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Overview

• Changes in G from disequilibrium
(generalized Bulmer Equation)

• Fragility of covariances to allele frequency
change

• Resource-partitioning models and genetic
correlations

• Long-term directional selection: drift

• Long-term directional selection: mutation

• Long-term quadratic (stabilizing) selection



Infinitesimal Model:  Changes in G

from linkage disequilibrium

The “Bulmer effect” --- changes in variances

from LD produced by selection also applies to

covariances

Hence, G(t) = G(0) + D(t), where D is a matrix

of all pairwise disequilibrium contributions

Dynamics of D as with univariate case:  half

the value removed by recombination (unlinked)



If dt is the current LD and dt*  is the LD

generated by selection of the parents, then

the LD in offspring changes by

The LD generated by selection is just Gt* -Gt,

where G* is the G matrix after selection

(but before reproduction)



Where phenotypes and breeding values are

multivariate-normally distributed, then the

within-generation change in G is a function

of the within-generation change in P,

Putting these together gives the multivariate

version of the Bulmer equation (due to Tallias) as



Effects of types on selection on changes in G



Change in the genetic variance

Any change in the mean reduces the variance

Note that the can be no direct selection on i (!i = 0), but 

if we have a response, get reduction in variance

Now consider changes in covariances

Directional selection in same direction = reduction

in covariance
Directional selection in different directions = increase

in covariance

Sign of "ij determines effect of quadratic selection

on covariance



Asymmetric responses can occur

This is no longer true under the  infinitesimal model, as

the covariances change and which trait (1 or 2) is

selected differentially changes the covariance.

Under the standard breeder’s equation, the correlated 

response is  CR1 = S2 h2 h1 rA, so CR1 = CR2 , so long as S1 = S2

When disequilibrium-driven selection asymmetries occur,  the 

correlated response will be smaller when selecting on the trait with 

the higher heritability, as this produces the largest reduction of the

genetic covariance. 



Changes in G under Gaussian fitness functions

A very common fitness function is the Gaussian

If phenotypes and BVs are multivariate normal

before selection, they remain so afterwards

The Bulmer equation has a simple form when

using this fitness function,



Allele frequency change

Two sources generating genetic covariances

Linkage disequilibrium: alleles with effects on only

single traits can become associated, creating a

covariance

Pleiotropy: an allele influences two (or more) traits

Changes in G from linkage are transient, as the association

decays away once selection stops

Changes in G from pleiotropy are permanent, as the allele

frequencies do not change once selection stops



Changes in covariance when allele frequency

change occurs

Recall that the heritability provides very little

information as to how the variance changes

when allele frequencies change

Genetic covariances are more fragile than

genetic variances

Smaller allele frequency change can have larger

effects than changes on variance

Hidden pleiotropy:  Lots of pleiotropic alleles present

but there effects cancel, so no net covariance.



complementary pleiotropy:  ++ or --

antagonistic   pleiotropy:  +- or -+

Hidden Pleiotropy:  roughly equal numbers of each, no NET

genetic correlation

In this case, allele frequency change can produce either

a positive or negative genetic correlation

Thus, a pair of traits with no initial genetic correlation

could, in the extreme, either  consist of all no pleiotropic

alleles or all pleiotropic alleles.  Very different outcomes

result from these two states



Models of covariance changes under 

allele frequency change

Hazel, Lush, and Lerner proposed that selection to move two

traits in the same direction increases the relative frequency of

antagonistic  pleiotropic alleles, making genetic covariances more

negative as selection proceeds.

++ and -- alleles are quickly lost (or fixed) by selection, while -+ and +-

alleles experience less selective pressure, and therefore experience

slower allele frequency change

Some experimental support for this: 

Friars et al. 1962:  Genetic correlations measured from 1949 to 1957 in a series

of  chicken  lines for   production traits.   16 of the 18 correlations showed

a negative trend



Classic paper of Bohren,  Hill,   Robertson (1966)

Genetic Covariances are More Fragile Than Genetic Variances

Confirmed the general suggestion by Hazel et al than eventually genetic 

covariances generally become more negative.  However, depending on  

the distribution of allele frequencies and effects,that the genetic 

covariance may actually increase in the first few generations

Theoretical results and simulations showed covariances

change more quickly, and more erratically, than variances.



Several workers suggested that alleles having antagonistic pleiotropic 

effects on different life-history fitness components (such as reducing

fecundity while increasing life span) might be maintained in the population

Can Antagonistic Pleiotropy Maintain Variation?

Same logic, but different outcome from Hazel et al suggestion, 

which was that such alleles would have longer persistance times,

but did not cover if they would be maintained by selection

Curtsinger et al. Model for this:



Range of parameters allowing for polymorphism is 

quite narrow, esp. for weak selection.

As detailed in the notes, this model likely overestimates

the chance of maintaining polymorphisms.



Nature of Pleiotropic covariances
What makes a pleiotropic effect antagonistic vs.

complementary? 

Resource-partitioning models offer some insight

Alleles contributing to the

acquisition of the common

resource R are complementary

Alleles contributing to the

allocation of this common

resource are antagonistic

Obviously, the relative frequencies of these classes of

alleles (and their variances) determine if a covariance is

positive or negative
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Key:  Tradeoffs (allocation of the common resource) do no

automatically mean negative genetic covariances!



Long term directional selection response:  Drift

The simplest model to accommodate allele frequency

changes is the infinitesimal with drift.  When

all genetic variance is additive, the expected

value of G has a simple form:

Hence, the expected cumulative response after t

generations is just



If we assume a constant

amount of directional

selection each generation,

the cumulative

response simplifies to

The expected total response from the genetic

variation initially present thus becomes

This is the multivariate form of Robertson’s

limit:  total response is 2Ne * initial response

Tradeoff:  as stronger selection gives initially larger

response but smaller Ne, and hence smaller total response



Long term directional selection response: 

drift and new mutation

Keeping within the infinitesimal framework,

now lets consider the joint effects of

drift removing variation, mutation adding it.

If M denotes the matrix of mutational input, then

the mutation-drift equilibrium is

The G matrix at time t thus becomes



Putting these together, the cumulative response by

generation t becomes

We can decompose this two ways.  First, the

asymptotic response plus the response from the residual 

component due to the initial variation



Alternatively, we can decompose the total response

into the response from the original variation and

the response from new mutation,

For any particular trait, the ratio of component 2 to

the total response is the fraction of response due

to new mutation (variation not present at the start

of selection).



Long term response:  Balance  between directional and

stabilizing selection (infinitesimal model results)

One class of models for a selection limit is the

balance between directional (which could be artificial)

and stabilizing selection. 

Zeng looked at this problem using a generalized

Gaussian fitness function

The matrix W describes the nature of quadratic 

(stabilizing) selection, while the difference between
the population mean  µ and the optimal value  # describes 

the directional selection component



Under this model, the within-generation change in

the vector of means and the phenotypic covariance

matrix are

Previous results describe the change in G, while

the change in mean is

Zeng’s key observation was that when the change in

mean equals zero, the solution is independent of

the genetic covariance structure G



Long term response:  Critically depend

on the distribution of allelic effects

The infinitesimal-based models avoid the need to 

consider the messy genetic details.  In reality, they

are important.

Model for artificial selection:  The traits of interest

were in a mutation-(natural) selection balance, and this

the variation that forms the foundation for the initial 

response.

Two general classes of approximations used in

mutation-selection models:  Gaussian genetic models

and House-of-cards (HOC) models



Gaussian genetic model

Effects of selection relative to mutation are weak,

many alleles at a locus, distribution of effects

roughly normal.

House-of-Cards  model

Effects of selection relative to mutation are strong,

few alleles at a locus, most rare.  Highly leptokurtic

distribution of allele frequencies, with  rare alleles having

significant effects 



Which model is assumed makes a major difference

for long-term response, as simulations by Reeve

showed:



Long term response:  Balance  between

directional and stabilizing selection

(finite-locus model results)

Baatz and Wagner considered a two-trait model with

directional selection on one trait and stabilizing on the

other.

Key result:  If pleiotropic alleles are present, they can have a

significant impact on the dynamics of the change in mean, even

if there is no genetic covariance between traits.

The change in mean turns out to be a function of $(g1,g2
2),

which can be nonzero, even when there is no correlation among

breeding values, $(g1,g2), =0. This can easily happen with

hidden pleiotropy.

Consider a favorable rare allele that increases trait 1 and also

have an impact on trait 2 (positively or negatively)



As directional selection tries to drive this allele to a higher

frequency, it also increases the variance at trait 2, increasing the

strength of selection against in.  In the extreme, this later

selection an be sufficiently strong as to stop directional  selection

Baatz and Wagner call this the Pooh effect, after

Winnie the Pooh eating to much honey and getting

stuck in rabbit’s house





Long term response:  Stabilizing selection

Mutation-selection balance

Much work has been done on mutation-selection

balance problems with stabilizing selection on a

trait (or traits) removing selection while mutation

introduces it.

Problem:  The models don’t work:  Selection in the 

wild is too strong to account for the high levels

of genetic variation seen

Classic analysis:  Kimura-Lande model assuming

Gaussian distribution of allelic effects at each locus



Under gaussian stabilizing selection, we have

The equilibrium G matrix is the sum over all loci,

If there is no net pleiotropy, we have



Common orientation of " and G??

Are the axes of G and the quadratic fitness surface 

similar?  i.e., can G evolve to have axes similar to "?

Hunt et al. (Example 31.5).  Male call components in

the cricket Teleogryllus commodus



Model Assumptions, Genetic Correlations, 

and Hidden Pleiotropy


