Nielsen 2001). Given the
constancy of these ratios under neutrality, the McDonald-Kreitman test is performed by contrasting
polymorphism vs. divergence data at synonymous versus replacement sites in the gene in question
through a simple contingency table.

Example 8.3. McDonald and Kreitman (1991) look at the Adh (Alcohol dehydrogenase) locus in
Drosophila, specifically the sibling species D. melanogaster, D. simulans, and the outgroup D. yakuba.
Looking at fixed differences, a total of 24 occur, 7 of which were replacement, 17 synonymous. Turning
to polymorphisms, 44 polymorphic sites were found, 2 of which were replacement and 42 synonymous,
giving

Fixed Polymorphic
Replacement 7 2
Synonymous 17 42

Fisher’s exact tests gives apvalue of 0.0073. (In R, this is obtained using x<-matrix(c(7,17,2,42),nrow=2)
to enter the data and fisher.test(x) to run the test. )

Hudson-Kreitman-Aguade (HKA) Test

Hudson, Kreitman, and Aguade (1987) proposed the first tests to jointly use information from the
standing levels of polymorphisms within a species and the amount of divergence between species.
The result was the HKA test.

Consider two species (or distant populations) A and B that are at mutation-drift equilibrium
with population sizes NA = N and NB = αN , respectively. Further assume they separated T =
τ/(2N) generations ago from a common population of size N∗ = (NA +NB)/2 = N(1 + α)/2, the
average of the two current population sizes. Now suppose i = 1, · · · , L unlinked loci are examined
in both species. The amount of polymorphism for locus i in species A is a function of θi = 4Neµi,
while for species B, θ = 4NBµi = 4(αNe)µi = αθi. The resulting summary statistics used are L SAi
values, for the number of segregating sites at locus i in species (population)A, another L SBi for the
same i loci in species B, and L Di values, for the amounts of divergence (measured by the average
number of differences between a random gamete from speciesA and a random gamete from species
B). Given these 3L summary statistics, the HKA test X2 is given by

X2 =
L∑
i=1

(
SAi − Ê(SAi )

)2

V̂ ar(SAi )
+

L∑
i=1

(
SBi − Ê(SBi )

)2

V̂ ar(SBi )
+

L∑
i=1

(
Di − Ê(Dii)

)2

V̂ ar(Di)
(8.15)

where, for nA samples from species A and nB samples from species B,

Ê(SAi ) = θ̂ianA , Ê(SAi ) = α̂ θ̂ianB (8.16a)

V̂ ar(SAi ) = θ̂ianA + θ̂i
2
bnA , V̂ ar(SBi ) = α̂θ̂ianA + α̂2θ̂i

2
bnB (8.16b)

D̂i = θ̂i

(
T̂ +

1 + α̂

2

)
(8.16c)

V̂ ar(Di) = θ̂i

(
T̂ +

1 + α̂

2

)
+

(
θ̂i(1 + α̂)

2

)2

(8.16d)
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Equations 8.16a and 8.16b follow from our above results for the infinite sites model. Equation 8.16c
follows by re-writing

θi

(
T +

1 + α

2

)
= 4Nµi

(
τ

2N
+

1 + α

2

)
= 2µiτ + 4µi

N(1 + α)
2

where the first term is the between-population divergence due to new mutations and the second term
the divergence from partitioning of the polymorphism 4N∗µi in the ancestral population. Thus the
HKA test hasL+2 parameters to estimate, theL θxi values and two demographic parameters, T and
α. The HKA test estimates these parameters and then (using Equation 8.16) computes the goodness
of fit X2 statistic (Equation 8.15), which is approximated χ2 distributed with 3L− (L+ 2) = 2L− 2
degrees of freedom. Hudson et al. suggest the following system of equations for the estimating the
2L+ 2 unknowns,

L∑
i=1

SAi = anA

L∑
i=1

θ̂i

L∑
i=1

SBi = α̂ anB

L∑
i=1

θ̂i

(8.17)
L∑
i=1

Di =
(
T̂ +

1 + α̂

2

) L∑
i=1

θ̂i

SAi + SBi +Di = θ̂i

(
T̂ +

1 + α̂

2

)
+ anA + α̂ · anB for 1 = 1, · · · , L− 1

This can be solved numerically, generating the estimated values for the X2 statistic.

Example 8.4. Hudson et al. examined Adh locus silent variation as one locus and the 4-kb 5’ flanking
regions of Adh as the second locus in D. melanogaster and its sibling species D. sechellia. A sample of
81 melanogaster alleles were sequenced, along with a single sechellia allele. Based on sequencing, the
divergence was 210 differences in the 4052 bp flanking region and 18 differences in the 324 silent sites,
for roughly equal levels of divergence between the two loci. Based on restriction enzyme data, within
melanogaster, 9 of the 414 5’ flanking sites were variable, while 8 of 79 Adh sites were variable. Thus
while the divergence was roughly equal, there was a four-fold difference in polymorphism. Hudson
et al. modify the HKA test to account for only polymorphism data from only a single species. Further,
given the difference in number of sites between the polymorphism and divergence data, let θi be the
per-nucleotide θ value, so that we have to weight the θ value for each term by the number of sites
compared, giving Equation 8.17 as

SA1 + SB2 = 9 + 8 = a81(414 · θ̂1 + 79 · θ̂2)

D1 +D2 = 210 + 18 = 4052 · θ̂1 + 324θ̂2(T̂ + 1)

D1 + SA1 = 210 + 9 = 4052 · θ̂1(T̂ + 1) + a81 · 141 · θ̂1

The solutions to this system were found to be

T̂ = 6.73, θ̂1 = 6.6× 10−3, and θ̂2 = 9.0× 10−3

giving the resulting X2 statistic as 6.09. Since Pr(χ2
1 > 6.09) = 0.014, the test indicates a significant

departure from neutrality.
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Tests Based on Between-Population (Species) Divergence

While tests based on between-species differences have the disadvantage of requiring sequences from
the gene of interest from a number of closely-related species (or very divergent populations from
the same species), they have the distinct advantage of not being confounded by issues of population
demography. As mentioned above, this follows because while levels of polymorphism are functions
of the effective population size, divergence between populations is simply a function of time and
the mutation rate. Ford (2002) in a summary of published reports for evidence of selection noted
that of the 119 (as of 2002) reports of positive selection, 25 were based on polymorphism and/or
divergence tests (such as Tajima’s and HKA), 9 had a significant McDonald-Kreitman test, and 92
were detected by tests based on KA/Ks ratios.

Define ω = KA/Ks, the ratio of nonsynonymous to synonymous substitution rates. It has long
been recognized (Kimura 1983) that evidence for positive (i.e., directional) selection is given when
a protein shows ω > 1. The problem is that while one or a few sites may be under strong directional
selection (ω >> 1 at these residues), most sites in a protein are expected to be under some selective
constraints (ω << 1), so that the average over all sites gives that protein an ω < 1. Indeed, a
meta-analysis by Endo et al (1996) found that only 17 out of 3595 proteins showed ω > 1. However,
there were a few early success stories. For example, Hughes and Nei (1988) used the 3-D protein
structure of genes in the major histocompatibility complex to suggest potential residues (those on
the surface in critical positions) to test for, and find, ω > 1 for these residues. However, for most
proteins, we don’t have this amount of biological detail to draw upon.

Given these constraints, two general approaches have been suggested to estimate ω given a set
of sequences from a group of closely-related species. All need a phylogeny for these sequences,
and issues such as the correct multiple sequence alignment as well as errors in the assumed tree
potentially loom in the background, but are general not addressed (perhaps rightly so). Parsimony-
based approaches reconstruct the sequence at each node in the tree, and then use these to count up
the number of synonymous and nonsynonymous substitutions. Likelihood approaches are on a
more firm statistical footing, but are computationally intense and can be rather model-specific. Both
approaches allow for tests not just whether a protein is under selection, but more exciting what sites
in that protein are under positive selection.

Parsimony-Based Ancestral Reconstruction Tests

Fitch et al. (1997) and Suzuki and Gojobori (1999) proposed similar parsimony-based approaches
for detecting selection on single sites. Both methods start with a phylogeny and then use parsimony
(choose the solution requiring the fewest number of changes) to reconstruct the ancestral sequences
at all of the nodes in the tree. With these estimated sequences in hand, one can them simply count
the number of synonymous and nonsynonymous substitutions on the tree. The approach of Fitch
et al. assumes all sites are the same, while the approach of Suzuki and Gojobori allows sites to vary.
The false-positive rate of these methods is generally small (Suzuki and Gojobori 1999, Suzuki and
Nei 2002), but they suffer from low power (Wong et al 2004). Further, given that the ancestral states
are likely estimated with error, the analysis has no formal procedure to take this uncertainty into
account when computing a p value for any site. Bayesian posterior distributions can account for
these errors, but this requires moving from a parsimony to a likelihood framework.

Maximum-Likelihood-Based Codon Tests

Maximum-likelihood methods make no assumptions as to the ancestral state at each of the nodes in
a tree, but rather uses an explicit model of codon change. For example, Goldman and Yang (1994)
considered the following model for transitions between codons i and j (1 ≤ i, j ≤ 64) [as the three
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stop codons are ignored],

qij =



0 If i and j differ at more than one position
πj for a synonymous transversion
κπj for a synonymous transition
ωπj for a nonsynonymous transversion
ωκπj for a nonsynonymous transition

(8.18)

A similar model was suggested by Muse and Gaut (1994). Here, πj is the equilibrium frequency of
codon j (calculated from the nucleotide frequencies at the three codon positions), while κ and ω are
estimated parameters to account for biases in codon changes. First, it is well known that transitions
(A↔ G, C↔ T) can occur at different rates than transversions (e.g., A↔ T, etc.) The parameter κ
accounts for this, and can also account for codon usage bias in many cases. Of greater interest is ω,
the substitution rate ratio. An estimated ω > 1 is direct evidence for directional selection.

Tests for directional selection on a gene is accomplished by using this codon model superim-
posed on the phylogenetic tree, running likelihood calculation to find the ML solutions for Q matrix
parameters. This allows for a direct test that ω > 1 using Likelihood Ratio tests (Lecture 1). The key
to these likelihood calculations is that P(t), the codon transition matrix at time t, is related to the Q
matrix by

P(t) = exp(Qt) (8.19)

Here,
Pij(t) = Pr(codon = i at time t | codon is j at time t = 0) (8.20)

Recalling that if we can diagonalize the matrix Q, then Q = UΛUT where Λ is a diagonal matrix,
with ith diagonal elements λi, the eigenvalues of Q (Lecture 14). Then

exp(Qt) = U exp(tΛ)UT

where

exp(tΛ) = diag(etλ1 , etλ2 , · · · , etλn) =


etλ1 0 · · · 0

0 etλ2 · · · 0
...

. . .
...

0 · · · · · · etλn

 (8.21)

A variety of likelihood models based on Equation 8.21 are tested (much in the same way that we test
subset of complex segregation analysis models in Lecture 16), adding more factors (i.e., nonzero κ,
etc.) if they improved model fit. Evidence for selection on a gene is indicated if the likelihood ratio
test for ω > 1 is significant.

The power of this approach has been examined by Anisimova et al. (2001). Power is a function
of two different sample sizes: the number of codons in the sequence and the number of actual
sequences. Typically, an investigator has very little control over the number of codons sequenced in
a gene, but the more codons in a gene, the better, although 100 seems to give reasonable power (an
amino acid chain 100 residues long). Power is more efficiently increased by adding more sequences,
as opposed to looking at more codons. Five to six sequences offer little power, but 15-20 sequences
can offer considerable power. Hence, for very short sequences, the method typically lacks power,
but for moderately long sequences with a modest phylogeny (10-20 species), power can be quite
reasonable. They also found that very similar, and very divergent, sequences both offer little power.
Hence, sequences from divergent populations of the same species may lack power (viruses are a
counterexample, due to their very high mutation rate). Likewise, a phylogeny based on rather
distant sequences can also lack power.

Lecture 8, pg. 14



Nielsen et al. (2005) uses this ML approach to compare 13,700 genes from humans with their
chimpanzee orthologs, finding a number of genes with signatures of positive selection.

Bayesian Estimator of Sites Under Positive Selection

A limit with this type of likelihood approach is that we are still testing the entire gene, assuming a
single ω ratio at all sites. As we mentioned above, this is a problem with gene-wide tests, as sites
under strong directional can be obscured by the sea of sites that are conserved. A major innovation
to resolve this problem was offered by Nielsen and Yang (1998) and Yang et al. (2000). Building on
the likelihood approach, they further assumed that sites fell into several categories (for example,
neutral, selected against, selected for). Further, within the selected sites, ω was allowed to vary,
with values being drawn from a distribution (such as a Gamma), with the distirbutional parameters
also fit by ML. The direct test for selection on the gene is whether adding the ω > 1 distribution
significantly improves model fit. If such selection is indicated, a very powerful feature with this
approach is that, with the ML-estimated parameters in hand, one can use Bayes’ theorem (Equation
1.4) to assign posterior probabilities that a particular site is in a specific category. Suppose there are
two classes, neutral (n) and selected (s). From Bayes’ theorem, the probability that a specific site is
in the selected category is just

Pr(s |A) =
Pr(s) Pr(A | s)

Pr(s) Pr(A | s) + Pr(n) Pr(A |n)
(8.22)

whereA is the pattern of codons for that site in the tree. Thus, Yang’s approach allows us to directly
assign probabilities of selection to any particular site.
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