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Multivariate Response: Changes in Covariances

The proportional change in the genetic covariances is likely to be greater than in
the genetic variances themselves. It must therefore be expected that the static

description of a population in terms of additive genetic variances and covariances
will be valid in prediction over a much shorter period for correlated response

than it will be for direct response. —Bohren, Hill and Robertson 1966

Version 23 January 2009

The previous chapter assumed that genetic variances and covariances do not appreciably
change over our time scale of interest for selection response. We now relax this assumption
and consider changes in G during selection. Much of our development of the dynamics
of G follows along similar lines to our development of changes in the genetic variance
under univariate selection. In previous chapters we showed that short-term changes in the
genetic variance occur from selection creating linkage disequilibrium (Chapter 13). Under the
infinitesimal model, these changes are straightforward to predict using Bulmer’s Equation
(13.7). Over longer time scales, allele frequencies change, and predicting of the change in
variance is no longer simple, requiring extensive knowledge of the distribution of allelic
effects (Chapters 14, 24-26). Finally, over even longer time scales, any initially usable genetic
variation is eventually removed by selection and drift, and further progress depends upon
the creation of new variation (typically by mutation). All of these themes also hold when
considering changes in G. One new theme is that genetic covariances are even more sensitive
to allele frequency changes than are genetic variances. We start with development of the
multivariate Bulmer’s equation for the change in G solely through the generation of linkage
disequilibrium under the infinitesimal model. We then examine the selection pressures on
genetic variances and covariances from both directional and quadratic selection, concluding
with an analysis under a general multivariate Gaussian fitness function. This class of fitness
functions is very flexible and widely used in modeling phenotypic evolution (Chapters 41-
43). Next, we consider the changes in genetic covariances under allele frequency change,
and review results from multi-trait selection experiments. We then turn to a discussion of
genetic models that generate pleiotropic correlations. We conclude by considering long-
term selection, first developing the multivariate version of Robertson’s results (Chapter
26) for long-term response under selection and drift (but no mutation) in the infinitesimal
framework. We then consider various other models of combinations of selection, mutation,
and drift that produce equilibrium values of G for populations under constant selection,
and conclude wiht a few general comments on what the theory suggests about the stability
of G.

CHANGES IN G UNDER THE INFINITESIMAL MODEL

Under the assumptions of the infinitesimal model (a very large number of loci, each of very
small effect, Chapter 24), there is no significant allele frequency change and thus any change
in the variances and covariances is due to linkage disequilibrium (LD). As developed in
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Chapter 13, Bulmer’s Equation (13.7) allows us to predict the change in LD (and hence the
change in the genetic and phenotypic variance) under the infinitesimal model. Here we
develop the multivariate extension of the Bulmer Equation.

As way of background, recall Bulmer’s treatment for the univariate case (Chapter 13).
All changes in the genetic and phenotypic variance are due to gametic-phase disequilibrium
d changing the additive variance. Thus σ2

A(t) = σ2
A(0) + dt, and σ2

z(t) = σ2
z(0) + dt. The

assumption of no allele frequency change allows us to use base genetic variance σ2
A(0) as

the linkage equilibrium value of G in any generation. Assuming unlinked loci, the current
value of d is halved each generation by segregation. Likewise, if d∗t is the amount of new
disequilibrium generated by selection in generation t, then the total disequilibrium just
before reproduction is d∗t + dt. Segregation between unlinked loci results in only half of the
disequilibrium being passed on to the offspring generation, so that

∆dt = dt+1 − dt = −d
∗
t + dt

2

The Dynamics of the Disequilibrium Matrix D

Moving to multiple characters, the additive genetic covariance between traits i and j in
generation t can be written as

σt(Ai, Aj) = σ0(Ai, Aj) + dt(i, j) (31.1a)

where dt(i, j) is the disequilibrium contribution at time t and σ0(Ai, Aj) the linkage equilib-
rium value from the base population. If allele frequency change has occurred (for example,
by drift), then this is replaced by σLE(Ai, Aj), the linkage equilibrium value given the cur-
rent allele frequencies. As above, selection generates d while recombination removes it, so
that

∆dt(i, j) = −d
∗
t (i, j) + dt(i, j)

2
(31.1b)

where (as in the univariate case) d∗ corresponds to the new LD generated by selection and
d to the current LD before selection.

Thus, in the multivariate case, disequilibrium is measured by the matrix Dt = Gt−G0,
and the phenotypic covariance matrix is given by Pt = P0 + Dt. These definitions assume
that allele frequencies (and hence G0) have not changed. If they have (for example, by drift),
then G0 is replaced by GLE , the G matrix for the current allele frequencies in the absence
of LD (Turelli 1988a, Turelli and Barton 1994, Shaw et al. 1995). The change in D over time
is given by

∆Dt = −D∗t + Dt

2
(31.2a)

Further, the amount of new disequilibrium generation by selection is just D∗ = G∗−G, the
difference between the covariance matrix before and after selection. Thus, the multivariate
version of Bulmer’s equation is given by

∆Dt = −G∗t −Gt + Dt

2
(31.2b)

To place this equation is a more usable form, we need to replace G∗ with a measure based on
the phenotypic covariance matrix before and after selection, both of which we can observe
directly. Recall that we did this in Example 30.2, which showed (Equation 30.12) under the
assumptions of the multivariate breeder’s equation that

G∗ −G = GP−1(P∗ −P)P−1G (31.3)
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where P∗ is the covariance matrix after selection, so that the change in the covariance matrix
is given by ∆P = P∗ −P. Substituting these results into Equation 31.2b gives

∆Dt =
1
2
(
GtP−1

t (P∗t −Pt)P−1
t Gt −Dt

)
(31.4a)

=
1
2
(
GtP−1

t ∆PtP−1
t Gt −Dt

)
(31.4b)

This multivariate version was obtained by Tallis (1987, Tallis and Leppard 1988), who also
allowed for assortative mating (see his papers for details). As expected, Equation 31.4b
collapses to the univariate Bulmer Equation (13.7b) when only a single trait is considered.
Recalling that Dt+1 = Dt + ∆Dt, we can rewrite Equation 31.4b as

Dt =
1
2
(
Dt−1 + Gt−1P−1

t−1∆Pt−1P−1
t−1Gt−1

)
(31.4c)

At equilibrium, ∆Dt = 0, and Equation 31.4b implies

D̃ = G̃ P̃
−1

∆̃P P̃
−1

G̃

where the tilde denotes an equilibrium value. Expressed as a function of D̃ this becomes

D̃ =
(
G0 + D̃

)(
P0 + D̃

)−1

(∆̃P)
(
P0 + D̃

)−1 (
G0 + D̃

)
(31.5)

If ∆P, the within-generation change in P, has a regular pattern, then Equation 31.5 can be
solved by iteration.

The Proportional Change Model for ∆P

One class of models for ∆P is the multivariate extension of Equation 13.10a, in which the
same proportional change in the variance occurs each generation, σ2(z∗t ) = (1 + κ)σ2(zt),
implying

∆σ2(zt) = σ2(z∗t )− σ2(zt) = κσ2(zt)

The multivariate extension of this would be

∆σ[ zi(t), zj(t) ] = κij σ[ zi(t), zj(t) ] (31.6)

We can write this in matrix form by using the Hadamard product ¯ of two matrices (also
know as the Schur product and, more descriptively, the entrywise product). Suppose A and
B are matrices of the same dimension. Their Hadamard product is simply the matrix whose
ijth element is the product of the ijth elements of the two matrices,

(A¯B)ij = AijBij (31.7)

Using Equation 31.7 we can write Equation 31.6 as

∆Pt = K¯Pt (31.8)

Here K is a symmetric matrix of constants, with ijth element κij as given by Equation 31.6.
At equilibrium,

∆̃P = K¯
(
P0 + D̃

)
(31.9a)
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and Equation 31.5 becomes

D̃ =
(
G0 + D̃

)(
P0 + D̃

)−1 (
K¯

(
P0 + D̃

))(
P0 + D̃

)−1 (
G0 + D̃

)
(31.9b)

Under this proportional change model, Equations 31.4b and 31.4b become

∆Dt =
1
2
(
GtP−1

t (K¯Pt) P−1
t Gt −Dt

)
(31.9c)

and

Dt =
1
2
(
Dt−1 + GtP−1

t (K¯Pt) P−1
t Gt

)
(31.9d)

As expected, this reduces to Equation 13.12 when only a single trait is considered.

Example 31.1. Suppose that selection is entirely on variances and covariances (the popula-
tion has evolved to an optimal value, so R = 0), with the pattern of selection on P given by
Equation 31.6, where

K =
(
−0.75 0.05

0.05 0.25

)
so that

∆P∗t = K¯Pt =
(
−0.75 · P11(t) 0.05 · P12(t)

0.05 · P21(t) 0.25 · P22(t)

)
The variance of trait 1 is reduced by 75% (as would happen with stabilizing selection on
this trait), while the variance of trait 2 is increased by 25% (as would happen with disruptive
selection). The covariance between these two traits is also increased by 5%. Assume the linkage-
equilibrium values of P and G are

P0 =
(

400 −50
−50 100

)
, G0 =

(
100 0
0 40

)
, K¯P0 =

(
−300 −2.5
−2.5 25

)
Thus, traits 1 and 2 are genetically uncorrelated at the start of selection, with a heritability of
100/400 = 0.25 for trait 1 and 0.40 for trait 2. In the first generation of selection, D0 = 0, and
(from Equation 31.9d),

D1 =
1
2
G0P−1

0 (K¯P0) P−1
0 G0 =

(
−10.53 −1.57
−1.57 1.79

)
The resulting covariance matrices after one generation of selection become

G1 = G0 + D1 =
(

89.47 −1.57
−1.57 41.79

)
, P1 = P0 + D1 =

(
389.47 −51.57
−51.57 101.79

)
Selection has decreased to genetic variance of trait 1, increased it for trait 2 and created a
(small) genetic covariance between the two traits. All of these changes are due to the creation
of LD and decay away (G reverts back to G0) once selection stops. Going through a second
generation of selection,

K¯P1 =
(
−292.10 −2.58
−2.58 25.45

)
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giving

D2 =
1
2
(
D1 + G1P−1

1 (K¯P1) P−1
1 G1

)
=
(
−13.88 −2.25
−2.25 2.85

)
with resulting genetic covariance matrix

G2 = G0 + D2 =
(

86.11 −2.25
−2.25 42.85

)
Hence, after two generations of selection, the heritability for trait 1 becomes (100-13.88)/(400-
13.88) = 0.22, while the heritability for trait 2 becomes 0.42, while a genetic correlation of

−2.25√
86.11 · 42.85

= −0.04

It is important to reminder the reader that all of the univariate caveats mentioned
in Chapter 13 still hold. In particular, the regression argument assumes linearity and ho-
moscedasticity, hence strongly relies on the assumption that the joint distribution of additive
genetic and phenotypic values is multivariate normal and remains so after selection. As we
showed in Chapter 13, even if these distributions are initially Gaussian, selection usually
introduces non-normality, although the departure is often small, especially for weak (as well
as very strong) selection. Further, the infinitesimal assumptions must still hold, namely that
changes in allele frequencies are sufficiently small that they have no effect on changing the
variance.

Within-Generation Changes G due to Selection on Variances and Covariances

We can also express Equation 31.4 in terms of the quadratic and directional selection gra-
dients, γ and β, which provides additional insight into the nature of selection. Recalling
from Chapter 29 the definitions of C (the quadratic selection differential), β, and γ, we have
P∗ −P = C− SST . Hence

P−1(P∗ −P)P−1 = P−1(C− SST )P−1

= P−1CP−1 −
(
P−1S

) (
P−1S

)T
= γ− ββT (31.10)

If the phenotypic covariance matrices (either before and/or after selection) differ between
sexes, then P∗ and P are replaced by the average of the covariance matrices for males and
females. Likewise, if γ and/or β differ in the parents, the appropriate average is used, e.g.,
(γf + γm)/2 and (βfβ

T
f + βmβ

T
m)/2.

When the breeder’s equation holds, γ and β are sufficient to describe phenotypic selec-
tion on the additive-genetic covariance matrix. From Equations 31.3 and 31.10, the within-
generation change in G becomes

G∗ −G = G(γ− ββT )G (31.11a)

Hence, the within-generation change in G has a component from directional selection and
a second from quadratic selection,

G∗ −G = −GββTG + GγG

= −R RT + GγG (31.11b)
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In terms of the change in covariance for two particular characters,

G∗ij −Gij = −
(

n∑
k=1

βk Gik

)(
n∑
k=1

βk Gjk

)
+

n∑
k=1

n∑
`=1

γk`GikG`j

= −Ri ·Rj +
n∑
k=1

n∑
`=1

γk`GikG`j (31.11c)

Thus the within-generation change in the additive genetic variance of character i is given by

G∗ii −Gii = − (Ri)
2 +

n∑
k=1

n∑
`=1

γk`GikGi` (31.11d)

Note that directional selection (Ri 6= 0) always generates negative disequilibrium (Felsen-
stein 1965). Additional insight is provided by assuming that G is initially a diagonal matrix
(potentially different additive variances, but no initial genetic covariances). In this case, the
within-generation change in the ijth element of G is

∆Gij = −RiRj + 2γijGiiGjj (31.12)

Thus, even if there is no initial genetic covariance between i and j, both directional and
quadratic selection can generate one. If both traits respond in the same direction, negative
genetic covariance is generated. Note that this does not mean the traits were selected in
the same direction, as βi and βj may have different signs from Ri and Rj . Conversely, if
they response in opposite directions, positive disequilibrium is generation. Likewise, in the
absence of directional selection, quadratic selection (γij 6= 0) creates genetic covariances
with the same sign as γij . If one imagines a population away from some optimal value, then
initally most of the selection (and hence changes in G) may be dominated by directional
selection (Ri terms). However, as an optimal is approached, directional selection becomes
very weak (Ri ∼ 0) and quadratic terms start to dominate. Thus the same fitness function
may result in the sign of Gij changing over time, reflecting these two different patterns of
selection.

Asymmetric Correlated Responses Occurs Under the Infinitesimal Model

In Chapter 30 we noted two different types of asymmetric correlated responses are fre-
quenctly seen in selection experiments: those that vary with the trait selected and those
that vary with the direction of selection on a particular trait. Villaneuva and Kennedy (1992)
trait-dependent asymmetric correlated responses can occur under the infinitesimal model
(i.e., no allele frequency change is required). To see how this arises, first note from Equation
31.11a that the within-generation change in G when strictly directional selection is occurring
is

G∗ −G = −GββTG

Thus, when β differs (as would occur when changing which trait is under direct selection),
so does the within-generation change, immediately suggesting how trait-dependent asym-
metric correlated responses (due to differential changes in G) can arise. Note that the change
in G requires one generation of selection, so that any asymmetric response is only apparent
if we select for a second generation (and hence use the perturbed covariance matrix).

To see this point further, consider the simple case of two traits, one under direct selec-
tion, the other changing as a correlated response. The within-generation change with strict
directional selection (Equation 31.12) is given by

∆Gij = −RiRj =
{−β2

1 σ
2
A(1) · σ(A1, A2) Direct selection on trait 1

−β2
2 σ

2
A(2) · σ(A1, A2) Direct selection on trait 2
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Thus, even with equal amounts of selection on the two different directly-selected traits (so
thatβ1 = β2), the changes in the genetic covariance will be different, except for the case where
both traits have the same additive variance. Unless there is a large disparity in the values of
the genetic variances, in general this effect will be modest and hence the large asymmetric
responses seen in experiments (Table 31.1) are more likely due to allele frequency change
than due to generation of LD.

Example 31.2. Consider the differential change in the genetic covariance when we select on
trait one versus trait two for the following genetic covariance matrix:

G =
(

10 2
2 40

)
Letβ(i) denote the gradient when selection is directly on trait i and assume the same strenght
of selection (β = 0.1) as the trait under selection changes. Thus,

β(1) =
(

0.1
0

)
, β(2) =

(
0

0.1

)
Since

ββT =
(

β2
1 β1β2

β1β2 β2
2

)
we have

β(1)β(1)T =
(

0.01 0
0 0

)
, β(2)β(2)T =

(
0 0
0 0.01

)
When we directly select on trait 1, the change in the covariance matrix following selection
(half of which persists into the next generation) is given by

G∗ −G = −Gβ(1)β(1)TG = −
(

1.00 0.20
0.20 0.04

)
while direct selection on trait 2 gives

G∗ −G = −Gβ(2)β(2)TG = −
(

0.04 0.80
0.80 16.00

)

Further insight into the difference in correlated responses was offered by Villaneuva
and Kennedy (1990, 1992), who obtain expressions for the equilibrium covariances when
directional truncation selection occurs on a particular trait (trait 1) and other traits i and j
show a correlated response. Recall (Table 13.1) that truncation selection with the uppermost
p saved reduces phenotypic variance in the directly selected trait by

∆σ2[z1(t)] = −κσ2[z1(t)]

where κ = ı
(
ı− z[1−p]

)
. The corresponding reduction in the additive variance of trait one

is
∆G11(t) = −κh2

1(t)G11(t)
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A classic result of Pearson (1903) is that the change in the variance on the selected trait
changes the variances of all other phenotypically-correlated traits,

∆Gii(t) = −κh2
1(t)ρ2

1i(t)Gii(t) (31.13a)

where ρ1i(t) is the additive genetic correlation between traits 1 and i in generation t. Thus,
no matter the sign of the correlation, the genetic variance of a trait is reduced by selected on
a genetically correlated trait. More generally, the change in the genetic covariance between
traits i and j due to selection on trait 1 is given by

∆Gij(t) = −κh2
1(t)ρ1i(t)ρ1j(t)

√
Gii(t)Gjj(t) (31.13b)

When G reaches its equilibrium value, Villaneuva and Kennedy (1990) show that the additive
genetic covariance between traits 1 and i is given by

G̃i1 =
Gi1(0)

1 + κ h̃2
1

(31.14a)

where h̃2
1 is the equilibrium heritability of the trait under selection (Equation 13.13d). Equa-

tion 31.14a makes two key points. First, the effect of selection on a correlated trait is to shrink
the genetic covariance towards zero, with the amount of shrinkage increasing with the heritabil-
ity of the trait under selection. Second, if two experiments are done, one with direct selection
on trait 1, the other with selection on trait i, then whichever trait has the highest heritability
will show the greatest change in the genetic covariance. Further, Villaneuva and Kennedy
obtained the equilibrium genetic correlation between traits 1 and i as

ρ̃1i =
ρ1i(0)√

1 + h̃2
1κ [1− ρ2

1i(0)]
(31.14b)

showing that the genetic correlation is also shrunk towards zero, with the amount of change
increasing with the heritability of the trait under direct selection. Both Equation 31.14a and b
predict that when disequilibrium-driven selection asymmetries occur, the correlated response
will be smaller when selecting on the trait with the higher heritability, as this produces the largest
reduction of the genetic covariance. Note that the infinitesimal model predicts equal amounts
of correlated response in trait i independent of whether trait 1 is up- or down-selected.
Hence, this second type of asymmetric correlated response (depending on the direction,
as opposed to the trait, selected) arises from allele frequency change, not disequilibrium.
Finally, Villaneuva and Kennedy (1990) note that the ratio of direct to correlated response
remains unchanged, so that the effect of disequilibrium is to reduce the correlated response
by the same proportion as it reduces the direct response.

Response in G Under a Multivariate Gaussian Fitness Model

As we observed in Chapter 24, selection generally introduces non-normality even if the
initial distribution is Gaussian. Ideally, we would like to have a class of fitness functions that
on one hand models directional, stabilizing, disruptive, and correlational selection and yet
still preserves normality. One such class is the general Gaussian fitness function,

W (z) = exp
(

aT z− 1
2

(z− θ)TW(z− θ)
)

(31.15a)

= exp

∑
i

αizi −
1
2

∑
i

∑
j

(zi − θi)(zj − θj)Wij
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where W is a symmetric matrix (note that some representations of this function use W−1 in
the quadartic product of Equation 31.15a in place of W, in order to emphasize the connection
with a covariance matrix). While the univariate version dates back to Weldon (1895, 1901)
and Haldane (1954), the more general multivariate form is due to Felsenstein (1977). A fuller
analysis of this general version starts later in the chapter and is finished in Chapter 41. For
now, consider the simpler version

W (z) = exp
(
−1

2
zTWz

)
(31.15b)

The elements of W measure quadratic selection. If W is a diagonal matrix, then Wii > 0
implies stabilizing selection on zi about an optimal value of θi, while Wii < 0 implies
disruptive selection about θi. The larger the magnitude of Wii, the stronger selection. As we
saw in Chapter 29, some care must be taken in interpreting the nature of the fitness surface
when W has non-zero off-diagonal elements. Note from our discussions on the canonical
axes of a quadratic form (Equation 29.26) that we can write

W = UΛUT

where Λ is a diagonal matrix of the eigenvalues of W and U = (e1, · · · , en) is the matrix of
the eigenvalues of W. Noting that

zTWz = zTUΛUT z = yTΛy, where y = UT z

we can transform the original vector of characters z to a new vector y of trait combinations,
such that

W (z) = exp
(
−1

2
yTΛy

)
= exp

(
−1

2

n∑
i=1

λi y
2
i

)
(31.15c)

where yi = eTi z. The sign of the eigenvalue λi indicates whether selection is stabilizing or
disruptive along the particular trait combination given by yi (λi > 0 indicates stabilizing
selection, λi < 0 indicates disruptive selection), while the magnitude indicate the strength
of selection (the larger the magnitude, the stronger the effect). If W has k zero eigenvalues,
the fitness surface has no curvature (is a plane) in k dimensions.

Suppose that before selection the distribution of z is MVN(0,P). Following selection,
the distribution is proportional to the product of the MVN density and W (z),

p(z∗) = const · exp
(
−1

2
zTP−1z

)
exp

(
−1

2
zTWz

)
= const · exp

(
−1

2
zT (P−1 + W)z

)
= const · exp

(
−1

2
zT (P∗)−1z

)
(31.16)

Note that the form of Equation 31.16 is that of a multivariate normal centered at zero, with
covariance matrix

P∗ =
(
P−1 + W

)−1
(31.17)

Thus, the distribution of z after selection remains MVN. Note that P∗ is independent of
the current mean µ of the trait. Equation 31.17 imposes a constraint on W, in that P∗ is a
covariance matrix, and hence does not contain any negative eigenvalues. While this does not
constrain the strength of stabilizing selection (positive eigenvalues for W can be arbitrarily
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large), it does constrain the allowable strength of disruptive selection, which if sufficiently
strong, (a sufficiently negative eigenvalue) may result in Equation 31.17 having one (or more)
negative eigenvalues and hence not be a proper covariance matrix. To see this, suppose both
P and W are diagonal, and hence their sum is also diagonal, with the diagonal elements
corresponding to the eigenvalues of P∗. For P∗ to be a proper covariance matrix, the diagonal
element corresponding to trait i needs to be positive, or

1
Pii

+Wii > 0, or Wii > −
1
Pii

(31.18)

this is always satisfied with Wii > 0, but only satisfied under very narrow conditions for a
negative Wii. The reason while the analysis of disruptive selection using a Gaussian fitness
model is so delicate is that fitness arbitrarily increases at an exponential rate as we move
away from the minimum (see Equation 31.15c), so that even a small change equates to strong
selection. Thus, the distribution must fall off at an appropriate rate (i.e., have a sufficiently
small variance) to keep mean fitness bounded. Further, the net result of distributive selection
is to increase the variance, generating more extreme individuals. While Equation 31.18 may
initially be satisfied, the amount of disequilibrium added must be sufficiently small to ensure
thatWii > −1/(Pii+Dii) still holds. Thus, while a very robust model for stabilizing selection,
the Gaussian fitness function is quite fragile for disruptive selections.

To apply the multivariate Bulmer Equation to obtain changes in G under Gaussian
fitness, first note that

P−1 (P∗ −P) P−1 = −
(
W−1 + P

)−1
(31.19a)

which is proved in Chapter 41. Thus,

G∗ −G = −G
(
W−1 + P

)−1
G (31.19b)

The dynamics of D (and hence G) under this general fitness function are given by

∆Dt = −1
2

(
Gt

(
W−1 + Pt

)−1
Gt + Dt

)
(31.20a)

Since Dt+1 = Dt + ∆Dt, we can also write

Dt =
1
2

(
Dt−1 −Gt−1

(
W−1 + Pt−1

)−1
Gt−1

)
(31.20b)

Equilibrium values satisfies

D̃ = −(G0 + D̃)
(
W−1 + (P0 + D̃)

)−1 (
G0 + D̃)

)
(31.20c)

Example 31.3. Consider the following quadratic fitness matrix

W =
(

5.0 −3.0
−3.0 4.0

)
which implies an individual fitness of

W (z) = exp
(
−2.5 z2

1 + 3z1z2 − 2.0 z2
2

)
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The eigenvalues of W are λ1 = 7.54 and λ2 = 1.46, so there is convex (i.e., stabilizing)
selection along both axes (i.e., the eigenvalues of W). Assume no initial disequilibrium with
P and G matrices of

P =
(

8 −2
−2 10

)
, G =

(
3 0
0 4

)
Since D0 = 0, following one generation of selection Equation 31.20b gives

D1 = −1
2

(
G0

(
W−1 + P0

)−1
G0

)
=
(
−0.55 −0.12
−0.12 −0.79

)
implying

G1 =
(

2.44 −0.12
−0.12 3.01

)
Thus, selection has generated a (small) genetic covariance between the two traits. This is
entirely due to disequilibrium and will decay to zero once selection stops. Proceeding to the
next generation,

D2 =
1
2

(
D1 − (G0 + D1)

(
W−1 + (P0 + D1)

)−1
(G0 + D1)

)
=
(
−0.67 −0.12
−0.12 −0.94

)
Further iteration gives

D̃ =
(
−0.708 −0.111
−0.111 −0.989

)
, G̃ =

(
2.292 −0.111
−0.111 3.011

)
, P̃ =

(
7.292 −2.111
−2.111 9.011

)
At equilibrium, the heritabilities for traits 1 and 2 become h2

1 = 2.292/7.292 = 0.314
and similarly h2

2 = 0.334, as compared to their initial values of 0.375 and 0.4, respectively.
Likewise, the equilibrium genetic correlation becomes

ρA =
−0.111√

2.292 · 3.011
= −0.04

ALLELE FREQUENCY CHANGES AND INSTABILITY OF GENETIC COVARIANCES

Two very different genetic phenomena (linkage and pleiotropy) contribute to genetic co-
variances and both can change over time. We have seem (under the infinitesimal model
framework) how selection can generate linkage disequilibrium (LD). When LD is present,
alleles at different loci that only effect single traits are nonetheless co-inherited to some ex-
tent, creating a correlation between their breeding values. Thus, unlinked loci, initially in
linkage equilibrium, can nonetheless contribute to genetic covariances (all the contribution
is generally small, e.g., Example 31.1). The second feature is pleiotropy, where an allele ge-
netically influences two (or more) traits. Under the infinitesimal mode, covariance changes
under LD are straightforward (if you like matrices). However, just as we saw for changes in
variances, the genetic details (distribution of allelic effects) are critical in predicting medium
to long term selection response in covariances. Just like different genetic models may all yield
the same initial heritability but very different long-term responses (Chapter 25), even more
models can yield the same initial genetic covariance. Indeed, as we argue below, a genetic
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covariance is much more fragile than a genetic variance, and changes in it are likely to be
more unpredictable than changes in genetic variances.

Pleiotropic-based Genetic Correlations May Become More Negative Over Time

One of the first suggestions about the behavior of genetic correlations under selection was
offered by Hazel (1943), Lush (1948), and Lerner (1950, 1958). Suppose we are selecting two
traits in the same direction. Alleles that effect only one of these two traits do not make any
pleiotropic contribution to the genetic variance and are ignored (of course, they can make a
linkage disequilibrium contribution). When an allele has an effect on both traits, it can take
one of four forms. Two forms show complementary pleiotropy, changing both traits in the
same direction, namely ++ and −− alleles. Here ++ denotes an allele that increases both
the first and second traits, while−− decreases both traits. Thus, these classes have effects in
the same direction and are quickly increased and (ultimately) fixed (++ alleles when both
traits are positively selected) or else are quickly lost by selection. The two remaining classes
of alleles show antagonistic pleiotropy, with effects on the two traits in opposite directions:
+− and −+ alleles. Such alleles (the argument goes) are under less selection than alleles
whose pleiotropic effects are in the same direction. Hence, selection enriches the frequencies
of alleles with these antagonistic pleiotropic effects, resulting in genetic covariances declining
(becoming more negative) as selection (to increase both traits) proceeds.

Under the same argument, if we are selecting for an increase in one trait and a decrease
in the other, then ++ and −− alleles become enriched, and the genetic covariances should
increase (become more positive) over time. Thus, the genetic covariance should evolve (at least
to some extent) away from the direction favored by selection. While this may seem somewhat
counterintuitive, recall that quantitative genetics is concerned with segregating variation.
Hence, selection may result in two lines showing increases in both traits (as complementary
pleiotropic alleles are fixed), the remaining genetic variation upon which future selection
must act for response shows a more negative covariance over time.

Genetic Covariances are More Fragile Than Genetic Variances

One of the first more formal analyses of the evolution of genetic covariances under selection
is the classic paper by Bohren et al. (1966), who were interested in how likely asymmet-
ric correlated responses were to occur. Recall from Chapter 30 that experiments can show
significantly different realized correlations between traits x and y in some cases depending
upon whether xwas up- or down-selected (e.g., Clayton et al. 1957), in others depending on
which trait was directly selection and which trait was the correlated response (e.g., Falconer
1960). Under the standard infinitesimal theory of selection response, the direction of selection
should have minimal impact on selection response. While asymmetric responses can occur
when different traits are selected, the effects are small unless the trait heritabilities are very
different. However, large asymmetric responses can occur as a result of differential changes
in genetic covariances as allele frequencies are changed in different directions.

Bohren et al. investigated the consequences of such allele frequency change on genetic
covariances, and found that they were much for “fragile” than genetic variances, i.e., they
were much more likely to show asymmetric changes, and do so quicker, than the corre-
sponding effects would have on genetic variances. They assume four different classes of
loci,

Class A Class B Class C Class D
Trait 1 α β1 γ1 0
Trait 2 0 β2 −γ2 δ
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Loci in classes A and D influence only single traits (and hence do not contribute to covari-
ances in the absence of LD), class B loci show complementary pleiotropy, while class C
show antagonistic pleiotropy. Assuming all effects are additive within and between loci (no
dominance nor epistasis), the genetic covariance is given by

σ(g1, g2) = 2 pB(1− pB)β1β2 − 2pC(1− pC)γ1γ2 (31.21)

where px is the frequency of an allele in class x. They found that the simplest conditions for
asymmetry depending on which trait was directly selected is the presence of class C alleles
(antagonistic pleiotropy) at frequencies differing from 1/2, with the maximal effect occuring
when alleles frequencies are around 0.2 or 0.8 (i.e., one allele is much more common than
the other). Note that when populations are formed for artificial selection by first crossing
two divergent lines, alleles differentially fixed (or at least at extreme frequencies) in the
two lines have their starting frequencies at (or close to) 0.5 in the resulting base population.
Thus, experiments starting with base populations formed in this matter can give a biased
(underestimate) picture about the frequency of asymmetric responses.

Bohren et al. note that asymmetric correlated responses are expected whenever the rel-
ative rates of response for the class B and class C loci are functions of which trait is being
selected and which trait is the correlated response. While most of Bohren et al.’s analysis
concerned the case where one trait was selected and the other changed as a correlated re-
sponse, they briefly examine the situation where both traits we selected in the same direction.
They confirmed the general suggestion by Hazel, Lush, and Lerner than eventually the ge-
netic covariances generally become more negative. However, they also found, depending
on the distribution of allele frequencies and effects, that the genetic covariance may actu-
ally increase in the first few generations. Simulation studies by Parker et al. (1969, 1970a/b)
showed that genetic covariances decline with time, and decrease most rapidly with higher
heritabilities. However, the only pleiotropic alleles included in the simulations were ++,
so this likely simply reflects a decline in the overall genetic variance. An additional (small
scale) simulation by Bennett and Swiger (1980) also showed that selection to increase two
positively-correlated traits resulted in a decrease in their correlation, as well as showing that
the genetic correlation increased when the two traits were selected in the opposite directions.
As with Parker et al., pleiotropy only appear through ++ alleles, but the results for selection
within and against the correlation were consistent with the suggestion by Hazel et al.

It is Difficult for Antagonistic Pleiotropy to Maintain Variation

The argument by Hazel, Lush, and Lerner that alleles showing antagonistic pleiotropy will
segregate in the population longer than those showing complementary pleiotropy naturally
leads to the question of the conditions for such alleles to be permanently maintained in the
face of selection. Rose (1982, 1985) was an early champion that alleles having antagonistic
pleiotropic effects on different life-history fitness components (such as reducing fecundity
while increasing life span) might be maintained in the population, but later felt that the
conditions for this were perhaps too restrictive (Rose et al. 1987).

A simple population-genetic model of this process was analyzed by Curtsinger et al.
(1994). Their concern was not the persistence time of such alleles under directional selection to
increase both traits (which is really the crux of the argument by Hazel et al.), but rather the
conditions under which they would be maintained in the population. They assumed a single
locus with two alleles that have alternative effects on two different fitness components. The
basic structure of their model is as follows:

A1A1 A1A2 A2A2

Fitness component 1 1 1− h1ν 1− ν
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Fitness component 2 1− f 1− h2f 1
Total Fitness 1− f (1− h1ν)(1− h2f) 1− ν

Allele A1 has a positive effect on fitness component (or trait) one but a negative effect on
component/trait two. Allele A2 has the opposite effects. A critical feature of this model is
the amount of dominance on both traits (measured by h1 and h2). The fitness components
are assumed to be multiplicative, with the total fitness for each genotype the product of the
two components.

Figure 31.1. Conditions for selection to stably maintain two antagonistic pleiotropic alleles
in a population under the Curtsinger et al. (1994) model. Complete additivity is assumed
(so that h1 = h2 = 0). Note the extremely restrictive conditions when selection is weak
(both f and ν are small). Also note that roughly equal amounts of selection f ' ν is also
required, although this is less of a constraint as the amount of selection on both increases.
After Curtsinger et al. (1994).

A stable polymorphic equilibrium exists when the heterozygote has the highest fitness
(Chapter 5), or

(1− h1ν)(1− h2f) > max(1− ν, 1− f) (31.22a)

Figure 31.1 plots the space of stable equilibrium (i.e. polymorphism) as a function of f and
ν for the completely additive case (h1 = h2 = 0.5), which is given by

2ν
2 + ν

< f <
2ν

2− ν (31.22b)

Note that the conditions are very restrictive for weak selection. Further, note that roughly
equal amounts of selection on both traits/components is also required.

Curtsinger et al. note when a beneficial reversal of dominance occurs (h1 = h2 = 0),
then Equation 31.22a is always satisfied (Rose 1982, 1985 also noted an important role for
beneficial reversals). This occurs when the dominance is reversed in a favorable direction for
the two traits (the heterozygote matches the higher fitness genotypes for both traits, A1A1

for trait one and A2A2 for trait 2). Conversely, if there is a deleterious reversal of dominance
(h1 = h2 = 1, with the heterozyogte matching A2A2 for trait one, and A1A1 for trait 2,
the lower-fitness genotypes) then Equation 31.22a is never satisfied. Thus, the conditions for
antagonistic pleiotropy to maintain a polymorphism at a locus are fairly restrictive, especially
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for weak selection. Curtsinger et al. suggest that a beneficial reversal of dominance is unlikely
for biochemical reasons. They also observed that expanding these results to two (or more)
loci makes the conditions even more restrictive.

Hedrick (1999) further extends the Curtsinger et al. model, using an important result
from Roberston (1962) on the maintenance of a polymorphism through heterozygote superi-
ority in a finite population. Roberston noted that unless the deterministic equilibrium allele
frequency was within 0.2 to 0.8, that selection actually enhances the loss of one allele relative
to drift (Chapter 26). Hence, the condition for the maintenance of a polymorphic locus for
a reasonable amount of time in a finite population is much more restrictive that Equation
31.22a, being the subset of this space that gives an equilibrium allele frequency within 0.2 to
0.8.

An important prediction of this model was noted by both Rose et al. (1987) and Curt-
singer et al. (1994): if a reversal of dominance occurs (which is largely required for a stable
polymorphism), then large amounts of dominance variance are expected in at least one
component/trait. In particular, Curtsinger et al. notes that

“if antagonisms of fitness components often plays a role in maintaining polymorphism, then
the dominance variance for fitness components should, on average, be about half as large as
the additive genetic variance for those same fitness components.”

They note that Drosophila quantitative traits typically do not should such large amounts
of dominance variance. However, Charlesworth and Hughes (1996) find that such high
amounts of dominance variance can often be avoided in an age-structured population.

The picture which emerges is that while antagonistic pleiotropy can indeed result in
a stable polymorphism in the face of selection, the conditions for this to occur at even a
single locus are very restrictive. Further, the generally low levels of dominance variation
also suggest that this is not a widespread phenomena. However, it is also important to stress
that these models examine conditions for the permanent persistence of such alleles, while all
that is required for the genetic covariances to become more negative over time is that they
persist longer than alleles showing complementary pleiotropy.

Hidden Pleiotropy: A Zero Genetic Covariance Can Still Harbor Many Pleiotropic Alleles

One reason for the greater unpredictability of changes in covariances (versus variances) is
that the observed genetic covariance is an extremely weak summary statistic for the un-
derlying amount of pleiotropic alleles present, and hence a very poor prediction of the
evolutionary potential for a change in the covariance (Lande 1980, Cheverud 1984, Wagner
1984, Gromko et al. 1991, Gromko 1995). For example, if the number of complementary
and antagonistic pleiotropic alleles are roughly equal, then the net effect of pleiotropy on
the genetic covariance is small. Indeed, it is zero when these effects exactly cancel. Thus,
two trait combinations, both with zero covariances, could mask very different evolution-
ary potentials. Suppose there are no pleiotropic alleles in trait combination one, while trait
combination two consists of nothing but pleiotropic alleles (i.e., there are no alleles that con-
tribute to only one trait). In the first case, the genetic covariance will only evolve over time
through linkage disequilibiurm, and this effect will decay quickly when selection stops. In
the second case, depending on the nature of selection, either large positive or large negative
genetic covariances can evolve, depending on whether selection enhances the frequencies
of complementary vs. antagonistic alleles. Further, as favorable pleiotropic alleles become
fixed, the remaining segregating pleiotropic alleles determine the genetic covariance seen
in the population, which can change the sign in the opposite direction. Turelli (1985) has
coined the term hidden pleiotropy to describe situations when there is a zero (or nearly so)
genetic covariance but a large reservoir of pleiotropic alleles for selection to exploit. As we
will see, hidden pleiotropy has important consequences for the response to selection and in
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the analysis of mutation-selection models.
While the generic prediction is for a genetic variance to decline over the course of

selection as usable genetic variance removed, as we have seen, this need not be the case. If
favorable, but rare, alleles are present at the start of selection, the genetic variance increases
(for at time) as selection increases the frequency of these alleles (Chapters 14, 24-26). This
uncertainly in whether a genetic parameter with increase or decrease over time is only
amplified with genetic covariances, which have the further feature that their actual sign
can potentially change over the course of the evolution, even in very simple models where
pleiotropic alleles only have additive effects (no dominance nor epistasis).

A further cautionary trait regarding evolutionary potential is offered by Carey (1988),
who considered genetic correlations. Consider a very simple model where two traits are
determined entirely by n completely additive (no dominance nor epistasis) pleiotropic loci.
Let ai be the effect on trait 1 from locus i and let aibi be its effect on trait two. Further, rescale
the traits to give trait one a genetic variance of one. The resulting genetic correlation can be
written as the covariance divided by square roots of both genetic variances (one which we
have set to one), giving

ρA(1, 2) =
∑
fi · ai · aibi√

1 ·
∑
fi · (aibi)2

(31.23)

where the fi denote the weight for loci i (which is a function of allele frequencies, see Carey
1988 for details). Note that although all loci are pleiotropic, the genetic correlation does not
equal one. This would, of course, not be surprising of the bi term changes sign over loci,
giving a small net effect to the covariance. However, even if all pleiotropic loci have the same
sign (i.e., there is no canceling of positive and negative effects), the genetic correlation, while
being positive, will still generally be less than one. Hence, a modest genetic correlation does
not automatically imply either (1) a mixture of complementary and antagonistic effects, or
(2) there are some loci which effect only one trait.

EXPERIMENTAL STUDIES OF THE RESPONSE TO SELECTION TO
CHANGE COVARIANCES

The above theory suggests some general trends that we might expect to observe in the evo-
lution of genetic covariances under pleiotropy: (i) asymmetric responses in correlated traits
are expected to be common, (ii) when selecting two traits in the same direction, the genetic
covariance should eventually become more negative, (iii) likewise, when selecting two traits
in the opposite directions, the covariance should eventually become more positive, and (iv)
the between-replicate variability in correlated response is expected to be greater than for
direct response. Overriding these suggested trends is the major theme that the evolution of
covariances under pleiotropy is more unpredictable than changes in variance. Hence, it is
very much of an empirical issue as to how “typical”covariances change over time.

Unfortunately, we cannot make any sweeping, or even slightly general, statements
from a review of the experimental literature. First, almost all studies suffer from low power,
making even modest changes in covariances difficult to detect. Second, sample sizes in
selection experiments are typically small (both in terms of individuals per replicate and
especially number of replicates), resulting in a large variation between replicates (Chapters
14, 15). Thus, large observed differences could simply be normal sampling variation about
the expected value. Indeed, Sen and Robertson (1964) note that most selection experiments
lack a sufficient number of replications, and it is better to invest resources into the number
of replicates as opposed to number of individuals per experiment. For example, a very
well designed selection experiment might have five replicates, but n = 5 is a very small
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sample size from which to obtain a good estimate of the replication variance. Third, in
much of the historical literature, no rigorous standard errors are presented on estimates
of genetic covariances, making comparisons almost pointless. Finally, and perhaps most
surprisingly, we can find very few studies specifically focusing on following the changes
in genetic covariances directly in a selection experiment. Many of the studies simply infer
these changes from differences in the rates of correlated responses, but this is a rather indirect
measure. Chapter 32 examines the changes in G in natural populations, which is typically
done by comparing two populations without much knowledge of their past histories of
selection.

Table 31.1. Examples of experiments showing asymmetric correlated responses. In these experiments,
within each replicate direct selection occurs on a focal trait (which may change over replicates) and
both the direct response in the focal trait, as well as a correlated response in other trait(s) were followed.

Drosophila melanogaster

Clayton et al. 1957 No correlated responses in sternopleural bristle number when lines
sternopleural & were selected for decreased sternital bristles, but a strong correlated

sternital bristles response when the lines were up-selected.

Sen and Robertson 1964 Asymmetric response, with up-selected lines showing larger
abdominal and increases in correlation.

steropleural bristles

Gromko et al. 1991 Correlated responses in two traits were followed in eight lines
Copulation duration, selected for copulation duration (four up, four down). All

courtship vigor & fertility eight replicate lines showed consistent behavior in the response to
direct selection, only 3/8 had the predicted correlated responses.

Phelan et al. 2003, Initial selection on stress resistance increased longevity, but over
Archer et al. 2003 time although stress resistance continued to respond, longevity

longevity & stress resistance began to decrease.

Wilkinson et al. 1990 Observed significant changes in G across selected lines measured
Thorax size & for five morphological traits. The G matrix for line down-selected

4 morphological traits on thorax size shifted more from the base population than did G
for the up-selected line. Some elements of G remained constant,
while others significantly changed. (Reanalysis by Shaw et al 1995).

Tribolium castaneum

Yamada and Bell 1963 Asymmetric correlated response to larval weight in good vs. poor
larval weight nutrition.

in two environments

Bell and McNary 1963 Asymmetric correlated response to pupal weight in wet vs. dry
Pupal weight environments.

in two environments

Chickens

Siegel 1962 Different realized genetic correlations depending on target of selection.
body weight & breast angle

Nordskog and Festing 1962 Different realized genetic correlations depending on target of selection.
body & egg weight

Rat

Atchley and Rutledge 1982 Asymmetry of correlated responses in a suite of skeletal traits
Weight & skeletal traits in up- versus down-selected lines for weight gain.
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Mouse

Falconer 1960
Weight gain Asymmetric correlated responses

in two environments

von Butler et al. 1986
Early weight gain Asymmetric correlated responses

& late body weight

We partition experimental results into two classes: single vs. and multiple trait selection
experiments. Table 31.1 examines results for single trait selection experiments where (within
each replicate) one trait is selected, and correlated responses are followed. The basic message
from this table is that very uneven responses in a correlated trait are quite common. Table
31.2 examines multiple-trait selection experiments, where selection is practiced on several
(typically two) traits within a replicate. Chapter 33 further examines such experiments in
the context of index selection, where a single item (the index score) is selected, but this is
comprised of several traits.

Table 31.2. Behavior of covariances in multi-trait selection (selection occurs on two or more traits
within each replicate).

Drosophila melanogaster

Sen and Robertson 1964 Slight increase in the genetic correlation under positive
abdominal & selection on both traits.

steropleutral bristles

Sheridan and Barker 1974 Realized genetic correlations consistent across 22 generations
coxal & sternopleural bristles (sampled at gens. 0-5, 0-10, 0-22, and 10-22).

Tribolium castaneum

Bell and Burris 1973 No change in the genetic correlation.
larval and pupal weight

Chickens

Friars et al. 1962 Genetic correlations measured from 1949 to 1957 in a series of lines
Various Production traits under selection. 16 of the 18 correlations showed a negative trend,

six of which were significant.

Pitcher-plant mosquito (Wyeomyia smithii)

Scheiner and Istock 1991 Response in the direction of the correlation was more consistent
development time & than response in a directional orthogonal to the correlation,

diapause which was very erratic.

Table 31.2 shows that some experiments are consistent with the idea that genetic correlations
become more negative over time when traits are selected in the same direction (Friars et
al. 1962), while others showed both the opposite trend (Sen and Robertson 1964), and no
differences (Bell and Burris 1973, Sheridan and Barker 1974). Note that none of these results
necessarily prove, or invalidate, this theoretical expectation of an eventual decline in the
genetic covariance. This argument is that after sufficient allele frequency change, this is
the pattern expected, but recall that Bohren et al. (1966) showed that there may actually
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be an initial increase in the covariance in these settings. Further, findings of no significant
differences are not very informative due to low power and high replication variance in these
experiments.

GENETIC MODELS OF COVARIANCES

As the above discussion highlights, the nature of pleiotropic interactions is critical in any
attempt to understand how the pleiotropic contribution to genetic covariance changes as
allele frequencies change. There is no well developed formal theory, but some of the founda-
tions are starting to be laid with consideration of the properties of different structural (i.e.,
causal) models for how molecular and developmental processes might interact to produce
pleiotropic gene effects, and hence correlations.

Figure 31.2. The partition of resources model. The values of two traits, X and Y, are influ-
enced by two different processes. The first are alleles (R) that influence the total amount of
resources both traits draw upon (given here as a biochemical substrate, but more generally this
is simply a shared resources). The second are alleles that partition this total resource between
X and Y , in the simplest case with a fraction p going toX and the remainder q = 1−p going
to Y .

Resource Partitioning Models: Background

An early structural model for the role of pleiotropy in generating genetic correlations is the
partition of resources model, apparently first suggested by Rendel (1963, 1967). Figure 31.2
shows the basic idea, as well as illustrating why this has also been called the Y-model. For
two traits (X and Y ), one can envisage two different types of pleiotropic loci. First, there are
acquisition alleles that increase (or decrease) the total amount of a resourceR that bothX and
Y share in their developmental or biochemical pathway. Such alleles show complementary
pleiotropy, resulting in positive genetic correlations between X and Y . Second, there are
allocation alleles that partition the common resource between the two traits. In the simplest
case, a fraction p is allocated to traitX and the remainder q = 1−p to traitY . Such alleles show
antagonistic pleiotropy and are expected to generate negative genetic variances, so that the
total genetic covariance associated with a trait depends on the distribution (of frequencies
and effects) for these two classes of alleles. Starting with James (1974, in Sheridan and Barker
1974), this simple model has received a fair bit of attention in the ecological and evolutionary
genetics literature (van Noordwijk and de Jong 1986, Riska 1986, Slatkin 1987, Houle 1991,
de Jong and van Noordwijk 1992, Roff and Fairbairn 2007).

James’ Analysis of Changes in Covariances Under Resource Partitioning Models
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The first detailed analyses of the consequences of selection on the genetic covariance under
such a model is an important, but infrequently cited, paper by James (1974), which appeared
as a brief appendix to the paper by Sheridan and Barker (1974). James assumed that a number
of genes contribute to R (acquisition) and p (allocation). Thus, we can write the trait values
of X and Y as

X = pR+ EX , Y = (1− p)R+ EY (31.24)

whereEk denotes uncorrelated environmental effects, while we assume (for simplicity) that
p and R are the genotypic values. Under this simple model, the correlation between X and
Y is entirely genetic, with

σ(X,Y ) = σ(pR, [1− p]R) (31.25)

While this can be simplified by using the definition of a covariance, we make use of two
useful results due to Goodman (1980, 1982). Suppose the random variables x and y are
independent, then

σ2(xy) = µ2
xσ

2
y + µ2

yσ
2
x + σ2

x σ
2
y (31.26a)

and
σ(xy, x(1− y)) = µyσ

2
x − σ2(xy) = µy(1− µy)σ2

x − µ2
xσ

2
y − σ2

x σ
2
y (31.26b)

Using these results, Equation 31.25 reduces to

σ(X,Y ) = σ2(R)
[
µp(1− µp)− σ2(p)

]
− µ2

Rσ
2(p) (31.27a)

James’ original analysis presented an incorrect version of Equation 31.27a (missing the
−σ2(p) term in the square brackets), resulting in some of his quantitative results to be incor-
rect, but his general qualitative conclusions still hold. Note immediately that if there is no
variance in resource acquisition (σ2(R) = 0), the covariance between X and Y is negative.
Noting that σ2(p) = µp2 − µ2

p, where µp2 = E(p2), Equation 31.27a can also be written as

σ(X,Y ) = σ2(R)
[
µp − µp2

]
− µ2

Rσ
2(p) (31.27b)

Since p lies within (0,1), the term in square brackets is never negative, and has an intermediate
optimum (i.e., it decreases when µp is sufficiently close to zero or one). The covariances of
X and Y with both components of the model are as follows:

σ(X, p) = µRσ
2(p), σ(Y, p) = −µRσ2(p) (31.28a)

σ(X,R) = µpσ
2(R), σ(Y,R) = (1− µp)σ2(R) (31.28b)

Assuming both R and p are controlled by a large number of genes of small effect, we (fol-
lowing James) ignore changes in the variances and focus entirely on changes in the means
µR and µp.

Suppose we select just on X . Since both σ(X, p) and σ(X,R) are positive, both µp and
µR are expected to increase. As µp increases (more allocation to X than Y ), the product
(µp − µp2) eventually decreases. Since µR is increasing, Equation 31.27 directly shows that
the genetic covariance decreases. A similar argument shows that selection for X + Y , and
hence selection to increase µR, always (under this model) results in a decrease in the genetic
covariance. For selection onX −Y , the genetic covariance may initially increase (if µp starts
sufficiently small) , but will decrease when µp becomes sufficiently large. While the general
trend under this simple model is for the initial genetic covariances to decrease over time,
they can (depending upon starting values) actually increase for a while before eventually
declining. Roff and Fairbairn (2007) further examine the consequences of Equation 31.27a,
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while the joint evolution of X and Y under this model, is examined by de Jong and van
Noordwijk (1992)

Figure 31.3. Final energy allocated to survival and reproduction under a resource partition-
ing model. Dotted lines correspond to lines of constant total energy (resource R), while the
specific allocation of energy into these two components for any given individual is given by
where their total energy and fraction p partitioned lines intersect. After van Noordwijk and
de jong (1986).

Tradeoffs Can Lead to Positive, as Well as Negative, Covariances

van Noordwijk and de jong (1986) and de jong and van Noordwijk (1992) note that resource
partitioning models are not limited to molecular and developmental processes, but also
can apply to physiological and behavioral processes as well. Suppose individuals have a
total amount of energy R to invest and have to decide what fraction should go into (say)
reproduction versus other components of fitness. This is also a resource partitioning model,
where the fraction p now refers to what fraction of the energy budget of an individual is
devoted to a particular component (say reproduction) rather than other components (Figure
31.3). The historical thinking for such life history components is, because the total amount
of energy is fixed within an individual, that there must be tradeoffs (Chapter 30) between
(say) reproduction and longevity, representing the allocation of a shared resource between
two traits. As a consequence, one might expect negative genetic covariances between these
components. Such not need be the case, as shown in Figure 31.4.

Figure 31.4. Although the energy budget R of any single individual is fixed, there is pop-
ulation level variation in R, as well as in the fraction p partitioned into (say) survival versus
reproduction. Left: The range of R and p constraints their distribution of their values within
a population. In this example, it results in a negative covariance between breeding values
for reproduction and survival,. Right: However, if the range of p values in the population
is narrow relative to the range of R, then R and p will show a positive genetic covariance
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within the population. This arises because the differences in energy levels among individuals
is sufficiently large to swamp signatures of within-individual tradeoffs. After van Noordwijk
and de jong (1986).

Thus, even though there are clearly tradeoffs within individuals in terms of how they
spend their energy budgets, this does not automatically imply that the genetic covariance
is negative. Individuals with large energy budgets will devote more total energy to both
components than will individuals with smaller energy budgets. If the amount of energy is
more variable than the amount of partitioning, then positive covariances can easily arise.
van Noordwijk and de jong (1986) offer a very nice economic analogy: Consider the amount
of money that families spend on their house versus their car(s). Clearly, within each family
there are tradeoffs. However, very wealthy families spend much more on each than do poorer
families, and this can result in the amount spent on a house being positively correlated with
the amount spent on a car despite the obvious tradeoffs in total spending between these two.
This example also points out while genetic, as opposed to phenotypic, correlations are used
for fitness traits, as shared beneficial environmental effects can easily hide negative genetic
correlations.

Houle (1991) examined a simple mutation-selection balance model under the partition
of resources framework and concluded that positive genetic covariances at equilibrium were
not at all unexpected. Essentially, the condition is that the number of loci involved an ac-
quiring resources (those involved in R) is sufficiently large relative to the number of loci
involved in the partitioning of the resources (p). This is consistent with Figure 31.4, which
shows a positive covariance when the variance in R is much greater than the variance in p.
Houle argues on both biological and biochemical grounds that the number of acquisition loci
is usually expected to be much greater than the number of allocation loci (for the traits under
consideration), and thus positive covariances at equilibrium should not be uncommon. Sev-
eral authors have further extended the two-trait resource partition model into models where
an initial resource is sequentially partitioned over several traits. For example, Laguerie et
al. (1991) showed that a three trait model (R is partitioned into X vs. Y/Z, and that later
is subsequently partitioned into Y and Z) can generate positive genetic covariances even
when there is no variation inR (all individuals have the same ability for resource allocation).
Models with a cascade of n traits sequentially (or hierarchically) partitioned were examined
by de Jong (1993), Worley et al. (2003), and Björklund (2004).

Björklund’s Analysis

Björklund’s (2004) analysis is especially interesting, and shows the potential predictive power
of some of these models. He applied the resource partitioning model to morphological traits
by assuming a development model where stem cells are subsequently (and hierarchically)
partitioned into different sets of cells that are further partitioned to generate the morpho-
logical traits of interest. Figure 31.5 shows a simplified version involving four traits, while
Björklund assumed a binary bifurcating tree to generate 32 traits in his simulation model,
which included variation in the partitioning at each node of the tree. He was interested in
how the ratio of variance in acquisition versus allocation influences the correlations seem
among the morphological traits.

When the variation in acquisition is much greater than the variation in allocation,
Björklund’s simulations showed high (positive) genetic correlations among all traits, with
the leading eigenvector being close to isometric (equal loading on all traits). Given that for
morphological traits, the leading eigenvector is often taken as a general size measure, equal
loading imply that all traits scale equally, as opposed allometrically (LW Chapter 11), with
size. By contrast, when the variation in acquisition is much less that in allocation, the pattern
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of genetic covariances reflect the bifurcation of the tree. For example, traits 1 and 2 and traits
3 and 4 (in Figure 31.5) would be positive correlated, while all other correlations are negative
(reflecting the allocation at the first node). In this case, the loading on the first eigenvector are
bipolar, showing both positive and negative values. Hence, simply by “tuning” this variance
ratio, we can move from a covariance structure where all traits have positive correlations to
one when the genetic correlations are both positive and negative.

Figure 31.5. Björklund’s hierarchical resource-partitioning model applied to a set of mor-
phological traits connected via development. This simplified model attempts to capture an
initial set of stem sets that become hierarchically partitioned through developmental path-
ways, eventually leading to the four traits scored.

Björklund’s simulations show that this transition can happen quickly, and suggests that
model can account for the observation that some estimates of G seem to be quite different
between environments (e.g., Bégin and Roff 2001, Donoghue and Schmitt 1999, Donoghue et
al. 2000). If the shift in environment results in a reduction in the variance in acquisition, this
could result in a significant change in the correlation structure if the variance ratio was near
this threshold of change. Björklund also notes that this can have a significant impact act on
long-term evolution. Strong genetic correlations among morphological traits and a nearly
isometric first eigenvalue are common in birds (Björklund 1994), and result in morphological
differences between closely-related species being mainly in size when evolution occurs along
lines of genetic least resistance. Conversely, differences in shape require that the G matrix
is influenced by high variation in allocation rather than acquisition. As the variance in
acquisition drop below a certain critical value, the correlations quickly shift from being
all positive to a state where they change in an unpredictable matter. At the same time, the
trait relations shift from being isometric to being either allometric or nonexistent as the
loading on the leading eigenvector (size) depart from being isometric. Again, this transition
(as measured by the angle between the first eigenvector and an isometric vector) also can
occur rather quickly as the variance in acquisition decreases.

Optimization Models, Functional Constraints, and G

If we fix the value ofR in a resource allocation model, then Y can be expressed as a function
of X due to the constraint pX + (1 − p)Y = R, implying Y = (R − pX)/(1 − p). This is an
example of a functional constraint, wherein some aspect of biology (or chemistry or physics)
constrains the possible set of values among a set of variables. Allocation of a fixed amount
of time over various potential behaviors (such as foraging versus searching for mates) is a
classic example. A common problem in ecology and behavior is optimization of fitness under
such a constraint. The simplest setting is the two-trait case, where z1 and z2 are components
that both contribute to increasing fitness. In the absence of any functional constraints, fitness
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is maximized by obtaining the largest value of each. When a functional constraint is present,
the problem is to optimize fitnessw = g(z1, z2) given the constraint z2 = f(z1), i.e., optimize
g(z1, f [z1]). Evolutionary optimality theory (Parker and Maynard Smith 1990) seeks to find
optimal “strategies”(for example, allocation of resources among life history traits or types of
behaviors that an organism should display) to maximize individual fitness given functional
constraints. Note that this approach is different from genetic constraints imposed by the
geometry of G, and an obvious (and important) question is how such biological constraints
become manifested in terms of genetic constraints, i.e., how functional constraints ultimately
influence the genetic covariance matrix.

Suppose there is (sufficiently) weak selection on individual traits and sufficiently small
variances and covariances among these traits (note that correlations can still range over ±1
in these settings). Under these conditions, f(z1) can be approximated by a first-order Taylor
series,

f(z1) ' f(0) +
∂f

∂z1
z1 (31.29a)

and the variance in this function by

σ2 (f(z1)) ' σ2

(
f(0) +

∂f

∂z1
z1

)
=
(
∂f

∂z1

)2

σ2(z1) (31.29b)

When Equations 31.29a/b hold, Charnov (1989) and Charlesworth (1990) show a connec-
tion between optimal strategies (the solutions from optimality theory) on one hand and the
structure of the equilibrium G matrix on the other. These papers attempt to bridge two ap-
proaches, often viewed as competing, for studying evolution — optimality-based solutions
(which contain no explicit genetics) and quantitative-genetic approaches. Charnov consid-
ered a simple two-trait case, while Charlesworth offered a more general solution (where the
assumptions given by Equations 31.29a/b are replaced with linearizations of multivariate
functions). Thus, we first present Charnov’s simple bivariate example in some detail to pro-
vide a feel of this approach, and then present some basic conclusions from Charlesworth’s
much more general treatment.

Suppose individual fitness is a simple linear function of z1 and z2,

w = az1 + bz2, where a, b > 0 (31.30a)

where a functional constraint z2 = f(z1) relates z1 and z2. The goal is to allocate a and b such
that w is optimized. Optimal values of z1 maximize w, and hence statisfy

∂w

∂z1
=
az1 + bf(z1)

∂z1
= a+ b

∂f

∂z1
= 0 (31.30b)

or
∂f

∂z1
= −a

b
(31.30c)

Thus, the optimal value(s) of z1 are those values where the slope of f equals −a/b.
This is the solution offered from optimality theory. Now consider the same solution

under a quantitative-genetic framework in the extreme case of no environmental variance.
First

β =
(
a
b

)
(31.31a)

and at equilibrium G̃β = 0, hence(
G̃11 G̃11

G̃21 G̃22

)(
a
b

)
= 0 (31.31b)
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Since a and b are fixed constants, the equilibrium occurs not by changing the means, but
rather by changing the covariance matrix. Assume that the equilibrium values of z1 and
z2 show only a small amount of variance, so that we can describe z2 adequately with a
linearization about z1,

z2 = c+ δ z1, where δ =
(
∂f

∂z1

)
(31.31c)

The variation G̃11 in z1 is unconstrained, while

σ2(z2) ' σ2 (c+ δz1) = δ2 G̃11 (31.31d)

Similarly, the covariance between z1 and z2 becomes

σ(z1, z2) ' σ (c+ δz1, z1) = δG̃11 (31.31e)

Substituting into Equation 31.31b gives

G̃11

(
1 δ
δ δ2

)(
a
b

)
= 0 (31.31f)

which has solutions of δ = ∂f/∂z1 = −a/b, the same as obtained from optimality analysis
(Equation 31.30c). Thus optimality analysis and a quantitative-genetic analysis both yield
the same equilibrium value. The very careful reader will note that the quantitative-genetic
analysis is based on mean fitness W while optimality analysis is based on individual fitness
W (z). When the variance about the means is small and the fitness function relatively linear,
there is not much error moving between these two measures of fitness. Returning to the
equilibrium G̃, note that there is a negative covariance (−a/b) between z1 and z2. Further,
note that G̃ is singular, as its determinant is 1 · δ2 − δ2 = 0. The behavior of the distribution
of breeding values under this model is shown in Figure 31.6.

Figure 31.6. A graphical representation of the consequences of Charnov’s (1989) model
for evolution under functional constraints. Here, there are functional, rather than genetic,
constraints on the possible trait values. If selection is trying to increase both traits, an initial
distribution of values eventually runs up against the constraint (the solid curve) and can move
no further (short, of course, of evolving new mechanisms to reduce the constraint). As a result,
for the two-trait case negative correlations typically arise as the constraint is approached. After
Arnold (1992).
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Charlesworth (1990) presented a much more general analysis of the translation of func-
tional constraints into G. He allowed forpofnvariables to be fully constrained, withfi(z) = 0
for 1 ≤ i ≤ p, while the remaining n− p variables are assumed to be unconstrained (and un-
correlated). Assumptions based on the multivariate extensions of Equations 31.29a/b were
used (each of the fi can be well-approximated near equilibrium by a simple linearization).
Under this more general model, Charlesworth found that the equilibrium conditions for G
are very similar to optimization conditions, except that individual fitness (for optimization)
is replaced by mean population fitness under a quantitative-genetic analysis. Charlesworth
found that G̃ is generally singular and typically contains a negative genetic correlations, al-
though positive correlations can also exist as well (Pease and Bull 1988). With multiple traits,
the equilibrium genetic correlations are only indirectly related to the function constraints,
through linear combinations of derivatives of the constraint functions. Hence, attempting
inference about the constraint function(s) from the pattern of genetic correlations is not a
profitable enterprise.

Example 31.4. As an example of how poorly a set of underlying constraints translates into a
G matrix, consider the following model. Assume a vector f of k factors influence the vector g
of n genotypic values. The simplest model is to assume a linear weighting of the factors plus
some residual effects not accounted for by the factors,

g = Ff + e

Here F is an n × k matrix of factor weights and e the residual effects. The resulting genetic
covariance matrix is

G = FΣfFT +Σe

whereΣf andΣe are the covariance matrices for the factors and residual errors. Ideally, we
would like to estimate the matrix F of factor loadings, but the eigenvectors of G provide no
information on these. For example, assume the factors are uncorrelated with variances of one
(Σf = I ) and the residuals are uncorrelated with variances of 0.5, giving (Σe = 0.5 · I ).
Assume two factors influence four traits, with

F =


1 −1
−1 1

2 0
−1 1

 , giving G = FFT + 0.5 · I =


2.5 −2.0 2.0 −2.0
−2.0 2.5 −2.0 2.0

2.0 −2.0 4.5 −2.0
−2.0 2.0 −2.0 2.5


The resulting eigenvalues of G are 9.1, 1.9, 0.5, and 0.5 (the first two detect the structure from
the factors, the last two the residual error). The resulting eigenvectors are

e1 =


−0.46

0.46
−0.60

0.46

 , e2 =


0.35
−0.35
−0.80
−0.35

 , e3 =


0.71
0.71
0.00
0.00

 , e4 =


−0.41

0.41
0.00
−0.82


Note that there is no similarity between the eigenvalues of G and the factor loadings. If we
assumed no residual error, then G is singular (with two zero eigenvalues). However, the
eigenvectors for the two positive eigenvalues are still the values of e1 and e2 given above.

LONG-TERM DIRECTIONAL SELECTION
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In parallel with our discussions of the change in the genetic variance under univariate selec-
tion, short-term changes in G due to linkage disequilibrium are fairly predictable (Chapters
13, 24), while longer-term changes involving changes in allele frequencies are essentially
unpredictable (Chapters 25, 26), and certainly unpredictable just given an initial value of G.

The Infinitesimal Model with Drift

As was discussed at length in Chapter 24 and 26, there is an intermediate class of models
(based on the infinitesimal) that on one hand allow for allele frequency change while on
the other are relatively manageable. The critical feature is that selection on each locus is
sufficiently weak that no significant allele frequency change occurs via selection. However,
if population size is finite, drift can occur at each locus, which causes the expected value of
genetic variance (in the absence of dominance or epistasis) to behave in a predictable fashion
(Chapters 5, 32). We will build up the model in stages, first ignoring disequilibrium, then
adding it, and finally adding mutation.

First, consider the decay of genetic variation from drift. While the infinitesimal frame-
work implies that strength of selection on any particular locus is small enough to ignore,
allele frequencies can still change via drift,

Gt =
(

1− 1
2Ne

)t
G0 ' e−t/2NeG0 (31.32)

Hence, the expected cumulative response Rc after t generations of selection and drift is

Rc
t = µt − µ0 =

t∑
k=1

Gkβk =
t∑

k=1

(
1− 1

2Ne

)k
G0βk (31.33a)

If we assume the same selection gradient, then

Rc
t =

t∑
k=1

(
1− 1

2Ne

)k
G0β

= G0β
t∑

k=1

(
1− 1

2Ne

)k
' 2Ne(1− et/2Ne)R1 (31.33b)

where we have used Equation 26.4b to approximate the sum and have noted that G0β is the
response following the first generation of selection, R1. Equation 31.33b is the multivariate
version of Robertson’s rule, giving the total response (from the initial variation) as 2Ne times
the initial response, which follows since

lim
t→∞

Rc
t = 2NeR1 (31.33c)

As with the univariate case, the strength of selection increases the first generation of response,
but decreases the effective population size, so that the optimal long-term response occurs at
an intermediate level of selection (Chapter 26).

What is the effect of selection generating linkage disequilibrium? It results in Equations
31.33b and 33c slightly overestimating the response, as directional selection generates nega-
tive disequilibrium, reducing response. Let’s develop a more formal model for the changes
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in disequilibrium when the linkage equilibrium version of G at time t does not equal G0. Un-
der drift, the value of G in generation t if no disequilibrium is present is given by Equation
31.32,

Gt(LE) =
(

1− 1
2Ne

)t
G0 (31.34a)

By analogy with Keightley and Hill’s (1987) result (Equation 13.9b), the change in D under
the joint effects of both selection and drift is

∆Dt = −1
2

(
1 +

1
Ne

)
Dt +

1
2

(
1− 1

Ne

)
GtP−1

t (∆Pt)P−1
t Gt (31.34b)

Joint iteration of Equations 31.34a and 34b gives Gt, as

Gt = Gt(LE) + Dt (31.34c)

Likewise, the phenotypic matrix in generation t is given by

Pt = Gt + E = (Gt(LE) + Dt) + (P0 −G0) = P0 + (Gt(LE)−G0) + Dt (31.34d)

Note from Equation 31.34b that unless effective population size Ne is very small, drift has a
very minor effect on the disequilibrium. Its major effect is in changing the linkage equilibrium
value of G, reducing variation each generation.

A strong caveat is in order at this point. The above theory is for the expected value of
G under drift and the (additive) infinitesimal model. Any particular realization may thus be
quite a bit different from the expected value, and as well will see in Chapter 32, this difference
can be dramatic, especially when the population size is small.

The Infinitesimal Model with Drift and Mutation

Under infinitesimal model assumptions (selection does not significantly change allele fre-
quencies), it is straightforward to incorporate the effect of new mutation. As in the univariate
case (Chapter 26), drift will eventually remove all initial variation, with continued response
requiring the input of new variation.

By analogy with the mutational variance for a single trait (Chapter 26), we can consider
the mutational variances and covariances in the form of M, a mutational matrix of per-
generation input to the additive genetic variances and covariance. Under the infinitesimal
model, selection has no impact (ignoring disequilibrium) on the equilibrium value of G,
reached when mutational input balances the loss due to drift, viz.

G̃ = 2NeM (31.35a)

The (linkage equilibrium) value of G in any particular generation is the sum of what remains
of the original G matrix (following the effects of drift) plus the cumulative input of mutation,

Gt = G̃ +
(
G0 − G̃

)
e−t/2Ne (31.35b)

The cumulative response to t generations of constant directional selection β thus becomes

Rc
t =

t∑
i=1

Gtβ =
[
t G̃ + 2Ne(1− e−t/2Ne)

(
G0 − G̃

)]
β (31.36a)
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We can gain further insight by considering two alternative expressions of Equation 31.36a.
First, we can represent this as the asymptotic response G̃β plus the response contributed
during the approach to the equilibrium value of G,

Rc
t = t G̃β+ 2Ne(1− e−t/2Ne)

(
G0 − G̃

)
β (31.36b)

Note that if the population starts out with G equal to its equilibrium value, the second term
disappears and the response (ignoring linkage disequilibrium) remains constant, with

Rc
t = t G̃β = tR1

Second, we can use Equations 31.33b to decompose the cumulative response into two com-
ponents, the first due to the initial variation, the second due entirely to new mutation arising
since selection started,

Rc
t = 2Ne(1− et/2Ne)R1 +

(
t− 2Ne(1− e−t/2Ne)

)
G̃β (31.36c)

This decomposition allows us to compute the fraction of response due to initial variation
vs. that from new variation. For example, for trait i, let Ri(I) denote the ith component
in the vector given by the first term (the contribution to response in trait i from the initial
variation) andRi(m) from the second (the mutational contribution). The relative contribution
from mutation to the response isRi(m)/[Ri(I)+Ri(m) ]. Note that under constant selection,
the effect of β cancels, so that this ratio is independent of the nature of selection.

The Balance Between Directional and Stabilizing Selection: Infinitesimal Model Results

As with univariate traits, selection limits can appear to be reached when the initial addi-
tive variation has been exploited and sufficient new variation has yet to be generated by
mutation. Another scenario, which occurs even when ample genetic variation is present, is
that directional selection is balanced by some other force, such as stabilizing selection. Zeng
(1988) offered an insightful analysis of this problem based on the gaussian fitness function
(Equation 31.15). One of Zeng’s major findings is that the equilibrium mean is independent
of G (provided it is non-singular).

Recall from Equation 31.15a the general form of the Gaussian fitness function,

W (z) = exp
(

aT z− 1
2

(z− θ)TW(z− θ)
)

= exp
(
− 1

2
(z−ψ)TW(z−ψ)

)
(31.37a)

where the equality follows by completing the square to collect the linear term into the
quadratic product, with

ψ = θ+ W−1a (31.37b)

Individual fitness is maximized when z = ψ. If the vector of traits (before selection) is mul-
tivariate normal with mean µ and covariance matrix P, then the distribution of z following
selection is MVN with mean µ∗ and covariance matrix P∗. The later is independent of both
the current mean and the optimal value ψ, and is simply that given by Equation 31.17,

P∗ =
(
P−1 + W

)−1

The new mean (after selection but before reproduction) is given by

µ∗ = P∗
(
P−1µ+ Wψ

)
(31.38a)
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The response (in the vector µ of means) to selection follows from the breeder’s equation,

µt+1 − µt = GtP−1
t (µ∗t − µt)

= Gt

(
W−1 + Pt

)−1
(ψ− µt) (31.38b)

The derivations for Equations 31.38a/b are given in Chapter 41. Equation 31.38b coupled
with Equation 31.20 describe the joint dynamics (under the infinitesimal model) of changes
in the vector of means µt and disequilibrium matrix Dt (and hence Gt and Pt).

Zeng’s key result follows from Equation 31.38b, which gives the equilibrium mean as
satisfying

0 = Ĝ
(
W−1 + P̂

)−1

(ψ− µ̂) (31.39a)

Provided that G is nonsingular, then

µ̂ = ψ = θ+ W−1a (31.39b)

is the unique solution. Notice that the values of G and P do not enter into the equilibrium
mean, only the strength and form of directional (a) and quadratic (W) selection. Hence,
while the genetic covariance structure has a strong influence in the dynamics (the path and
time) to reach the equilibrium point, the value of the equilibrium point is independent of
the pattern of genetic covariances (again provided Ĝ is not singular). In particular, if W is
diagonal (no selection on combinations of characters) then for the ith trait,

µ̂i = θi +
ai
Wii

(31.39c)

so that the long-term evolution of each character is independent unless at least one genetic
correlation is perfect (so that G is singular).

Zeng also consider the case where stabilizing selection occurs first followed by trun-
cation selection on some index I = bT z of trait values (Chapter 32). This is one model of
artificial selection, wherein existing phenotypes are first culled by natural selection (and
hence often unseen by the breeder or experimentalist) with the remaining individuals then
subjected to artificial selection. The change in mean in this case is still given by Equation
31.38b, with a = c · b where the constant c is a function of the selection intensity on the
index as well as its phenotypic variance (see Zeng for details). Thus the above argument
still holds, with the equilibrium mean vector given by Equation 31.39b. The value of P∗ is
slightly different from Equation 13.15, now depending on b (again see Zeng), but this only
influences the equilibrium dynamics of D̂ and does not affect the equilibrium mean.

Long-term Response is a Function of the Distribution of Allelic Effects

The above models are highly stylized, offering a look at certain features of long-term re-
sponse. However, as was the case for univariate long-term response, the initial estimator
of genetic variance (be it h2 or G) gives essentially no information as to the behavior of
long-term response. What is needed, and never available, is the distribution of allelic effects
over all loci. We have already seen how fragile genetic covariances are expected to be under
allele frequency change, especially when the population consists of mixtures of complemen-
tary and antagonistic pleiotropic alleles. An initial estimate of a covariance provides very
little information on the frequencies of these sets of alleles, yet this information is critical for
long-term response. A zero covariance could arise because no pleiotropic alleles exists, and
therefore any future correlations are build up solely by disequilibrium. It could also occur
when a large reservoir of pleiotropic alleles are present, but whose net effects cancel. If this
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is the case, there is ample opportunity for large positive, or negative, correlations to be build
up by selection.

Thus long-term response depends on both the pattern of genetic variation present at the
start of selection and how this pattern changes over time. A general view is that most traits
eventually fall under some sort of stabilizing selection (in that their range is bounded), and
hence models of the variation maintained under a mutation-selection balance may provide
some insight. Chapter 27, and the next section, discuss these. Recall from Chapter 27 that two
different approximations are used for the analysis of mutation-selection models, one where
allelic effects are roughly gaussian at each locus (the gaussian genetic model) and one where
rare alleles are important (the house of cards model, or HOC). Under the house of cards
model, the distribution of allelic effects is expected to be highly leptokurtic, with rare alleles
having significant effects. Under univariate selection, selection with such a distribution of
allelic effects should result in an increase in the heritability as these rare alleles move to
higher frequencies.

Reeve (2000) used simulation studies to examine the consequences of gaussian versus
house of cards models for long-term directional response. In his simulations, a population
initially under a stabilizing selection-mutation balance has its optimal value shifted by a
significant amount (many standard deviations) and the response to selection followed, using
the initial estimate of G (the mutation-selection balance value) to predict response. Reeve
found that if allelic effects follow the gaussian model, then the initial G does a good job of
predicting response, despite modest allele frequency changes. If, however, the house of cards
model is more appropriate, then the initial G does a very poor job in predicting response,
underestimating the rate of direct and correlated response and overestimating the time to
reach the new optimum. This occurs because rare alleles increase in frequency, significantly
altering G.

Another situation in which the long-term behavior of G is made even more unpre-
dictable is the presence of major genes, for example genes of large effect for insecticide
resistance (Carriére and Roff 1995). Often, genes of large effect have strong pleiotropic ef-
fects on a number of traits (Chapter 25). As these genes are driven to fixation, they can
substantially alter G. While they clearly change the genetic variance associated with the
trait under selection, they can also have significant impact on the genetic covariances be-
tween other traits. Even if this change in G is transient, it can still significantly impact the
dynamics, in the extreme case potentially moving the population into a new domain of at-
traction on a multiple-peaked fitness surface (Price et al. 1993, Agrawal et al 2001). If one
views the G matrix as consisting of the contributions from the major-gene effects G∗ and an
infinitesimal-like background of other genes of much smaller effects GI , then the selection
dynamics may be largely governed by G∗, but as this gene becomes fixed, all the investigator
observes is GI , creating a misleading picture of the constraints during selection (Agrawal
et al 2001). Of course, this need not be the case. Stinchcombe et al. (2009) find that while
different alleles at the erecta gene in Arabidopsis result in significantly different G matrices,
the predicted response to selection remains roughly similar.

The Balance Between Directional and Stabilizing Selection: Finite Locus Models

Zeng’s analysis was under the infinitesimal model framework, so that allele frequency
changes are ignored and changes in the variance can only occur through the generation
of linkage disequilibrium. When allele frequency changes are allowed, hidden pleiotropic
effects (a reservoir of pleiotropic alleles in the population, but no net genetic covariance)
can have an important impact on selection response. Baatz and Wagner (1997) examined
a simple selection model involving two traits, one under directional, the other stabilizing,
selection. Such models where the directional selection of some traits is restricted to a narrow
region due to strong stabilizing selection on other traits are often called corridor models
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(Rechenberg 1973). When allele frequency changes can alter the variance, Baatz and Wagner
note that the present of hidden pleiotropic can result in stabilizing selection on the second
trait either slowing down, or speeding up, the rate of directional selection in the first. Thus,
when hidden pleiotropy is present, allele frequency change can result in the dynamics of one
trait being strongly influenced by the dynamics of a genetically uncorrelated trait. Given all
of our focus on the importance of genetic correlations, just how does this happen? Building
on Robertson’s secondary theorem of natural selection (Chapter 5), Baatz and Wagner show
that the change in the mean for the trait under directional selection is a function of σ(g1, g

2
2),

namely the correlation between breeding value at the trait under directional selection and
the square of breeding value for the trait under stabilizing selection. Note that it is easy to
have no correlation among the breeding values for both traits, σ(g1, g2) = 0, and yet still have
a very large covariance involving a breeding value at one trait and the square of a breeding
value at the second. This is the impact from hidden pleiotropy.

Consider a situation where favorable alleles for trait one are rare. Directional selection
on trait one will try to increase their frequency. If such alleles also have pleiotropic effects on
trait two, then even if the breeding values between the two traits are uncorrelated, increasing
the frequency of favorable alleles for trait one may increase the variance in trait two, which
is counted by stabilizing selection (as the increased variance results in a decreased mean
fitness for trait two). If stabilizing selection is strong, this can retard the speed of directional
selection. In the extreme, it may stop directional selection entirely, a phenomena Baatz and
Wagner quaintly refer to as the Pooh effect, after Winnie the Pooh getting stuck in a rabbit
hole after eating too much honey. Thus when favorable alleles are rare, the Pooh effect retards
the rate of directional selection even in the absence of correlations among breeding values
(σ(g1, g2) = 0), provided σ(g1, g

2
2) 6= 0. Conversely, when favorable alleles for trait one are

present at high frequency, then the variance in trait two declines as these further increase
in frequency. This situation results in higher mean fitness for trait two (as its variance is
reduced), and the net result is an acceleration of directional selection.

The key message from the above analysis is that while genetic covariances are excellent
for providing a quick snap-shot of the local dynamics, when allele frequency change occurs,
all bets are off. Thus, one can have a situation where selection on an unobserved trait that
is not genetically correlation with our focal trait can still influence its fitness if pleiotropy is
present and allele frequency change occurs.

LONG-TERM QUADRATIC SELECTION

Stabilizing selection removes variation, and thus long-term stabilizing selection will eventu-
ally remove most (if not all) of any initial genetic variation (Chapters 5, 25, 27). As discussed
at length in Chapter 27, the maintenance of additive variation under stabilizing selection is
a major area of theoretical research. While the notion that existing levels of variation can be
accounted for by a balance between mutation and selection is quite appealing, as both forces
are expected to be operating in the background for most traits, current models do not ade-
quately account for the levels of variation given realistic estimates of the model parameters
(genome mutation rates, strengths of selection).

Our focus in the section is on two issues not fully addressed in Chapter 27. The first
is what current theories about mutation-selection balance tell us about the stability (or lack
thereof) of the G matrix over time. As we have seen, this is critical for an retrospective se-
lection analysis over evolutionary time scales (Chapter 30). While selection changes G, one
line of thought (which we examine here) is the G may be relative stable over time once it
reaches a mutation-selection equilibrium, provided the patterns of mutations and selection is
relatively constant. Our second issue is to highlight the qualitative differences in the behavior
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of models making what (at first sight) appear to be relatively-minor differences in assump-
tions. We have already noted differences in behavior in directional selection starting from a
G in mutation-selection equilibrium under a gaussian versus house of cards approximation.
These models have even more dynamic differences when hidden pleiotropy is present.

Lande’s Multivariate Model of Pleiotropic Mutation-Selection Balance

Lande (1980, 1984) examined the equilibrium value of G under the balance between stabi-
lizing selection, mutation, and recombination using a gaussian genetic model: allelic effects
at each locus are assumed follow a multivariate distribution (large population size was as-
sumed so that the effects of drift are ignored). Considering a particular locus i, let xi be the
vector of allelic effects influencing k traits, so that xi + x′i is the vector of contributions of
this locus to the vector of trait values, where the unprimed and primed x denote the contri-
butions from the two alleles at this locus. Assume gaussian stabilizing selection (Equation
31.15) occurs on the vector of traits, and recall from Equation 31.19b that the resulting change
in G from selection is given by

G∗ −G = −G
(
W−1 + P

)−1
G

Here (W−1+P)−1 is the resulting strength of selection on breeding values given the strength
of selection W on phenotypes. Under weak selection and with free recombination between
loci, Lande (1980, 1984) showed that the contribution from linkage disequilibrium was min-
imal and that pleiotropic mutations largely determine the equilibrium genetic covariances.
Let Ci denote the covariance matrix associated with locus i, so that the kjth element is the
genetic covariance of traits k and j (contributed by locus i). Assuming weak selection, Lande
approximates W−1 + P 'W−1 + E, which removes P, which is dependent on the current
value of G. Under this approximation, Equation 31.19b reduces to

∆G = −GωG, where ω = W−1 + E (31.40)

Selection thus removes variation, which is countered by the addition of new variation from
mutation. We encapsulate this for locus i by Mi, the pleiotropic mutation matrix. If there are
off-diagonal elements, then (on average) new mutations at loci i show a genetic covariance for
those traits. Note that we can also have Mi = ciI, namely a model with a constant mutation
variance for each trait and average mutational covariance of zero. Such a model does not mean
that pleiotropic mutations are not produced, rather it simply says that complementary and
antagonistic pleiotropic mutants are equally frequent, canceling out their effects and giving
no net genetic mutational covariance despite the potential for abundant pleiotropic among
the mutations themselves.

With weak selection, we can use a continuous-time approximation for the change in Ci,
giving Lande’s (1980) result of

dCi

dt
' −Ci ωCi + Mi (31.41a)

where the change is the loss due to selection countered by mutational input. This has an
equilibrium solution of

C̃i = ω1/2
(
ω−1/2Miω

−1/2
)1/2

ω1/2 (31.41b)

showing (as expected) that the equilibrium covariance matrix contributed by locus i is a
balance between selection ω and mutational M effects. Lande’s original (1980) paper had
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his formula (21c) misprinted, with Equation 31.41b being the corrected version given by
Lande (1984). Summing over both copies in a diploid and over all loci gives the equilibrium
covariance matrix as

G̃ = 2
n∑
i=1

ω1/2
(
ω−1/2Miω

−1/2
)1/2

ω1/2

= 2ω1/2

[
n∑
i=1

(
ω−1/2Miω

−1/2
)1/2

]
ω1/2 (31.42)

Cheverud (1982, 1984) suggested that, under certain conditions, the equilibrium genetic
covariance matrix might be geometrically similar to the fitness surface (i.e., the orientations
of the eigenvalues of the G andω or γmatrices may be very similar). In particular, Cheverud
(1984) noted that if there is no net pleiotropy, then substituting Mi = ciI into Equation 31.42
yields

G̃ = 2ω1/2

[
n∑
i=1

(ciI)1/2

]
= kω1/2 (31.43)

In this case, G̃ aligns with the fitness surface as (recalling the discussing following Equation
29.25) the eigenvectors of ω, ω−1 and ω1/2 are identical. Thus, while there are indeed con-
ditions under which the covariance structure approaches of the fitness surface, how often
they apply is uncertain. At a minimum, net mutational pleiotropy must be small and the
fitness surface must be constant for long periods of time. Equation 31.42 also shows that
in the presence of strong pleiotropy, the orientation of G̃ can significantly deviate from the
orientation of ω (and also γ, as we show below).

γ and G

While the gaussian stabilizing selection is a common model used by theorists, empiricists
generally use the Lande-Arnold fitness regression (Equation 29.13) where γ is the matrix of
quadratic selection gradients. For weak selection, there is an equivalence between the two
models. It is important to remind the reader that gaussian selection and a gaussian genetic
model refer to different assumptions, the first on the nature of phenotypic selection, the
second on the distribution of allelic effects at individual loci. Assume the population mean
is near the optimum so that there is no significant directional selection gradient β. Further
(for ease of notation, with no loss of generality) rescale the traits so that zero is the optimum
value. We then have

W (z) = exp
(
− 1

2
zTWz

)
' 1− 1

2
zTWz (31.44a)

This approximation follows from the weak selection assumption. Using Equation 31.15c we
can diagonal W, in which case Equation 31.44a can be written as

W (z) ' 1− 1
2

n∑
i=1

λi y
2
i (31.44b)

and we see that weak selection implies the eigenvalues of W are small. Matching quadratic
terms in the Lande-Arnold regression gives (Lande 1979, Arnold et al. 2001),

−W = γ (31.45)

Alternatively, from Equation 31.11a, in the absence of directional selection (β = 0), the
analog to Equation 31.41a (assuming the gaussian genetic mode) becomes

∆G = GγG + M (31.46)
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At equilibrium,
−Ĝγ Ĝ = M (31.47)

Jones et al. (2007) remark that if γ and M are positive-define and share common eigenvalues,
then G shares these eigenvalues as well. If we again assume M = k·I, we have−Ĝγ Ĝ = k·I,
giving

Ĝ = k(−γ)1/2 (31.48)

Thus, under certain conditions the geometry of the equilibrium genetic covariance matrix
and the quadratic fitness surface γ, at least in terms of eigenvectors, may be quiet similar.
Blows et al. (2004), building upon the results of Krzanowski (1979), suggest an approach for
comparing the major subspaces of G and γ (Chapter 32 reviewer Krzanowski’s method).

Example 31.5. Although some theory suggests that the orientations of G and the fitness
surface γmay be similar, there is only one study we are aware of which attempted to compare
them. A limiting factor is unbiased estimation ofγ, as correlated (but unmeasured) traits under
selection result in a biased estimate. Hunt et al. (2007) used a system based on selection on
male mating calls of Black field crickets (Teleogryllus commodus), which the authors defined by
five traits. The power of this system is that acoustic components of the call can be artificially
constructed and the attractiveness of these artificial calls can be assessed on wild females,
allowing a fitness surface to be constructed free of the concern of unmeasured correlated
fitness traits (Brooks et al. 2005, Bentsen et al. 2006). Previous studies by these authors found
that these traits are under multivariate stabilizing selection and that populations reside near
the peak on the fitness surface (Brooks et al. 2005). The association between nonlinear selection
(measured by γ) and the eigenstructure of G is shown in the table below, which gives the
eigenvectors (or PCs) gi of G and the amounts of selection and genetic variation associated
with each. Using factor-analytic modeling (Chapter 32), there was statistical support for the
first three eigenvectors of G (which account for 90% of the total genetic variance) and a good
suggestion of support for a fourth PC. For completeness, all five eigenvectors are given:

gmax g2 g3 g4 g5
% Variation 51.0 25.6 12.9 6.9 3.6
gTi γg1 0.005 -0.012 -0.051 -0.097 -0.011
gTi ∆Gg1 0.00400 -0.00283 -0.00285 -0.00212 -0.00009
% change in Genetic SD 6.6 -7.8 -11.0 -13.0 -3.8

The strength of selection along the ith eignevector was estimated using giγgi, with positive
values indicating an positive curvature in the fitness surface that axis (disruptive selection),
while a negative value indicates negative curvature (stabilizing selection). The key observa-
tion of Hunt et al. is that the amount of genetic variation along a particular direction decreases
with the strength of stabilizing selection along that axis (genetic variation decreases, and the
strength of stabilizing selection increases, as we move from g2 to g4). While the fifth (and
final) PC shows a departure from this pattern, given there is no support for this PC, estimates
associated with it must be viewed with some caution. Hunt et al. also measured the ex-
pected change in genetic variation from selection (using Equation 31.11a, ∆G = GγG), with
gi∆Ggi measuring the selected-induced change in genetic variation along the ith eigenvec-
tor. The observed pattern for these data is that the orientations corresponding to the strongest
amounts of stabilizing selection have the lowest level of genetic variation.

Model Assumptions, Genetic Correlations, and Hidden Pleiotropy



36 CHAPTER 31

As we saw in Chapter 27, the theoretical framework for mutation-selection balance for a
single trait is both extremely technical and very fragile. Very subtle differences in mutational
models can lead to qualitatively different conclusions. As one might expect, moving to mul-
tivariate space only exacerbates these concerns. Again recall the two general approximations
used for the locus-specific distribution of allele effects. Gaussian genetic models assume the
distribution of allelic effects are each locus is approximately normal (or multivariate normal
under pleiotropy), which requires the assumption that mutation is strong relative to selec-
tion at each locus. HOC approximations, on the other hand, assume that selection is strong
relative to mutation, and thus the phenotypic variation associated with a new mutation ex-
ceeds the standing variation from alleles segregating at the time of the mutation. These two
approximations result in fundamentally different behavior for equilibrium genetic variances
under a multivariate mutation-selection balance.

Two types of correlations, phenotypic and genetic, enter into our discussion of multi-
variate models. Under Gaussian fitness models, selection on one trait reduces the phenotypic
variance of any phenotypically-correlated traits (Equation 31.13a), which imparts selection
on the second trait. Genetic correlations also influence selection response and can be gen-
erated by pleiotropic mutations. Under the gaussian genetic assumption, if there are no
correlations among pleiotropic mutations and no phenotypic correlations in the selection
function (M and W are diagonal), then the equilibrium amount of variation maintained at
each trait is independent of selection at the others (Lande 1980, 1984; Turelli 1985). However,
under the HC approximation if there is hidden pleiotropy, then selection on a trait can be
significantly influenced by selection on uncorrelated (genetically and phenotypically) traits
(Turelli 1985, 1988b; Wagner 1989; Slatkin and Frank 1990). With hidden pleiotropy, the
equilibrium genetic variance that a trait can maintain is significantly reduced by selection
on uncorrelated traits. If the results from the HOC approximation are a good reflection of
the true biological reality, then selection from uncorrelated traits can significantly impact the
long-term behavior of traits.

The key here is that uncorrelated only implies independence under a gaussian. Hidden
pleiotropy can generate significant associations, all the while showing no genetic correlation.
Indeed, the expected genetic correlation at equilibrium under either the Gaussian (Jones et
al. 2007) or house of cards (Zhang and Hill 2003) assumption is approximately

ρA =
1 + ρsρm −

√
1− ρ2

s

√
1− ρ2

m

ρs + ρm
(31.49)

where ρ is the correlation among pleiotropic mutational effects and ρs the correlations among
phenotypes in the fitness surface W. Under both models, the equilibrium genetic correlation
is zero when mutational and selective effects are uncorrelated (ρm = ρs = 0).

The Stability of G

Thus far, theoretical results on the stability of G have been a very mixed bag. On one hand,
the infinitesimal models results are well-behavior, and are determined by parameters that
one could imagine being able to measure under realistic scenarios. On the other, the allele-
frequency change results suggest that genetic covariances are likely extremely liable. Over
the long-term, mutation-selection equilibrium results are required, but these are extremely
sensitive to subtle features of the assumed underlying genetics.

So, just what can be said about the expected stability of G in natural populations over
evolutionary time? In part, this depends on the general nature of selection. Some traits, such
as life-history components, may potentially experience continuous directional selection to
improve, and we expect little genetic variance along the direction of selection. Evidence
supporting this view is starting to appear (Blows et al. 2004, Hine et al. 2004, Van Homright
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et al. 2007). However, for most traits the basic model envisioned by evolutionary biologists
is stabilizing selection, with directional selection occurring when the population is moved
off a (potentially local) optimal value (the adaptive peak). Such a displacement occurs when
the environment (biotic or abiotic) shifts, moving populations away from an adaptive peak.
Subsequent directional selection attempts to move the mean towards the new peak. In these
settings, constancy of G requires several conditions. First, that the environmental change it-
self does not influence G directly (i.e., no genotype-environment interactions). This assump-
tion is quite problematic, as there are numerous examples of genetic correlations differently
substantially (even in sign) across environments (reviewed by Sgró and Hoffmann 2004).
Second, it requires that the curvature (W) of the fitness surface remains unaltered by the
environmental shift. Finally, the distribution of mutational effects M also remains constant.
Even if all of these conditions hold, other factors can change the constancy of G, for example
the effects of a major gene or gene frequency changes in general. Thus, while theory does not
ensure a relatively constant G, it also has fairly little to say about instability in G, leading
Turelli (1988a) to succinctly summary the theory by stating that no robust predictions are
possible.

While robust predictions are lacking, computer simulations by Jones et al. (2003, 2004,
2007) point to some potential trends promoting G stability. It is important to stress that
stability does not mean stasis. G does indeed change over time, the only issue is the time
scale. Conditions promoting “stability”are those where the change is slow over time. The
basic structure of the simulations by Jones et al. (2003, 2004) was to follow two traits controlled
by a modest (50) number of unlinked loci, with finite population size, gaussian stabilizing
selection, and mutation where the effects of new mutations are given from the continuum
of alleles mode. Here a normal random random variable is added to the current value of an
allele to obtain the effect of the new mutation and pleiotropy is accounted for by allowing
correlations in these values between the two traits. Three measures to used to characterize
G. Two are measures of eigenvalues: the total size of G (the sum of both eigenvalues)
and its eccentricity (the ratio λ1/λ2 of its eigenvalues), namley how cigar-shaped is G. An
eccentricity of one corresponds to a circular G, while its shape becomes more needle-like as
the eccentricity increases. The third measure was the orientation θ of the leading eigenvector
over time with respect to a fixed standard.

Strictly stabilizing selection was considered by Jones et al. (2003), while stabilizing
selection with a constantly moving optimum was examined by Jones et al. (2004). The basic
conclusions were that stability in size and eccentricity was largely determined by population
size (drift) with stability increasing withNe, while selection and mutation largely determined
the stability of θ (the orientation). A number of conditions results in strong stability of the
orientation over time. Correlations among new mutations (be they positive or negative) had
a significant impact on increasing the stability of G. Correlation selection (non-zero diagonal
elements in W) also promoted stability, as did asymmetric stabilizing selection, where the
strength of selection differs considerably on the two traits. Finally, increasing the alignment
between the selection matrix W and the mutational matrix M increases stability.

When considering a moving optimum (and hence constant directional selection), G sta-
bilization was further increased when the optimum moved in roughly the same orientation
as the major axis of G (i.e., along genetic lines of least resistance), but selection orthogonal to
this direction decreases stability. They also found that directional selection tends to increase
the genetic variance (increasing λi) , presumably reflecting new mutations being brought up
to higher frequency by selection. Thus, under fairly wide conditions, we might expect some
stability in the orientation of G, but not in its eigenvalues. Given these various conditions
for stability, Jones correctly point out that some sets of traits are more likely to be more stable
over time than others.

Jones et al. (2007) expanded upon their earlier simulations by allowing the mutational
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matrix M itself to evolve. Specifically, they assumed that the correlation between mutational
effects was itself a quantitative trait with variation and simply allowed it to change under drift
and selection (via stabilizing selection on the traits of interest). They found that the mutational
correlation did indeed evolve and exhibits a weak tendency to further align the M with the
fitness surface W. However, the mutational correlation experiences disruptive selection with
an intermediate unstable point, and can show very erratic fluctuations, especially when near
zero. Overall, Jones et al. found that allowing the M matrix to evolve further increases the
stability (i.e., the orientation) of the G matrix under most of the situations they simulated.
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