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Change in the mean vector:
The Directional Selection Differential S

The multivariate extension of S is to consider the
vector

S = µ* - µ

Hence, this is simply the vector of univariate directional
Selection differentials

The i-th differential is bounded by I, the opportunity
of selection, 

|Si|
σzi

≤
√

I

Since Si is the i-th selection differential, the Robertson-
Price identity holds for each element, with Si = !(w,zi)



The observed change in a mean, Si (the directional selection
differential) gives a very misleading picture as to which traits are
under direct selection.  Direct selection on phenotypically-
correlated traits also changes the mean (within a generation).





The Directional Selection Gradient
The directional selection differential S gives a very
misleading picture as to the nature of selection.
The directional selection gradient, ", resolves this issue.  Let S be
the vector of selection differentials and P the phenotypic variance-
covariance matrix.   Since S is a vector of covariances, it
immediately follows that the vector of partial regressions for the
traits on relative fitness is given by

P−1 σ(z, w) = P−1 S= β

Thus the partial regression of relative fitness on trait
value is given by

w(z) = 1 +
n∑

j=1

βjzj = 1 + βTz

Vector of covariances
between w and zi



Since we can write S = P",

Si =
n∑

j=1

βj Pij = βi Pii +
n∑

j "=i

βj Pij

Direction selection on
trait i, "i non-zero

Direct selection ("j non-zero)
on traits phenotypically

correlated with trait i (Pij non-zero)

"i gives the change in relative fitness, holding all
other measured traits constant, when we increase
trait i by one unit.



" is a gradient vector on the mean
fitness surface

Recall from vector calculus that the gradient operator
is given by

∇xf(x) =





∂f/∂x1

∂f/∂x2

...
∂f/∂xn





β = ∇µ[ ln W (µ) ] = W
−1·∇µ[W (µ) ]

 " is the gradient (wrt the population mean) of the
mean fitness surface,



" is a gradient vector on the mean
fitness surface

β = ∇µ[ ln W (µ) ] = W
−1·∇µ[W (µ) ]

Hence, " gives the direction the current mean should
change in to maximize the local change in mean fitness 

" is also the average gradient of the individual fitness
surface over the phenotypic distribution,

β =
∫
∇z[ w(z) ]φ(z) dz



Changes in the Covariance Matrix:
The Quadratic Selection Differential C

When considering a vector of n traits, we follow
the change in n means, and n(n-1)/2 variances and
covariances. 

By analogy with the univariate version of C, for n
traits C is now an n x n matrix, with ij-th element

Cij = σ[ w, (zi − µzi)(zj − µzj ) ]

Lande and Arnold (1983) showed that such a C is given by 

C = σ[w, (z−µ)(z−µ)T ] = P#−P+SST

Phenotypic covariance matrix after selection



As was true in the univariate case, directional
selection alters the variances and covariances.
suppose the covariance between quadratic
deviations and fitness are zero.  In this case,

P*ij - Pij = -SiSj

The variance of a trait is reduced by directional
selection. 

The change in the covariance depends on the direction
of directional selection on both traits. 

If both traits are selected in the same direction,
their phenotypic covariance is reduced

If both traits are selected in opposite directions,
their phenotypic covariance is increased



The opportunity for selection I bounds the
possible change in Cij.  Assuming multivariate
normality, ∣∣∣Cij

Pij

∣∣∣ ≤
√

I
√

1 + ρ−2
ij

Phenotypic correlation
between i and j

Now consider the multivariate quadratic regression
predicting relative fitness from our vector of n
trait values, 

w = a+
n∑

j=1

bj zj+
1
2

n∑

j=1

n∑

k=1

dij zizj+e

We can more compactly write this in matrix notation
as  w = a + bTz + (1/2)zTDz + e



The matrix of the best-fitting quadratic coefficients
 in this regression is given by $, where the n x n matrix $
is the multivariate version of the quadratic selection
gradient,

γ = P−1 σ[w, (z−µ)(z−µ)T ]P−1 = P−1 CP−1

Which also follows from regression theory 
Here, $ij measures the direct selection on the combination
of i and j

• $ii < 0.  Convex selection on trait i.  Selection to decrease variance  

• $ii > 0.  Concave selection on trait i. Selection to increase variance  

• $ij > 0.   Correlational selection on traits i & j to increase their

               correlation.

• $ij < 0.   Correlational selection on traits i & j to decrease their

               correlation.



While it has been very popular to infer the nature
of quadratic selection directly from the individual
$ij values, as we will shortly see, this can be very
misleading!

Finally, note that we can write C = P$P, or 

Thus, as was the case for directional differentials,
the quadratic differential is caused by direct
selection on a trait plus any selection on all 
phenotypically correlated traits.

Cij =
n∑

k=1

n∑

!=1

γk! Pik P!j



An example of the fitness surface
from a quadratic regression. 

Brodie (1992) examined two
anti-predator traits in garter
snakes.  Stripe index (pattern) and
number of reversals when moving

Hence, apparent strong selection 
for negative covariances between 
these traits.  

None of the "i or $ii were
significant, but $ij = -0.268 + 0.097  



The multivariate Lande-Arnold regression

Provided the distribution of phenotypes is MVN, 

 w = 1 + "Tz + (1/2)zT$z + e 

If phenotypes are not MVN, can still estimate the
matrix $ (the quadratic selection graident) from the 
quadratic regression.  

However, the vector of regression coefficients for
the linear terms is NOT the selection gradient ".

In such cases, " is estimated from a separate linear
regression, 

 w = 1 + "Tz + e 



$ and the geometry of individual and 
mean fitness surfaces 

When phenotypes are MVN, $ is the average
curvature over the individual fitness surface, 

γ =
∫

Hz[W(z) ]φ(z)dz

Phenotypic distribution
of the vector z

Hessian matrix of the individual
fitness surface.  Hij(F) = % F / % zi%zj



$ and the geometry of individual and 
mean fitness surfaces 

Under MVN, $ also describes the mean fitness surface, 

∂ ln W (µ)
∂µi ∂µj

= γij−βiβjHµ[ ln W (µ) ] = γ−ββT

Curvature of the mean fitness surface around the means
of i and j depends on the curvature and the product of
gradients



Within-generation changes in genetic
covariance matrix G as a function of $

G# −G = GP−1 (P# −P)P−1G

= G(γ− ββT )G

= −RRT + GγG

G*
ij−Gij = −Ri Rj+

n∑

k=1

n∑

!=1

γk! Gik G!j



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Differentials measure the covariance between
relative fitness and phenotypic value

Si = !(w, zi)

Cij = ![ w, (zi - µ) (zj - µ) ]



Changes in means (Directional Selection)

The Opportunity for Selection Bounds
the Differential 

√
Cij

Pij
≤
√

I 1 + ρ−2
ij

| |

|Si|
σ (zi)

≤
√

I

MVN
assumption

No distributional
assumptions



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Differentials Confound Direct and Indirect Selection

Cij =
n∑

k=1

n∑

!=1

γk! Pik P!j

Si =
n∑

j=1

βj PijS = P"

C  = P* - P + SST

    = P$P



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Gradients measure the amount of Direct Selection
(remove confounding effects of phenotypic correlations)

 " = P-1 S

 $ = P-1 C P-1 

   = P-1 (P* - P + SST) P-1 



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Gradients describe the slope and curvature of the mean
Population surface 

(when z ~ MVN & frequency-independent fitnesses)

βi =
∂ ln W (µ)

∂µi

γij =
∂2 ln W (µ)

∂µi ∂µj
+ βiβj



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Gradients describe the average slope and average curvature
of the individual fitness surface (when z ~ MVN)

γij =
∫

∂2 w(z)
∂zi ∂zj

φ(z) dz

βi =
∫

∂ w(z)
∂zi

φ(z) dz



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Gradients Appear as Coefficients 
in Fitness regressions

 w = 1 + " zT + e

 w = 1 + bTz + (1/2)zT $z + e

 b = " when z ~ MVN



Changes in means (Directional Selection)

Changes in covariance (Quadratic Selection)

Gradients Appear as coefficients in  evolutionary
Equations (when (z,g) ~ MVN)

R = G"

G* - G = G($ - " "T)G 



Multidimensional Quadratic Regressions
We wish to explore the geometry of an n- dimensional quadratic
regression a bit more carefully.

w(z) = 1 +
n∑

i=1

b1zi +
1
2

n∑

i=1

n∑

j=1

γij zizj

= 1 + bT z +
1
2

zT γ z

The gradient is ∇z[w(z) ] = b + γ z
Solving for grad = 0 gives the unique stationary point zo

wo = 1 +
1
2

bTz0zo = −γ−1b



Digression:  
Orthonormal and Diagonalized Matrices

In order to fully explore the geometry implied by
$, we need some additional matrix machinery.

As mentioned, matrix transformation involve
rotation and scaling, and we can partition a square
matrix into these two operations using orthonormal
matrices, matrices whose columns are independent
and of unit length (i.e., columns are orthonormal) 

Column vectors ui and uj are orthonormal if
ui

Tuj = 0  for i = j, while ui
Tui = 1 



The square matrix U = (u1, u2 , … ,un) is orthonormal
provided all of the columns are. Such a matrix is also
called a unitary matrix.

Orthonormal matrices satisfy

UTU = UUT = I i.e, U-1 = UT

Orthonormal matrices introduce rigid rotations.

The angle between vectors x and y is the same
as the angle between Ux and Uy (for all x and y) 

A symmetric matrix A can be diagonalized as

A = U &UT



A = U &UT

Orthonormal matrices (rigid rotation of the
original coordinate system)

Diagonal matrix (scaling)

Geometry of diagonalization



If ei is an eigenvector of A and 'i its associated eigenvalue,
then the diagonalization of A is given by

U = ( e1, e2, · · · , en )

& =





λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · · · · λn





With A = U & UT



Using diagonalization, it is easy to show that

A−1 = U&
−1UT

Hence, if 'i is an eigenvalue of
A, then 1/'i is an eigenvalue of A-1

Likewise, the eigenvectors of 
A and A-1  are identical.  



A1/2 = U& 1/2UT

Consider the square root matrix A1/2, where
A1/2 A1/2 = A 

'i is an eigenvalue of A, 
'i

1/2 is an eigenvalue ofA 1/2 

A and A1/2 have the 
same eigenvectors 

Also note that A-1/2 and An also have the same 
eigenvectors as A, with eigenvalues 'i

-1/2 and  'i
n 



Finally, note that

UTAU = UT (U&UT)U = (UTU) &(UTU)
          = &

The effect of using such a transformation is
to remove correlations on this new scale.



Suppose we have
a $ matrix with 
$11 = -2
$22 = -1

Looking just at these
diagonal elements of
$, we might conclude
convex selection on
both 1 and 2

However, the actual
nature of the surface
critically depends on
 $12



To resolve this issue of inferring the geometry of the
quadratic surface, we need to diagonalize $

For even two traits, visualizing the fitness surface
simply the $ij is tricky at best.

The problem is the cross-product terms $ij 

By creating the appropriate new character y
(character axes that are linear index of the current
character values), we can remove all of the cross-
product terms.  In effect, there is no correlational
selection among the yi, only convex, concave, or no
quadratic selection

This new vector of characters is given by y = UTz,
where U is the matrix of eigenvectors of $.



w(z) = a + bTUy +
1
2

(Uy)Tγ(Uy)

= a + TUy +
1
2

yT
(
UT γU

)
y

= a + bTUy +
1
2

yT & y

= a +
n∑

i=1

µi yi +
1
2

n∑

i=1

λi y2
i

( )

Substituting y = UTz, or z = Uy into the Lande-Arnold
regression w = a + bTz + (1/2)zT$z gives

This is often called the A canonical form of the quadratic surface
(Box & Draper 1987)

 yi = ei
Tz

µi = bTei
.  

if z~MVN, 
µi = "Tei

Eigenvalue of $ corresponding

to eigenvector ei

The fitness change along axis ei is µiyi + ('/2) yi
2 



B canonical form (Box & Draper 1987)

If $ is nonsingular, then a stationary point zo exists, the
transformation y = UT(z- zo) removes all linear terms, leading to
the so-called B canonical form

n

i=1

1 1 ∑
w(z) = wo +

2
yT & y = wo +

2
λi y2

i

Fitness at the 
equilibrium point zo

yi = ei
T (z- zo) 

Eigenvalue of $

The B canonical form shifts the origin to the stationary point.
Since the effect on w(z) from bTz is a hyperplane (tilting the
whole fitness surface), the B canonical form “levels” the fitness
surface, focusing entirely on its curvature (quadratic) features. 



B canonical form (Box & Draper 1987)

w(z) = wo +
1
2

yT & y = wo +
1
2

n∑

i=1

λi y2
i

• 'i > 0:  concave selection to increase the variance in yi

• 'i < 0:  convex selection to decrease the variance in yi

• 'i = 0:  no quadratic selection along the axes given by yi



Strength of selection:  $ii vs. '
Blows and Brooks (2003) stress that the eigenvalues of $, not the
diagonal elements, provide a much more accurate description of the
strength of selection

In an analysis of 19 studies, they note that | $ii |max < |'|max

Example: Brooks & Endler (2001) examined four color traits in
guppies associated with sexual selection.  The estimated $ matrix was


− −

γ =




0.016 −0.016 −0.028 0.103
−0.016 0.00003 0.066 −0.131
−0.028 0.066 −0.011 −0.099

0.103 0.131 0.099 0.030





Weak concave selection
Weak convex selection

Eigenvalues were 0.132, 0.006, -0.038, -0.064

Strong evidence of concave selection



Subspaces of $

Blows & Brooks (2003)  note that there are several
advantages to focusing on estimation of the 'i vs.
the entire matrix of $ij.

First, there are n eigenvalues vs. n(n-1) elements of $.

Further, many of the eigenvalues are likely close to 0,
so that a subspace of $ (much like a subspace of G)
describes most of the variation.

Blow & Brooks suggest obtaining the eigenvalues of $,
and using these to generate transformed variables
y = UTz for those eigenvalues accounting for most
of the variation.



Note that the quadratic terms in the transformed
regression on the y correspond to the eigenvalues,
and hence GLM machinery can estimate their
standard errors and confidence intervals.

Finally, Blows et al. (2004) suggest that one should
consider the projection of $ into G, just like we
examined the projection of " into subspaces of G.

Here we are projecting a matrix instead of a vector,
but the basic ideal holds.

First, construct a matrix B formed by a subset of $,
namely the eigenvectors corresponding to k (< n/2)
leading eigenvalues, B =(e1, …, ek)

Form a similar matrix with k eigenvectors of G



S = ATBBTA

Using results of Krzanowski (1979), the $ and G 
subspaces can be compared by the matrix
 

The eigenvalues of S describe the angles between
the orthogonal axes of the matrices A and B

Specifically, the smallest angle is given by cos-1('1
1/2 ),

where  '1 is the leading eigenvalue of S.



Path Analysis models



Contextual Analysis: Incorporating levels of selection


