
Appendix 2
Introduction to Bayesian Analysis

A form of inference which regards parameters as being random variables possessed
of prior distributions reflecting the accumulated state of knowledge

— Kendall and Buckland (1971)
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As opposed to the point estimators (means, variances) used by classical statistics, Bayesian
statistics is concerned with generating the full distribution for the parameters given the data,
i.e., the joint posterior distribution p(Θ |x). As such, Bayesian statistics provides a much more
complete picture of the uncertainty in the estimation of the unknown parameters, especially
after the confounding effects of nuisance parameters are removed.

Our treatment here is intentionally quite brief and we refer the reader to Lee (1997) and
Gelman et al. (2003) for a complete introduction to Bayesian analysis, and the introductory
chapters of Tanner (1996) for a more condensed treatment. While very deep (and very subtle)
differences in philosophy separate hard-core Bayesians from hard-core frequentists (Efron
1986, Glymour 1981), our treatment here of Bayesian methods is motivated simply by their
use as a powerful statistical tool.

BAYES’ THEOREM

The foundation of Bayesian statistics is Bayes’ theorem. Suppose we observe a random
variable x and wish to make inferences about another random variable θ, where θ is drawn
from some distribution Pr(θ). From the definition of conditional probability,

Pr(θ |x) =
Pr(x, θ)
Pr(x)

(A2.1a)

where (for now) x and θ are discrete random variables. Again from the definition of condi-
tional probability, we can express the joint probability by conditioning on θ to give

Pr(x, θ) = Pr(x | θ) Pr(θ) (A2.1b)

Putting these together gives Bayes’ theorem:

Pr(θ |x) =
Pr(x | θ) Pr(θ)

Pr(x)
(A2.2a)

Notice that Bayes’ theorem allows us to flip which variable we are conditioning on, allowing
us to move from Pr(x | θ) to Pr(θ |x). With n possible outcomes (θ1, · · · , θn),

Pr(θj |x) =
Pr(x | θj) Pr(θj)

Pr(x)
=

Pr(x | θj Pr(θj)
n∑

i=1

Pr(θi) Pr(x | θi)

(A2.2b)

In Bayesian statistics, we let x represent an observable variable, while θ represents a pa-
rameter describing the distribution of x. In this setting Pr(θ) is the prior distribution of the
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possible θ values, while Pr(θ |x) is the posterior distribution of θ given the observed data
x.

While Bayes’ theorem was motivted with disrete random variables, all of the above state-
ments hold when we consider continuous random variables, and use the probability density
function p in place of the discrete probabilty Pr. In particular, the continuous multivariate
version of Bayes’ theorem is

p(Θ |x) =
p(x |Θ) p(Θ)

p(x)
=

p(x |Θ) p(Θ)∫
p(x, Θ) dΘ

(A2.3)

where Θ = (θ(1), θ(2), · · · , θ(k)) is a vector of k (potentially) continuous variables. As with the
univariate case, p(Θ) is the assumed prior distribution of the unknown parameters, while
p(Θ |x) is the posterior distribution given the prior p(Θ) and the data x.

The origin of Bayes’ theorem has a fascinating history (Stigler 1983). It is named after the
Rev. Thomas Bayes, a priest who never published a mathematical paper in his lifetime. The
paper in which the theorem appears was posthumously read before the Royal Society by his
friend Richard Price in 1764. Stigler suggests it was first discovered by Nicholas Saunderson,
a blind mathematician/optician who, at age 29, became Lucasian Professor of Mathematics
at Cambridge (the position held earlier by Issac Newton).

Example A2.1. Suppose one in every 1000 families has a genetic disorder (sex-bias) in which
they produce only female offspring. For any particular family we can define the (indicator)
random variable

θ =
{

0 normal family

1 sex-bias family

Suppose we observe a family with 5 girls and no boys. What is the probability that this family is
a sex-bias family? From prior information, there is a 1/1000 chance that any randomly-chosen
family is a sex-bias family, so Pr(θ = 1) = 0.001. Likewise x = five girls, and Pr(five girls
| sex bias family) = 1, Pr(five girls | normal family) = (1/2)5. Hence, Pr(x = 5 | θ = 1) =1,
while Pr(x = 5 | θ = 0) = (1/2)5. It remains to compute the probability that a random family
from the population with five children has all girls. Conditioning over all types of families
(normal + sex-bias),

Pr( 5 girls) = Pr(5 girls | normal)*Pr(normal) + Pr(5 girls | sex-bias)*Pr(sex-bias)

giving
Pr(x) = (1/2)5 · (999/1000) + 1 · (1/1000) = 0.0322

Hence,

Pr(θ = 1 |x = 5 girls) =
Pr(x | θ = 1) Pr(θ = 1)

Pr(x)
=

1 · 0.001
0.0322

= 0.031

Thus, a family with five girls is 31 times more likely than a random family to have the sex-bias
disorder.

Example A2.2. Suppose a major gene (with alleles Q and q) underlies a character of interest.
The distribution of phenotypic values for each major locus genotype follows a normal distri-
bution with variance one and means 2.1, 3.5, and 1.3 for QQ, Qq, and qq (respectively). Suppose
the frequencies of these genotypes for a random individual drawn from the population are
0.3, 0.2, and 0.5 (again for QQ, Qq, and qq respectively). If an individual from this population
has a phenotypic value of 3, what is the probability of it being QQ? Qq? qq?
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Let ϕ(x |µ, 1) = (2π)−1/2e−(x−µ)2/2 denote the density function for a normal distribution
with mean µ and variance one. To apply Bayes’ theorem, the values for the priors and the
conditionals are as follows:

Genotype, G Pr(G) p(x|G) Pr(G)·p(x|G)

QQ 0.3 ϕ(3 | 2.1, 1) = 0.266 0.078
Qq 0.2 ϕ(3 | 3.5, 1) = 0.350 0.070
qq 0.5 ϕ(3 | 1.3, 1) = 0.094 0.047

Since p(x) =
∑

G Pr(G)·p(x | G) = 0.195, Bayes’ theorem gives the posterior probabilities for
the genotypes given the observed value of 3 as:

Pr(QQ |x = 3) = 0.078/0.195= 0.409

Pr(Qq |x = 3) = 0.070/0.195 = 0.361

Pr(qq |x = 3) = 0.047/0.195 = 0.241

Thus, there is a 41 percent chance this individual has genotype QQ, a 36 percent chance it is
Qq, and only a 24 percent chance it is qq.

FROM LIKELIHOOD TO BAYESIAN ANALYSIS

The method of maximum likelihood (LW Appendix 4) and Bayesian analysis are closely
related. Suppose `(Θ |x) is the assumed likelihood function. Under ML estimation, we would
compute the mode (the maximal value of `, as a function of Θ given the data x) of the
likelihood function, and use the local curvature to construct confidence intervals. Hypothesis
testing follows using likelihood-ratio (LR) statistics. The strengths of ML estimation rely on
its large-sample properties, namely that when the sample size is sufficiently large, we can
assume both normality of the estimators and that most LR tests follow χ2 distributions.
These nice features don’t necessarily hold for small samples. Coversely, a Bayesian analysis
is exact for any sample size.

To transition from a likelihood to a Bayesian analysis, we start with some prior distri-
bution p(Θ) capturing our initial knowledge/best guess about the possible values of the
unknown parameter(s). From Bayes’ theorem, the data (likelihood) is combined with the
prior distribution to produce a posterior distribution,

p(Θ |x) =
1

p(x)
· p(x |Θ) · p(Θ) (A2.4a)

=
(

normalizing
constant

)
· p(x |Θ) · p(Θ) (A2.4b)

= constant · likelihood · prior (A2.4c)

as p(x |Θ) = `(Θ |x) is just the likelihood function and 1/p(x) is a constant (with respect to
Θ). Because of this, the posterior distribution is often written as

p(Θ |x) ∝ `(Θ |x)p(Θ) (A2.4d)
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where the symbol∝means “proportional to”(equal up to a constant). Note that the constant
p(x) normalizes p(x |Θ) · p(Θ) to one, and hence can be obtained by integration,

p(x) =
∫
Θ

p(x |Θ) · p(Θ)dΘ (A2.5)

The dependence of the posterior on the prior (which can easily be assessed by trying different
priors) provides an indication of how much information on the unknown parameter values
is contained in the data. If the posterior is highly dependent on the prior, then the data likely
has little signal, while if the posterior is largely unaffected under different priors, the data
are likely highly informative. To see this, taking logs on Equation A2.4c (and ignoring the
normalizing constant) gives

log(posterior) = log(likelihood) + log(prior) (A2.6)

Marginal Posterior Distributions

Often, only a subset of the unknown parameters is really of concern to us, the rest being
nuisance parameters that are really of no interest. A very strong feature of Bayesian analysis
is that we can account for all the uncertainty regarding the nuisance parameters by simply
integrating them out of the posterior distribution to generate a marginal posterior distri-
bution for the parameters of interest. For example, suppose the mean and variance of data
coming from a normal distribution are unknown, but our real interest is in the variance. Es-
timating the mean introduces additional uncertainly into our variance estimate. This is not
fully capture in standard classical approaches, but under a Bayesian analysis, the posterior
marginal distribution for σ2 is simply

p( σ2 |x) =
∫

p( µ, σ2 |x ) dµ

The resulting marginal posterior for σ2 captures all of the uncertainty in the estimation of µ
that influences the uncertainty in σ2. This is an especially nice feature when a large number
of nuisance parameters must be estimated.

The marginal posterior may involve several parameters (generating joint marginal
posteriors). Write the vector of unknown parameters as Θ = (Θ1, Θn), where Θn is the
vector of nuisance parameters. Integrating over Θn gives the desired marginal as

p(Θ1 |y) =
∫
Θn

p(Θ1, Θn |y) dΘn (A2.7)

SUMMARIZING THE POSTERIOR DISTRIBUTION

How do we extract a Bayes estimator for some unknown parameter θ? If our mindset is to
use some sort of point estimator (as is usually done in classical statistics), there are a number
of candidates. We could follow maximum likelihood and use the mode of the distribution
(its maximal value), with

θ̂ = max
θ

[ p( θ |x )] (A2.8a)

We could take the expected value of θ given the posterior,

θ̂ = E[ θ |x ] =
∫

θ p( θ |x )dθ (A2.8b)
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Another candidate is the median of the posterior distribution, where the estimator satisfies
Pr(θ > θ̂ |x) = Pr(θ < θ̂ |x) = 0.5, hence

∫ +∞

θ̂

p( θ |x )dθ =
∫ θ̂

−∞
p( θ |x )dθ =

1
2

(A2.8c)

However, using any of the above estimators, or even all three simultaneously, loses the full
power of a Bayesian analysis, as the full estimator is the entire posterior density itself . If
we cannot obtain the full form of the posterior distribution, it may still be possible to obtain
one of the three above estimators. However, as we will see in Appendix 3, we can generally
obtain the posterior by simulation using MCMC sampling, and hence the Bayes estimate
of a parameter is frequently presented as a frequency histogram from MCMC-generated
samples of the posterior distribution.

Highest Density Regions (HDRs)

Given the posterior distribution, construction of confidence intervals is obvious. For example,
a 100(1− α) confidence interval is given by any (Lα/2, Hα/2) satisfying

∫ Hα/2

Lα/2

p(θ |x) dθ = 1− α

To reduce possible candidates, one typically uses highest density regions, or HDRs, where
for a single parameter the HDR 100(1−α) region(s) are the shortest intervals giving an area
of (1−α). More generally, if multiple parameters are being estimated, the HDR region(s) are
those with the smallest volume in the parameter space. HDRs are also referred to as Bayesian
confidence intervals or credible intervals.

It is critical to note that there is a profound difference between a confidence interval
(CI) from classical (frequentist) statistics and a Bayesian interval. The interpretation of a
classical confidence interval is that is we repeat the experiment a large number of times,
and construct CIs in the same fashion, (1 − α) of the time the confidence intervals will
enclose the (unknown) parameter. In contrast, with a Bayesian HDR, there is a (1 − α)
probability that the interval contains the true value of the unknown parameter. While these
two intervals sound essentially identical, hey are not and indeed are fundamentally (but
subtly) different. Often the CI and Bayesian intervals have essentially the same value, but
again the interpretational difference remains. The key point is that the Bayesian prior allows
us to make direct probability statements about θ, while under classical statistics we can
only make statements about the behavior of the statistic if we repeat an experiment a large
number of times. Given the important conceptual difference between classical and Bayesian
intervals, Bayesians typically avoid using the term confidence interval.

Bayes Factors and Hypothesis Testing

In the classical hypothesis testing framework, we have two alternatives. The null hypothesis
H0 that the unknown parameter θ belongs to some set or interval Θ0 (θ ∈ Θ0), versus the
alternative hypothesis H1 that θ belongs to the alternative set Θ1 (θ ∈ Θ1). Θ0 and Θ1 contain
no common elements (Θ0 ∩ Θ1 = ®) and the union of Θ0 and Θ1 contains the entire space
of values for θ (i.e., Θ0 ∪Θ1 = Θ).

In the classical statistical framework of the frequentists, one uses the observed data
to test the significance of a particular hypothesis, and (if possible) compute a p-value (the
probability p of observing an as extreme value of the test statistic if the null hypothesis
is indeed correct). Hence, at first blush one would think that the idea of a hypothesis test
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is trivial in a Bayesian framework, as using the posterior distribution gives us expected p
values, as

Pr(θ > θ0) =
∫ ∞

θ0

p( θ |x) dθ and Pr(θ0 < θ < θ1) =
∫ θ1

θ0

p( θ |x) dθ

The kicker with a Bayesian analysis is that we also have prior information and Bayesian
hypothesis testing addresses whether, given the data, we are more or less inclined towards
the hypothesis than we initially were. For example, suppose that the prior distribution of θ
is such that Pr(θ > θ0) = 0.10, while for the posterior distribution Pr(θ > θ0) = 0.05. The
later is significant at the 5 percent level in a classical hypothesis testing framework, but the
data only doubles our confidence in the alternative hypothesis relative to our belief based on
prior information. If Pr(θ > θ0) = 0.50 for the prior, then a 5% posterior probability would
greatly increase our confidence in the alternative hypothesis. Hence, the prior probabilities
certainly influence hypothesis testing. To formalize this idea, let

p0 = Pr(θ ∈ Θ0 |x), p1 = Pr(θ ∈ Θ1 |x) (A2.9a)

denote the probability, given the observed data x, that θ is in the null (p0) and alternative
(p1) hypothesis sets. Note that these are posterior probabilities. Since Θ0 ∩ Θ1 = ® and
Θ0 ∪Θ1 = Θ, it follows that p0 + p1 = 1. Likewise, for the prior probabilities we have

π0 = Pr(θ ∈ Θ0), π1 = Pr(θ ∈ Θ1) (A2.9b)

Thus the prior odds of H0 versus H1 are π0/π1, while the posterior odds are p0/p1.
The Bayes factor B0 in favor of H0 versus H1 is given by the ratio of the posterior odds

divided by the prior odds,

B0 =
p0/p1

π0/π1
=

p0π1

p1π0
(A2.10a)

The Bayes factor is loosely interpreted as the odds in favor of H0 versus H1 that are given
by the data. Since π1 = 1− π0 and p1 = 1− p0, we can also express this as

B0 =
p0(1− π0)
π0(1− p0)

(A2.10b)

Likewise, by symmetry note that the Bayes factor B1 in favor of H1 versus H0 is just

B1 = 1/B0 (A2.10c)

Consider our first example from above where the prior and posterior probabilities for the
null were π0 = 0.1 and p0 = 0.05 (respectively). The Bayes factor in favor of H1 versus H0 is
given by

B1 =
π0(1− p0)
p0(1− π0)

=
0.1 · 0.95
0.05 · 0.9

= 4.22

Similarly, for the second example where the prior for the null was π0 = 0.5,

B1 =
0.5 · 0.95
0.05 · 0.5

= 19

When the hypotheses are simple, say Θ0 = θ0 and Θ1 = θ1, then for i = 0, 1,

pi ∝ p(θi) p(x | θi) = πi p(x | θi)
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Thus
p0

p1
=

π0 p(x | θ0)
π1 p(x | θ1)

(A2.11a)

and the Bayes factor (in favor of the null) reduces the

B0 =
p(x | θ0)
p(x | θ1)

(A2.11b)

which is simply a likelihood ratio.
When the hypotheses are composite (containing multiple members), things are slightly

more complicated. First note that the prior distribution of θ conditioned on H0 vs. H1 is

pi(θ) = p(θ)/πi for i = 0, 1 (A2.12)

as the total probability θ ∈ Θi = πi, so that dividing by πi normalizes the distribution to
integrate to one. Thus

pi = Pr(θ ∈ Θi |x) =
∫

θ∈Θi

p(θ |x)dθ

∝
∫

θ∈Θi

p(θ)p(x | θ)dθ

= πi

∫
θ∈Θi

p(x | θ)pi(θ)dθ (A2.13)

where the second step follows from Bayes’ theorem (Equation A2.4d) and the final step fol-
lows from Equation A2.12, as πi pi(θ) = p(θ). The Bayes factor in favor of the null hypothesis
thus becomes

B0 =
(

p0

π0

) (
π1

p1

)
=

∫
θ∈Θ0

p(x | θ)p0(θ)dθ∫
θ∈Θ1

p(x | θ)p1(θ)dθ
(A2.14)

which is a ratio of the weighted likelihoods of Θ0 and Θ1.
A compromise between Bayesian and classical hypothesis testing was suggested by

Lindley (1965). If the goal is to conduct a hypothesis test of the form H0: θ = θ0 vs. H2:
θ 6= θ0 and we assume a diffuse prior, then a significance test of level α follows by obtaining
a 100(1−α)% HDR for the posterior and rejecting the null hypothesis if and only if θ is outside
of the HDR. See Lee (1997) for further discussions on hypothesis testing (or lack thereof) in
a Bayesian framework.

THE CHOICE OF A PRIOR

Obviously, a critical feature of any Bayesian analysis is the choice of a prior. The key here
is that when the data have sufficient signal, even a bad prior will still not greatly influence
the posterior. In a sense, this is an asymptotic property of Bayesian analysis in that all but
pathological priors will be overcome by sufficient amounts of data. As mentioned above,
one can check the impact of the prior by seeing how stable to posterior distribution is to
different choices of priors. If the posterior is highly dependent on the prior, then the data
(the likelihood function) may not contain sufficient information. However, if the posterior is
relatively stable over a choice of priors, then the data indeed contain significant information.

The location of a parameter (mean or mode) and its precision (the reciprocal of the
variance) of the prior is usually more critical than its actual shape in terms of conveying
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prior information. The shape (family) of the prior distribution is often chosen to facilitate
calculation of the prior, especially through the use of conjugate priors that, for a given
likelihood function, return a posterior in the same distribution family as the prior (i.e., a
gamma prior returning a gamma posterior when the likelihood is Poisson). We will return
to conjugate priors shortly, but we first discuss other standard approaches for construction
of priors.

Diffuse Priors

One of the most common priors is the flat, or diffuse (often called ’uninformative) prior
which is simply a constant,

p(θ) = k =
1

b− a
for a ≤ θ ≤ b (A2.15a)

This conveys that we have no a priori reason to favor any particular parameter value over
another. With a flat prior, the posterior just a constant times the likelihood,

p(θ |x) = C `(θ |x) (A2.15b)

and we typically write that p(θ |x) ∝ `(θ |x). In many cases, classical expressions from
frequentist statistics are obtained by Bayesian analysis assuming a flat prior.

If the variable (i.e. parameter) of interest ranges over (0,∞) or (−∞, +∞), then strictly
speaking a flat prior does not exist, as if the constant takes on any non-zero value, the integral
does not exist. In such cases a flat prior (i.e., assuming p(θ |x) ∝ `(θ |x)) is referred to as an
improper prior.

Sufficient Statistics and Data-Transformed Likelihoods

Suppose we can write the likelihood for a given parameter θ and data vector x as

`( θ |x ) = g [ θ − t(x) ] (A2.16)

Here the likelihood is a function ` = g(z), where z = θ− t(x). If the likelihood is of this form,
the data x only influences θ by a translation on the scale of the function g, i.e., from g(z) to
g(z + a). Further, note that t(x) is the only value of the data that appears, and we call the
function t a sufficient statistic. Other data sets with different values of x, but the same value
of the sufficient statistic t(x), have the same likelihood.

When the likelihood can be placed in the form of Equation A2.16, a shift in the data
gives rise to the same functional form of the likelihood function except for a shift in location,
from (θ+ t[x1]) to (θ+ t[x2]). Hence, this is a natural scale upon which to measure likelihoods,
and on such a scale, a flat prior seems natural.

Example A2.3. Consider n independent samples from a normal with unknown mean µ
and known variance σ2. Here

`( µ |x ) ∝ exp
(
−(µ− x )2

2(σ2/n)

)
Note immediately that t(x) = x is a sufficient statistic for the mean, so that different data sets
with the same mean (for n draws) have the same likelihood function for the unknown mean
µ. Further note that

g(z) = exp
(
−z2

2(σ2/n)

)
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Hence, a flat prior for µ seems appropriate.

What is the natural scale for a likelihood function that does not satisfy Equation A2.16?
Suppose that the likelihood function can be written in data-translated format as

`( θ |x ) = g [ h(θ)− t(x) ] (A2.17)

When the likelihood function has this format, the natural scale for the unknown parameter
is h(θ). Hence, a prior of the form p[ h(θ) ] = constant (a flat prior on h[ θ ]) is suggested.
Using a change of variables to transform p[ h(θ) ] back onto the θ scale suggests a prior on θ
of the form

p(θ) ∝
∣∣∣∣ ∂h(θ)

∂θ

∣∣∣∣ (A2.18)

Example A2.4. Suppose the likelihood function assumes data follow an exponential dis-
tribution,

`(θ |x) = (1/θ) exp(−x/θ)

To express this likelihood in a data-translated format, we will make use of the fact that we
can multiply any likelihood function by a constant and still have a likelihood function. In
particular, since the data x is known (and hence treated as a constant), we can multiply the
likelihood function by any function of the data, e.g. f(x) `(Θ |x) ∝ `(Θ |x). In this example,
we simply multiply the likelihood function by x to give

`(θ |x) = (x/θ) exp(−x/θ)

Noting that

x/θ = exp
[
ln

(x

θ

) ]
= exp [ ln x− ln θ ]

we can express the likelihood as

`(θ |x) = exp[ (lnx− ln θ)− exp(lnx− ln θ) ]

Hence, in data-translated format the likelihood function becomes

g(y) = exp[y − exp(y) ], t(x) = lnx, g(θ) = ln θ

The “natural scale”for θ in this likelihood function is thus ln θ, and a natural prior is
p( ln θ ) = constant, which corresponds to

p(θ) ∝
∣∣∣∣ ∂ ln θ

∂θ

∣∣∣∣ =
1
θ

The Jeffreys’ Prior

Suppose we cannot easily find the natural scale on which the likelihood is in data-translated
format, or that such a decomposition does not exist. Jeffreys (1961) proposed a general prior
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in such cases, based on the Fisher information I of the likelihood. Recall (LE Appendix 4)
that

I(θ |x ) = −Ex

(
∂2 ln `(θ |x )

∂ θ2

)
The Jeffreys’ Prior) is given

p(θ) ∝
√

I(θ |x ) (A2.19)

A full discussion, with derivation, can be found in Lee (1997).

Example A2.5. Consider the likelihood for n independent draws from a binomial,

`(θ |x) = Cθx(1− θ)n−x

where the constant C does not involve θ. Taking logs gives

L(θ |x) = ln [ `(θ |x) ] = ln C + x ln θ + (n− x) ln(1− θ)

Thus
∂L(θ |x)

∂θ
=

x

θ
− n− x

1− θ

and likewise

∂2L(θ |x)
∂θ2

= − x

θ2
− (−1) · (−1)

n− x

(1− θ)2
= −

(
x

θ2
+

n− x

(1− θ)2

)
Since E[ x ] = nθ, we have

−Ex

(
∂2 ln `(θ |x )

∂ θ2

)
=

nθ

θ2
+

n(1− θ)
(1− θ)2

= n θ−1(1− θ)−1

Hence, the Jeffreys’ Prior becomes

p(θ) ∝
√

θ−1(1− θ)−1 ∝ θ−1/2(1− θ)−1/2

which is a Beta Distribution (which will be discussed later).

When there are multiple parameters, I is the Fisher Information matrix of the expected
second partials,

I( Θ |x )ij = −Ex

(
∂2 ln `(Θ |x )

∂ θi∂ θj

)
In this case, the Jeffreys’ Prior becomes

p(Θ) ∝
√

det[I(θ |x ) ] (A2.20)
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Example A2.6. Suppose our data consists of n independent draws from a normal distribu-
tion with unknown mean and variance, µ and σ2. In LW Appendix 4, we showed that the
information matrix in this case is

I = n

 1
σ2

0

0
1

2σ4


Since the determinant of a diagonal matrix is the product of the diagonal elements, we have
det(I) ∝ σ−6, giving the Jeffreys’ Prior for µ and σ2 as

p(Θ) ∝
√

σ−6 = σ−3

Since the prior does not involve µ, we assume a flat prior for µ (i.e. p(µ) = constant). Note
that the prior distributions of µ and σ2 are independent, as

p(µ, θ) = constant · σ−3 = p(µ) · p(σ2)

POSTERIOR DISTRIBUTIONS UNDER NORMALITY ASSUMPTIONS

To introduce the basic ideas of Bayesian analysis, as well as treating a common assumption
in quantitative genetics, consider the case where data are drawn from a normal distribution,
so that the likelihood function for the ith observation xi is

`(µ, σ2 |xi) =
1√

2πσ2
exp

(
− (xi − µ)2

2σ2

)
(A2.21a)

The resulting full likelihood for all n data points is

`(µ |x ) =
1√

2πσ2
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
(A2.21b)

=
1√

2πσ2
exp

[
− 1

2σ2

(
n∑

i=1

x2
i − 2µnx + nµ2

)]
(A2.21c)

Known Variance and Unknown Mean

Assume the variance σ2 is known, while the mean µ is unknown. For a Bayesian analysis, it
remains to specify the prior for µ, p(µ). Suppose we assume a Gaussian prior, µ ∼ N(µ0, σ

2
0),

so that

p(µ) =
1√
2πσ2

0

exp
(
− (µ− µ0)2

2σ2
0

)
(A2.22)

The mean and variance of the prior, µ0 and σ2
0 are referred to as hyperparameters. Here, µ0

specifies a prior location for the parameter, while σ2 specifics our uncertainty in this prior
location – the larger the variance, the greater our uncertainty.

One important trick we will use throughout when calculating the posterior distribution
is to ignore terms that are constants with respect to the unknown parameters. Suppose x
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denotes the data and Θ1 is a vector of known model parameters, while Θ2 is a vector of
unknown parameters. If we can write the posterior as

p(Θ2 |x, Θ1) = f(x, Θ1) · g(x, Θ1, Θ2) (A2.23a)

then
p(Θ2 |x, Θ1) ∝ g(x, Θ1, Θ2) (A2.23b)

With the prior given by Equation A2.22, we can express the resulting posterior distri-
bution as

p(µ |x) ∝ `(µ |x ) · p(µ)

∝ exp

(
− (µ− µ0)2

2σ2
0

− 1
2σ2

[
n∑

i=1

x2
i − 2µnx + nµ2

])
(A2.24a)

We can factor out additional terms not involving µ to obtain

p(µ |x) ∝ exp
(
− µ2

2σ2
0

+
µ µ0

σ2
0

+
µnx

σ2
− nµ2

2σ2

)
(A2.24b)

Factoring in terms of µ, the term in the exponential becomes

−µ2

2

(
1
σ2

0

+
n

σ2

)
+ µ

(
µ0

σ2
0

+
nx

σ2

)
= −µ2

σ2
∗

+
2µµ∗
2σ2
∗

(A2.25a)

where

σ2
∗ =

(
1
σ2

0

+
n

σ2

)−1

and µ∗ = σ2
∗

(
µ0

σ2
0

+
nx

σ2

)
(A2.25b)

Finally, by completing the square, we have

p(µ |x) ∝ exp
(
− (µ− µ∗)2

2σ2
∗

+ f(x, µ0, σ
2, σ2

0

)
(A2.25c)

The posterior density function for µ thus becomes

p(µ |x) ∝ exp
(
− (µ− µ∗)2

2σ2
∗

)
(A2.26a)

showing that the posterior density function for µ is a normal with mean µ∗ and variance σ2
∗,

e.g.,
µ | (x, σ2) ∼ N

(
µ∗, σ

2
∗
)

(A2.26b)

Notice that the posterior density is in the same form as the prior. This occurred because
the prior conjugated with the likelihood function – the product of the prior and likelihood
returned a distribution in the same family as the prior. The use of such conjugate priors (for
a given likelihood) is a key concept in Bayesian analysis and we explore it more fully below.

We are now in a position to inquire about the relative importance of the prior versus the
data. Under the assumed prior, the mean (and mode) of the posterior distribution is given
by

µ∗ = µ0
σ2
∗

σ2
0

+ x
σ2
∗

σ2/n
(A2.27)
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Note with a very diffuse prior on µ (i.e., σ2
0 >> σ2), that σ2

∗ → σ2/n and µ∗ → x. Also note
from Equation A2.25b that as we collect enough data (i.e., large n), σ2

∗ → σ2/n and again
µ∗ → x.

Gamma, Inverse-gamma, χ2, and χ−2 Distributions

Before we examine a Gaussian likelihood with unknown variance, a brief aside is needed to
develop χ−2, the inverse chi-square distribution. We do this via the gamma and inverse-
gamma distribution.

The χ2 is a special case of a two parameter distribution, the Gamma. A gamma-
distributed variable is denoted by x ∼ Gamma(α, β), with density function

p(x |α, β) =
βα

Γ(α)
xα−1e−βx for α, β, x > 0 (A2.28a)

As a function of x, note that
p(x |α, β) ∝ xα−1e−βx (A2.28b)

We can parameterize a gamma in terms of its mean and variance by noting that

µx =
α

β
, σ2

x =
α

β2
(A2.28c)

Γ(α), the gamma function evaluated at α (which normalized the gamma distribution) is
defined as

Γ(α) =
∫ ∞

0

yα−1e−ydy (A2.29a)

The gamma function is the generalization of the factorial function (n!) to all positive numbers,
and (as integration by parts will show) satisfies the following identities

Γ(α) = (1− α)Γ(1− α), Γ(1) = 1, Γ(1/2) =
√

π (A2.29b)

The χ2 distribution is a special case of the gamma, as a χ2 with n degrees of freedom is
a gamma-distributed α = n/2, β = 1/2, i.e., χ2

n ∼ Gamma(n/2, 1/2), giving the density
function as

p(x |n) =
2−n/2

Γ(n/2)
xn/2−1e−x/2 (A2.30a)

Hence for a χ2
n,

p(x) ∝ xn/2−1e−x/2 (A2.30b)

The inverse gamma distribution will prove useful as a conjugate prior for Gaussian
likelihoods with unknown variance. It is defined by the distribution of y = 1/x where
x ∼ Gamma(α, β). The resulting density function, mean, and variance become

p(x |α, β) =
βα

Γ(α)
x−(α+1)e−β/x for α, β, x > 0 (A2.31a)

µx =
β

α− 1
, σ2

x =
β2

(α− 1)2(α− 2)
(A2.31b)

Note for the inverse gamma that

p(x |α, β) ∝ x−(α+1)e−β/x (A2.31c)
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If x ∼ χ2
n, then y = 1/x follows an inverse chi-square distribution, and denote this by

y ∼ χ−2
n . This is a special case of the inverse gamma, with (as for a normal χ2) α = n/2,

β = 1/2. The resulting density function is

p(x |n) =
2−n/2

Γ(n/2)
x−(n/2+1)e−1/(2x) (A2.32a)

with mean and variance

µx =
1

n− 2
, σ2

x =
2

(n− 2)2(n− 4)
(A2.32b)

The scaled inverse chi-square distribution is more typically used, where

p(x |n) ∝ x−(n/2+1)e−σ2
0/(2x) (A2.33a)

so that the 1/(2x) term in the exponential is replaced by an σ2
0/(2x) term. If x follows this

distribution, then σ2
0 · x follows a standard χ−2 distribution. The scaled-inverse chi-square

distribution thus involves two parameters, σ2
0 and n and it is denoted by SI−χ2(n, σ2

0) or
χ−2

(n,σ2
0)

. Note that if

x ∼ χ−2
(n,σ2

0)
then σ2

0 x ∼ χ−2
n (A2.33b)

Table A2.1. Summary of the functional forms of various gamma-related distribution discussed above.

Distribution p(x)/constant

Gamma (α, β) xα−1 exp(−βx)
χ2

n xn/2−1 exp(−x/2)
Inverse-Gamma (α, β) x−(α+1) exp(−β/x)
Inverse-χ2

n x−(n/2+1) exp[−1/(2x)]
Scaled Inverse-χ2

n,S x−(n/2+1) exp[−S/(2x)]

Unknown Variance: Scaled Inverse-χ2 Priors

Now suppose the data are drawn from a normal with known mean µ, but unknown variance
σ2. The resulting likelihood function becomes

`(σ2 |x, µ) ∝ (σ2)−n/2 · exp
(
−nS2

2σ2

)
(A2.34a)

where

S2 =
1
n

n∑
i=1

(xi − µ)2 (A2.34b)

Notice that since we condition on x and µ (i.e., their values are known), the S2 is a constant.
Further observe that, as a function of the unknown variance σ2, the likelihood is proportional
to a scaled inverse-χ2 distribution (compare to Equation A2.33a). Thus, taking the prior for
the unknown variance also as a scaled inverse χ2 with hyperparameters ν0 and σ2

0 , the
posterior becomes

p(σ2 |x, µ) ∝ (σ2)−n/2 exp
(
−nS2

2σ2

)
(σ2)−ν0/2−1 · exp

(
− σ2

0

2σ2

)
= (σ2)−(n+ν0)/2−1 exp

(
−nS2 + σ2

0

2σ2

)
(A2.35a)



INTRODUCTION TO BAYESIAN ANALYSIS 35

Comparison to Equation A2.33a shows that this is also a scaled inverse χ2 distribution with
parameters νn = (n + ν0) and σ2

n = (nS2 + σ2
0), so that

σ2
n σ2 | (x, µ) ∼ χ−2

νn
(A2.35b)

General Case: Unknown Mean and Variance

Putting all these pieces together, the posterior density for draws from a normal with unknown
mean and variance is obtained as follows. First, write the joint prior by conditioning on the
variance,

p(µ, σ2) = p(µ |σ2) · p(σ2) (A2.36a)

As above, assume a scaled inverse chi-square distribution for the variance and, conditioned
on the variance, normal prior for the mean with hyperparameters µ0 and σ2/κ0. We write
the variance for the conditional mean prior this way because σ2 is known (as we condition
on it) and we scale this by the hyperparameter κ0. Hence, we assume

σ2 ∼ χ−2( ν0, σ
2
0), (µ |σ2) ∼ N

(
µ0,

σ2

κO

)
(A2.36b)

The resulting posterior marginals become

σ2 |x ∼ χ−2( νn, σ2
n), and µ |x ∼ tνn

(
µn,

σ2
n

κn

)
(A2.37)

where
νn = ν0 + n, κn = κ0 + n (A2.38a)

µn = µ0
κ0

κn
+ x

n

κn
= µ0

κ0

κ0 + n
+ x

n

κ0 + n
(A2.38b)

σ2
n =

1
νn

(
ν0σ

2
0 +

n∑
i=1

( xi − x )2 +
κ0n

κn
( x− µ0)

2

)
(A2.38c)

tn(µ, σ2) denotes a a t-distribution with n degrees of freedom, mean µ and scale parameter
σ2.

CONJUGATE PRIORS

The use of a prior density that conjugates the likelihood allows for analytic expressions of
the posterior density. As we will see in Appendix 3, the use of conjugate priors is critical in
developing a Gibbs sampler for our problem of interest. Table A2.2 summarizes the conjugate
priors for several common likelihood functions.

Table A2.2. Conjugate priors for common likelihood functions. If one uses the distribution family of
the conjugate prior with its paired likelihood function, the resulting posterior is in the same distribution
family (albeit, of course, with different parameters) as the prior.

Likelihood Conjugate prior

Binomial Beta
Multinomial Dirichlet
Poisson Gamma
Normal
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µ unknown, σ2 known Normal
µ known, σ2 unknown Inverse Chi-Square

Multivariate Normal
µ unknown, V known Multivariate Normal
µ known, V unknown Inverse Wishart

We first review some of the additional distributions introduced in Table A2.2 and then
conclude by discussing conjugate priors for members of the exponential family of distribu-
tions.

The Beta and Dirichlet Distributions

When we have frequency data, such as for data drawn from a binomial or muiltinomial
likelihood, the Dirichlet distribution is an appropriate prior. We denote that a random
variable x follows such a distribution by writing x ∼ Dirichlet(α1, · · · , αk). The resulting
probability density is

p(x1, · · ·xk) =
Γ(α0)

Γ(α1) · · ·Γ(αk)
xα1−1

1 · · ·xαk−1
k (A2.39a)

where

α0 =
k∑

i=1

αi, 0 ≤ xi < 1,
k∑

i=1

xi = 1, αi > 0 (A2.39b)

where

µxi
=

αi

α0
, σ2(xi) =

αi(α0 − αi)
α2

0(α0 + 1)
, σ2(xi, xj) = − αi αj

α2
0(α0 + 1)

(A2.39c)

An important special case of the Dirichlet (for k = 2 classes) is the Beta distribution,

p(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1, α, β > 0 (A2.40)

Wishart and Inverse Wishart Distributions

The Wishart distribution can be thought of as the multivariate extension of the χ2 distri-
bution. In particular, if x1, · · · ,xn are independent and identically distributed with xi ∼
MVNk(0,V) – that is, each is drawn from a k-dimensional multivariate normal with mean
vector zero and variance-covariance matrix V, then the random (k × k symmetric, positive
definite) matrix

W =
n∑

i=1

xi xT
i ∼ Wn(V) (A2.41)

Hence, the sum follows a Wishart with n degrees of freedom and parameter V. Recalling
that the sum of n squared unit normals follows a χ2

n distribution, the Wishart is the natural
extension to the multivariate normal. Indeed, for k = 1 with V = (1), the Wishart is just a χ2

n

distribution. The Wishart distribution is the sampling distribution for covariance matrices
(just like the χ2 is associated with the distribution of a sample variance). The probability
density function for a Wishart is given by

p(W) = 2−nk/2π−k(k−1)/k |V |−n/2 |W |(n+k+1)/2 exp
(
− 1

2 tr
[
V−1W

])∏k
i=1 Γ

(
n+1−i

2

) (A2.42)
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Where the trace of a matrix is just the sum of its diagonal elements, e.g., tr(A) =
∑

Aii. If Z ∼
Wn(V), then Z−1 ∼ W−1

n

(
V−1

)
, where W−1 denotes the Inverse-Wishart distribution.

Odell and Feiveson (1966) present an algorithm to obtain generate random draws from the
Wishart.

The density function for an Inverse-Wishart distributed random matrix W is

p(W) = 2−nk/2π−k(k−1)/k |V |n/2 |W |−(n+k+1)/2 exp
(
− 1

2 tr
[
VW−1

])∏k
i=1 Γ

(
n+1−i

2

) (A2.43)

Thus, the Inverse-Wishart distribution is the distribution of the inverse of the sample covari-
ance matrix.

Conjugate Priors for the Exponential Family of Distributions

Many common distributions (normal, gamma, Poisson, binomial,, etc.) are members of the
exponential family, whose general form is given by Equation A2.44a. Note that this should
not be confused with the simple exponential distribution, which is just one particular member
from this family. When the likelihood is in the form of an exponential family, a conjugate
prior (also a member of the exponential family of distributions) can be found.

Suppose the likelihood for a single observation (out of n) is in the form of an exponential
family,

`(yi | θ) = g(θ)h(y) exp

 m∑
j=1

φj(θ) tj(yi)

 (A2.44a)

Using the prior

p(θ) ∝ [ g(θ) ]b exp

 m∑
j=1

φj(θ) aj

 (A2.44b)

yields the posterior density

p(θ | y) ∝
[

n∏
i=1

`(yi | θ)
]

p(θ)

=∝ [ g(θ) ]b+n exp

 m∑
j=1

φj(θ) dj(y)

 (A2.45a)

where

dj = aj +
n∑

i=1

tj(yi) (A2.45b)

Thus Equation A2.44b is the conjugate prior density for the likelihood given by Equation
A2.44a, with the posterior having the same form as the prior, with n + b (in the posterior)
replacing b and dj replacing aj .
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