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Quantitative genetics often deals with vector-valued functions and here we provide a brief
review of the calculus of such functions. In particular, we review common expressions for
derivatives of vectors and vector-valued functions, introduce the gradient vector and Hessian
matrix (for first and second partials, respectively), and then use this machinery in multidi-
mensional Taylor series for approximating functions around a specific value. We apply these
results to several problems in selection theory and evolution.

DERIVATIVES OF VECTORS AND VECTOR-VALUED FUNCTIONS

Let f(z) be a scaler (single dimensional) function of a vector x of n variables, x1, · · · , xn. The
gradient (or gradient vector) of f with respect to x is obtained by taking partial derivatives
of the function with respect to each variable. In matrix notation, the gradient operator is

∇x[ f ] =
∂ f

∂ x
=



∂ f

∂ x1

∂ f

∂ x2
...

∂ f

∂ xn


The gradient at point xo corresponds to a vector indicating the direction of local steepest
ascent of the function at that point (the multivariate slope of f at the point xo).

Example A5.1. Compute the gradient for

f(x) =
n∑

i=1

x2
i = xT x

Since ∂ f/∂ xi = 2xi, the gradient vector is just ∇x[ f(x) ] = 2x. At the point xo, xT x
locally increases most rapidly if we change x in the same the direction as the vector going
from point xo to point xo + 2δ xo, where δ is a small positive value.

For a vector a and matrix A of constants, it can easily be shown (e.g., Morrison 1976,
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Graham 1981, Searle 1982) that

∇x
[
aT x

]
= ∇x

[
xT a

]
= a (A5.1a)

∇x [Ax ] = AT (A5.1b)

Turning to quadratic forms, if A is symmetric, then

∇x
[
xT Ax

]
= 2 ·Ax (A5.1c)

∇x
[
(x−A)T A(x−A)

]
= 2 ·A(x−A) (A5.1d)

∇x
[
(A− x)T A(A− x)

]
= −2 ·A(A− x) (A5.1e)

Taking A = I, Equation A5.1c implies

∇x
[
xT x

]
= ∇x

[
xT I x

]
= 2 · I x = 2 · x (A5.1f)

as was found in Example A5.1. Two other useful identities follow from the chain rule of
differentiation,

∇x [ exp[ f(x) ] ] = exp[ f(x) ] · ∇x [ f(x) ] (A5.1g)

∇x [ ln[ f(x) ] ] =
1

f(x)
· ∇x [ f(x) ] (A5.1h)

Finally, the product rule also applies to a gradient, with

∇x [ f(x) g(x) ] ] = ∇x [ f(x) ] ] g(x) + f(x)∇x [ g(x) ] ] (A5.1i)

Example A5.2 The multivariate normal (MVN) distribution returns a scaler value and is a
function of the data vector x, the vector of means µ, and the covariance matrix Vx We can
write the multivariate normal (MVN) distribution function as

ϕ(x) = a exp
(
−1

2
· (x− µ)T V−1

x (x− µ)
)

where the constant a = π−n/2 |Vx|−1/2. The compute the gradient of the MNV with respect
to the data vector x, first apply Equation A5.1g,

∇x [ ϕ(x) ] = ϕ(x) · ∇x

[ (
−1

2

)
· (x− µ)T V−1

x (x− µ)
]

Applying Equation A5.1d gives

∇x [ ϕ(x) ] = −ϕ(x) ·V−1
x (x− µ) (A5.2a)

Note here that ϕ(x) is a scalar and hence its order of multiplication does not matter, while the
order of the other variables (being matrices) is critical. Similarly, Equation A5.1e implies the
gradient of the MVN with respect to the vector of means µ is

∇µ [ ϕ(x, µ) ] = ϕ(x, µ) ·V−1
x (x− µ) (A5.2b)
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Example A5.3. Recall (Chapters 10, 16, 29) that the directional selection gradient β = P−1S.
The reason thatβ is called a gradient is because Lande (1979) showed that β equals the gradient
of log mean fitness with respect to the vector of trait means,∇µ[ ln W (µ) ], when phenotypes
are multivariate normal. Hence, the increase in mean population fitness is maximized if mean
character values change in the same direction as the vector β. To see this, first note that
applying Equation A5.1h gives

∇µ[ ln W (µ) ] = W
−1∇µ[ W (µ) ]

Writing mean fitness as W (µ) =
∫

W (z) ϕ(z, µ) dz and taking the gradient through the
integral gives

∇µ[ ln W (µ) ] = ∇µ

[∫
W (z)
W

ϕ(z, µ) dz
]

=
∫

w(z)∇µ [ ϕ(z, µ) ] dz

If individual fitnesses are frequency-dependent (functions of the population mean instead of
fixed constants), then a second integral appears as we can no longer assume∇µ [ w(z) ] = 0
(see Equation 29.5b). If the trait vector z is distributed MVN(µ,P), the Equation A5.2b gives

∇µ [ ϕ(z, µ) ] = P−1 (z− µ)

Hence we can rewrite the above integral as∫
w(z)∇µ [ ϕ(z, µ) ] dz =

∫
w(z) ϕ(z)P−1 (z− µ) dz

= P−1

(∫
zw(z) ϕ(z) dz− µ

∫
w(z) ϕ(z) dz

)
= P−1(µ∗ − µ) = P−1S = β

which follows since the first integral (in the second above line) is the mean character value
after selection and the second equals one as E[ w ] = 1 by definition.

Example A5.4. A common class of fitness functions used in models of the evolution of
quantitative traitsis the Gaussian fitness function,

W (z) = exp
(

αT z− 1
2
(z− θ)T W(z− θ)

)

= exp

∑
i

αizi −
1
2

∑
i

∑
j

(zi − θi)(zj − θj)Wij


where W is a symmetric matrix. If a vector of traits is distributed as a MVN(µ,P) before
selection, then after selection the distribution remains multivariate normal with new mean
and variance

µ∗ = P∗(P−1µ + Wθ + α)

where
P∗ = P−P

(
P + W−1

)−1
P
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A fair bit of work (Example XX.xx) shows that the vector of selection differentials can be
expressed as

S = µ∗ − µ = W−1
(
W−1 + P

)−1
P (W(θ− µ) + α) (A5.3a)

The resulting population mean fitness is

W (µ,P) =

√
|P∗ |
|P | · exp

(
− 1

2
[f(µ) ]

)
where

f(µ) = θT Wθ + µT P−1
(
I−P∗P−1

)
µ− 2 · bT P−1µ− bT P−1b

with b = Wθ + α. Let’s compute the gradient in log mean fitness with respect to the vector
of means. Taking the log of fitness gives

∇µ
[
ln W (µ,P)

]
= ∇µ

[
ln

(
|P∗ |
|P |

) ]
− 1

2
· ∇µ [ f(µ) ] = −1

2
· ∇µ [ f(µ) ]

where the first term is zero because P and P∗ are independent of µ. Ignoring terms of f not
containing µ since the gradient of these (with respect to µ) is zero,

∇µ [ f(µ) ] = ∇µ
[
µT P−1

(
I−P∗P−1

)
µ

]
− 2 · ∇µ

[
bT P−1µ

]
Applying Equations A5.1b/c,

∇µ
[
µT P−1

(
I−P∗P−1

)
µ

]
= 2 ·P−1

(
I−P∗P−1

)
µ

∇µ

[
bT P−1µ

]
=

(
bT P−1

)T

= P−1b

Hence,

∇µ
[
ln W (µ,P)

]
= P−1

[ (
P∗P−1 − I

)
µ + b

]
(A5.3b)

Using the definitions of P∗ and b, we can (eventually) express this as

∇µ
[
ln W (µ,P)

]
= P−1W−1

(
W−1 + P

)−1
P (W(θ− µ) + α) (A5.3c)

Recalling Equation A5.3a, this is just P−1S = β, as expected.

Example A5.5. Consider obtaining the least-squares solution for the general linear model,
y = Xβ + e, where we wish to find the value of β that minimizes the residual error given y
and X. In matrix form,

n∑
i=1

e2
i = eT e = (y−Xβ)T (y− xβ)

= yT y− βT XT y− yT Xβ + βT XT Xβ

= yT y− 2βT XT y + βT XT Xβ
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where the last step follows since the matrix product βT XT y yields a scaler, and hence it
equals its transpose,

βT XT y =
(
βT XT y

)T

= yT Xβ

To find the vector β that minimizes eT e, taking the derivative with respect to β and using
Equations A5.1a/c gives

∂ eT e
∂ β

= −2XT y + 2XT Xβ

Setting this equal to zero gives XT Xβ = XT y giving

β =
(
XT X

)−1

XT y

More generally, if XT X is singular, we can still solve this equation by using a generalized

inverse
(
XT X

)−
, see LW Appendix 3.

The Hessian Matrix, Local Maxima/minima, and Multidimensional Taylor Series

In univariate calculus, local extrema of a function occur when the slope (first derivative) is
zero. The multivariate extension is that the gradient vector is zero, so that the slope of the
function with respect to all variables is zero. A pointxe where this occurs is called a stationary
or equilibrium point, and corresponds to either a local maximum, minimum, saddle point
or inflection point. As with the calculus of single variables, determining which of these is
true depends on the second derivative. With n variables, the appropriate generalization is
the hessian matrix

Hx[ f ] = ∇x

[ (
∇x [ f ]

)T
]

=
∂2 f

∂x ∂xT
=



∂2 f

∂x2
1

· · · ∂2 f

∂x1 ∂xn

...
. . .

...

∂2 f

∂x1 ∂xn
· · · ∂2 f

∂x2
n

 (A5.4)

This matrix is symmetric, as mixed partials are equal under suitable continuity conditions,
and measures the local multidimensional curvature of the function.

Example A5.6. Compute Hx [ ϕ(x) ], the hessian matrix for the multivariate normal distri-
bution. Recalling from Equation A5.2a that∇x [ ϕ(x) ] = −ϕ(x) ·V−1

x (x− µ), we have

Hx [ ϕ(x) ] = ∇x

[ (
∇x [ ϕ(x) ]

)T
]

= −∇x
[
ϕ(x) · (x− µ)T V−1

x
]

= −∇x [ ϕ(x) ] · (x− µ)T V−1
x − ϕ(x) · ∇x

[
(x− µ)T V−1

x
]

= ϕ(x)·
(

V−1
x (x− µ)(x− µ)T V−1

x −V−1
x

)
(A5.5a)
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Where we have used Equations A5.1i and A5.1b, respectively (recall that Vx is a vector of
constants). In a similiar manner, the gradient with respect to the vector of means is

Hµ [ ϕ(x, µ) ] = ϕ(x, µ)·
(

V−1
x (x− µ)(x− µ)T V−1

x −V−1
x

)
(A5.5b)

To see how the hessian matrix determines the nature of equilibrium points, a slight
digression on the multidimensional Taylor series is needed. Consider the (second-order)
Taylor series of a function of n variables f(x1, · · · , xn) expanded about the point y,

f(x) ' f(y) +
n∑

i=1

(xi − yi)
∂f

∂xi
+

1
2

n∑
i=1

n∑
j=1

(xi − yi)(xj − yj)
∂2f

∂xi ∂xj
+ · · ·

where all partials are evaluated at y. Noting that the first sum is just the inner product of the
gradient and x− xo while the double sum is a quadratic product involving the Hessian, we
can express this in matrix form as

f(x) ' f(xo) +∇T (x− xo) +
1
2
(x− xo)T H (x− xo) (A5.6)

where∇ and H are the gradient and hessian with respect to x evaluated at xo, e.g.,

∇ ≡ ∇x[ f ]
∣∣
x=xo

and H ≡ Hx[ f ]
∣∣
x=xo

Example A5.7. Consider the following demonstration (due to Lande 1979) that mean pop-
ulation fitness increases. A round of selection changes the current vector of means from µ to
µ + ∆µ. Expanding the log of mean fitness in a Taylor series around the current population
mean µ gives the change in mean population fitness as

∆ ln W (µ) = lnW (µ + ∆µ)− ln W (µ)

'
(
∇µ[ ln W (µ) ]

)T

∆µ +
1
2
∆µT Hµ[ lnW (µ) ] ∆µ

assuming that second and higher-order terms can be neglected (as would occur with weak
selection and the population mean away from an equilibrium point), then

∆ ln W (µ) '
(
∇µ[ ln W (µ) ]

)T

∆µ

Assuming that the joint distribution of phenotypes and additive genetic values is MVN, then
∆µ = Gβ, or∇µ[ ln W (µ) ] = β = G−1∆µ. Substituting gives

∆ ln W (µ) '
(
G−1∆µ

)T
∆µ = (∆µ)T G−1 ∆µ ≥ 0

The inequality follows since G is a variance-covariance matrix and hence is non-negative
definite (see below). Thus under these conditions, mean population fitness always increases,
although since ∆µ 6= ∇µ[ ln W (µ) ] fitness does not increase in the fastest possible manner.
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At an equilibrium point x̂, all first partials are zero, so that (∇x[ f ])T at this point is a
vector of length zero. Whether this point is a maximum or minimum is then determined by
the quadratic product involving the hessian evaluated at x̂. Considering vector d of a small
change from the equilibrium point,

f(x̂ + d)− f(x̂) ' 1
2
· dT Hd (A5.7a)

Since H is a symmetrix matrix, we can diagonalize it and apply a canonical transformation
(Appendix 4) to simplify the quadratic form to give

f(x̂ + d)− f(x̂) ' 1
2

n∑
i=1

λiy
2
i (A5.7b)

where yi = ei
T d, ei and λi being the eigenvectors and eigenvalues of the hessian evaluated

at x̂. Thus, if H is positive-definite (all eigenvalues of H are positive), f increases in all
directions around x̂ and hence x̂ is a local minimum of f . If H is negative-definite (all
eigenvalues are negative), f decreases in all directions around x̂ and x̂ is a local maximum
of f . If the eigenvalues differ in sign (H is indefinite), x̂ corresponds to a saddle point (to
see this, suppose λ1 > 0 and λ2 < 0; any change along the vector e1 results in an increases
in f , while any change along e2 results in a decrease in f ).

Example A5.8. Consider again the generalized Gaussian fitness function (Example A5.4). It
can be shown (Exampl xx.xx) that β = ∇µ

[
ln W (µ,P)

]
= 0 when µ̂ = θ + W−1α. Is

this a local maximum or a minimum? Recalling Equation A5.3b, we have

Hµ
[
W (µ)

]
= ∇µ

[ (
∇µ

[
ln W (µ)

] )T
]

= ∇µ

[ (
P−1

(
P∗P−1 − I

)
µ + P−1b

)T
]

= P−1
(
P∗P−1 − I

)
Recall from Example A5.4 that P∗ = P−P

(
P + W−1

)−1
P, giving

Hµ
[
W (µ)

]
= P−1

[(
I−P

(
P + W−1

)−1
)
PP−1 − I

]
= P−1

[
I− I−P

(
P + W−1

)−1
]

= −
(
P + W−1

)−1
(A5.8)

This result was obtained for the case of α = 0 by Lande (1979). Recall from Appendix 4 that
if λ is an eigenvalue of A, then−λ−1 is an eigenvalue of−A−1. Thus if all eigenvalues of the
matrix J =

(
P + W−1

)
are positive (J is positive-definite), all eigenvalues of Hµ

[
W (µ)

]
are negative and hence µ̂ corresponds to a local maximum in the mean population fitness
surface. If J is positive-definite, them for all non-trivial (i.e. positive lenght) vectors x,

xT Jx = xT
(
P + W−1

)
x = xT Px + xT W−1 x > 0
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Letting λi and ei be the ith eigenvalue and associated unit eigenvector for P and likewise γi

and fi be the eigenvalue and associated unit eigenvector for W, then applying the canonical
transformation of each matrix,

xT Jx =
n∑

i=1

y2
i λi +

n∑
i=1

z2
i γ−1

i

where yi = ei
T x and zi = fT

i x. Since all the eigenvalues of P are positive, J is positive-
definite if all eigenvalues of W are positive (implying stabilizing selection on all characters).
More generally, using the constraint that the phenotypic covariance matrix after selection
P∗ = (P−1 + W)−1 must be positive definite, we can show that if γi corresponds to a
negative eigenvalue of W (disruptive selection among the axis given by fi), then fitness is at
a local minimum along this axis.

Optimization under constraints

Occasionally we wish to find the maximum or minimum of a function subject to a constaint.
The solution is to use Lagrange multipliers: suppose we wish to find the extrema of f(x)
subject to the constraint h(x) = c. Construct a new function g by considering

g(x, λ) = f(x)− λ( h(x)− c )

Since h(x) − c = 0, the extrema of g(x, λ) correspond to the extrema of f(x) under the
constraint. Local maxima and minima are obtained by solving the series of equations

∇x[ g(x, λ) ] = ∇x[ f(x) ]− λ · ∇x[ h(x) ] = 0
d g(x, λ)

dλ
= h(x)− c = 0

Observe that the second equation is satisfied by the constraint.

Example A5.9. Consider a new (univariate) character, an index I , which is a linear combi-
nation of n characters (z1, z2, · · · , zn),

I = bT z =
n∑

k=1

bk zk

where we further impose bT b = 1. Denote the directional selection differential of the new
character I by SI and observe that if S is the vector of directional selection differentials for z,
then SI = bT S. We wish to solve for b such that for a fixed amount of selection on I (SI = r)
we maximize the response of another linear combination of z, AT µ =

∑
ak µk. Assuming

the conditions leading to the multivariate breeders’ equation hold, the function to maximize
is

f(b) = aT ∆µ = aT GP−1S

under the associated constraint function

g(b)− c = bT b− 1 = 0



VECTOR AND MATRIX DERIVARIATES 9

Since SI = bT S and we have the constraint bT b = 1 take S = r · b so that SI = bT S =
r · bT b = r. Taking derivatives gives

∇x[ g(x, λ) ] = r · ∇x[ aT GP−1b ]− λ · ∇x[bT b ] = r ·
(
aT GP−1

)T − (2λ) · b

which is equal to zero when
b = (2λ/r) ·P−1Ga

where we can solve for λ by using the constraint bT b = 1. Thus

I = c ·
(
P−1Ga

)T
z (A5.9)

where the constant c depends on the desired strength of selection r. This is Smith’s optimal
selection index (Smith 1936, Hazel 1943) who obtained it by a very different approach. Index
selection is the subject of Chapters 32-33.

Example A5.9. As an application of the above optimal selection index, suppose we wish
to maximize the change in mean population fitness. Expanding mean population fitness in a
Taylor series gives, to first order,

W (µ + ∆µ)−W (µ) ' ∇µ[ W (µ) ]T ∆µ

= W ·
(
W
−1 · ∇µ[ W (µ) ]T ∆µ

)
= W ·

(
∇µ[ ln W (µ) ]T ∆µ

)
= W · βT ∆µ

Thus, the linear combination we wish to maximize is βT µ, and from above in taking β = a
gives the selection index that maximizes the change in mean population fitness as

I = (P−1 Gβ)z
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