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Key idea:  Looking for marker-trait
associations in collections of relatives 

If (say) the mean trait value for marker
genotype MM is statisically different
from that for genotype mm, then the M/m
marker is linked to a QTL 

One can use a random collection of such
markers spanning a genome (a genomic
scan) to search for QTLs 



Experimental Design:
Crosses

P1  x  P2

F1F1 x F1

F2

F2 design

F1
B1

Backcross design

B2F1
Backcross design

Fk

F2

F1

Advanced intercross
Design (AIC, AICk)

RILs = Recombinant
inbred lines (selfed F1s)



Experimental Designs:
Marker Analysis

Single marker analysis

Flanking marker analysis (interval mapping)

Composite interval mapping

Interval mapping plus additional markers

Multipoint mapping

Uses all markers on a chromosome simultaneously



Conditional Probabilities of
QTL Genotypes

The basic building block for all QTL methods is
Pr(Qk | Mj) --- the probability of QTL genotype
Qk given the marker genotype is Mj. 

Pr(Qk |Mj) =
Pr(QkMj)
Pr(Mj)

Consider a QTL linked to a marker (recombination
Fraction = c).  Cross MMQQ x mmqq.  In the F1, all
gametes are MQ and mq

In the F2, freq(MQ) = freq(mq) = (1-c)/2,
                freq(mQ) = freq(Mq) = c/2



 Hence, Pr(MMQQ) = Pr(MQ)Pr(MQ) = (1-c)2/4

Pr(MMQq) = 2Pr(MQ)Pr(Mq) = 2c(1-c) /4

Why the 2?  MQ from father, Mq from mother, OR
  MQ from mother, Mq from father

Since Pr(MM) = 1/4, the conditional probabilities become

Pr(MMqq) = Pr(Mq)Pr(Mq) = c2 /4

Pr(QQ | MM) = Pr(MMQQ)/Pr(MM) = (1-c)2 

Pr(Qq | MM) = Pr(MMQq)/Pr(MM) = 2c(1-c) 

Pr(qq | MM) = Pr(MMqq)/Pr(MM) =  c2

How do we use these?



Expected Marker Means

µMj
=

N∑

k=1

µQk
Pr(Qk |Mj )

The expected trait mean for marker genotype Mj

is just

For example, if QQ = 2a, Qq = a(1+k), qq = 0, then in 
the F2 of an MMQQ/mmqq cross,

(µMM − µmm)/2 = a(1− 2c)
• If the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

• A small MM-mm difference could be (i) a tightly-linked
  QTL of small effect or (ii) loose linkage to a large QTL



2 Marker loci
Suppose the cross is M1M1QQM2M2 x m1m1qqm2m2 

M1 Q M2

Genetic map c1 c2

c12

No interference:  c12 = c1 + c2 - 2c1c2

Complete interference:  c12 = c1 + c2  

In F2, Pr(M1QM2) = (1-c1)(1-c2) 

Pr(M1Qm2) = (1-c1) c2      Pr(m1QM2) = (1-c1) c2

Likewise, Pr(M1M2) = 1-c12 = 1- c1 + c2 



Pr(QQ |M1M1M2M2) =
(1− c1)2(1− c2)2

(1− c12)2

Pr(Qq |M1M1M2M2) =
2c1c2(1− c1)(1 − c2)

(1− c12)2

Pr(qq |M1M1M2M2) =
c2
1 c22

(1− c12)2

A little bookkeeping gives

−"

µM1M1M2M2 − µm1m1m2m2

2
= a

(
1− c1 − c2

1− c1 − c2 + 2c1 c2

)

a (1 2c1 c2)

 
-

This is essentially a for
even modest linkage



)(
c1 =

1
2

1− µM1M1 −µm1m1

2a

" 1
2

(
1− µM1M1 − µm1m1

µM1M1M2M2 − µm1m1m2m2

)

Hence, a and c can be estimated from the mean values of
flanking marker genotypes



Linear Models for QTL Detection

The use of differences in the mean trait value
for different marker genotypes to detect a QTL 
and estimate its effects is a use of linear models.

zik = µ + bi + eik

One-way ANOVA.

Value of trait in kth
individual of marker

genotype type i

Effect of marker
genotype i on trait

value



Detection:  a  QTL is linked to the marker if at least 
one of the bi is significantly different from zero

Estimation: (QTL effect and position):  This requires
relating the bi to the QTL effects and map position 

zik = µ + bi + eik



z = µ + ai + bk + dik + e

Detecting epistasis
One major advantage of linear models is their
flexibility.  To test for epistasis between two QTLs,
used an ANOVA with an interaction term

Effect from marker genotype 
at first marker set (can be > 1 loci)

Effect from marker genotype
 at second marker set  

Interaction between marker genotypes i in 1st
marker set and k in 2nd marker set



z = µ + ai + bk + dik + e

Detecting epistasis

• At least one of the ai significantly different from 0
 ---- QTL linked to first marker set

• At least one of the  bk significantly different from 0
 ---- QTL linked to second marker set

• At least one of the  dik significantly different from 0
 ---- interactions between QTL in sets 1 and two

Problem:  Huge number of potential interaction terms
(order m2, where m = number of markers)



Maximum Likelihood Methods

ML methods use the entire distribution of the data, not
just the marker genotype means.

More powerful that linear models, but not as flexible
in extending solutions (new analysis required for each model)

!(z | Mj ) =
N∑

k=1

ϕ(z, µQk ,σ2) Pr(Qk | Mj )

Basic likelihood function:

Trait value given
marker genotype is

type j

This is a mixture model



Maximum Likelihood Methods

!(z | Mj ) =
N∑

k=1

ϕ(z, µQk ,σ2) Pr(Qk | Mj )

Sum over the N possible
linked QTL  genotypes

Distribution of trait value given
QTL genotype is k

is normal with mean µQk. (QTL
effects enter here)

Probability of QTL genotype
k given marker genotype

j --- genetic map and linkage
phase entire here



LR = −2 ln
max !r(z)
max !(z)

LOD(c) =− log10

[
max !r(z)
max !(z, c )

]
=

LR(c)
2 ln10

" LR(c)
4.61

ML methods combine both detection and estimation
of QTL effects/position.

Test for a linked QTL given from the LR test

Maximum of the likelihood
under a no-linked QTL

model

Maximum of the
full likelihood

The LR score is often plotted by
trying different locations for the
QTL (i.e., values of c) and computing
a LOD score for each



A typical QTL map from a likelihood analysis

Estimated QTL location

Support interval

Significance

Threshold



Interval Mapping with
Marker Cofactors

i i+1 i+2i-1

Consider interval mapping using the markers i and i+1. QTLs linked
to these markers, but outside this interval, can contribute
(falsely) to estimation of  QTL position and effect

Now suppose we also add the two markers flanking the
interval (i-1 and i+2)

Interval being mapped

     



i i+1 i+2i-1

Inclusion of markers i-1 and i+2 fully account
for any linked QTLs to the left of i-1 and the
right of i+2

Interval mapping + marker cofactors is called
Composite Interval Mapping (CIM)

CIM also (potentially) includes unlinked markers to
account for QTL on other chromosomes.

∑

k!=i,i+1

bk xkj

CIM works by adding an additional term to the
linear model ,

     



Power and Precision

While modest sample sizes are sufficient to
detect a QTL of modest effect (power), large 
sample sizes are required to map it with some 
precision

With 200-300 F2, a QTL accounting for 5% of
total variation can be mapped to a 40cM interval

Over 10,000 F2 individuals are required to map
this QTL to  a 1cM interval



Power and Repeatability:
The Beavis Effect

QTLs with low power of detection tend to have their
effects overestimated, often very dramatically  

As power of detection increases, the overestimation
of detected QTLs becomes far less serious 

This is often called the Beavis Effect, after Bill
Beavis who first noticed this in simulation studies





Model selection
• With (say) 300 markers, we have (potentially) 300

single-marker terms and 300*299/2 = 44,850
epistatic terms
– Hence, a model with up to p= 45,150 possible parameters

– 2p possible submodels = 1013,600 ouch!

• The issue of Model selection becomes very
important.

• How do we find the best model?

– Stepwise regression approaches
• Forward selection (add terms one at a time)

• Backwards selection (delete terms one at a time)

– Try all models, assess best fit

– Mixed-model approaches (SSVS)



Model Selection

Model Selection: Use some criteria to chose  among a 
number of candidate models.  Weight goodness-of-fit 
(L, value of the likelihood at the MLEs) vs.  number of 
estimated parameters (k)

AIC = Akaike’s information criterion 
AIC = 2k - 2 Ln(L)

BIC = Bayesian information criterion (Schwarz criterion)
   BIC = k*ln(n)/n - 2 Ln(L)/n
BIC penalizes free parameters more strongly than AIC

Other measures.  Smaller is better



Model averaging
Model averaging:  Generate a composite model by weighting
(averaging) the various models, using AIC, BIC, or other

Idea:  Perhaps no “best” model, but several models
all extremely close.  Better to report this “distribution”
rather than the best one

One approach is to average the coefficients on the
“best-fitting” models using some scheme to return
a composite model



Stochastic search variable selection (SSVS)

• A Bayesian approach approach to search through a
space of possible models
– Fit the model yi = µ + xi

T! + e, including ALL possible
covariates of the full model, X = (xi

T .. xn
T)

– Idea:  Assume model parameters fall into two classes:
those with values very near zero and those with larger
values

– We use the latent (unobservable) variable "i, which
determines into which class the covariate falls

–  !i   ~ (1- "i)N(0,#i
2) + "i N(0, ci

2
  #i

2)

–  #i
2 small, hence values near zero

–  ci
2

  #i
2  large, hence values can deviate substantially from

zero

– Posterior probability of ("i) is the probability that the
parameter is included in the final model



•   !i   ~ (1- "i)N(0,#i
2) + "i N(0, ci

2
  #i

2)
• While # and c can vary over covariates (model variables),

typically they are assigned the same values over all i (e.g.,
#i

2 = 0.001, ci
2

  #i
2 = 10)

• Let " be the vector of indicator random variables,
with a value of one if in the model, zero otherwise

• Given a current " vector, the conditional prior of
the ! values is MVN with mean zero and covariance
matrix D"RD"
–  Where R is the prior correlation matrix, either taken as

R = I or R = (XTX)-1

– And D is a diagonal matrix whose ith element is 1 if "i = 0
and ci if "i = 1.



• The idea is that with a current estimate of
µ, $e

2, and " in hand, we can update !, which
is drawn from a MVN distribution
– Mean = (XTX + $e

2(D"RD")
-1)-1 XT (y- µ I)

– Variance = (XTX + $e
2(D"RD")

-1)-1

• With an updated ! vector in hand, we
update the " vector

Usually, the prior on the "i is independent of i and

taken to be pi = 1/2



Supersaturated Models

A problem with many QTL approaches is that there
are far more parameters (p) to estimate than 
there are independent samples (n).
Case in point:  epistasis

Such supersaturated models arise commonly in
Genomics. How do we deal with them?

Again, an approach like SSVS, where all parameters are 
included, but some are shrunk back (regressed) towards
zero by assigning them a very small posterior variance



Shrinkage estimators
Shrinkage estimates:   Rather than adding interaction  
terms one at a time, a shrinkage method starts with all
interactions included, and then shrinks most back to zero. 

Under a Bayesian analysis, any effect is random.  One can
assume the effect for (say) interaction ij  is drawn from 
a normal with mean zero and variance $2

ij

Further, the interaction-specific variances are themselves 
random variables drawn from a hyperparameter distribution, 
such as an inverse chi-square.  

One then estimates the hyperparameters and  uses these 
to predict the variances, with effects with  small variances 
shrinking back to zero, and effects with large variances 
remaining in the model.   



Key ideas in QTL mapping

Look for marker-trait associations

• Many difference crossing designs (F2, BC, RIL)

• Many difference methods of analysis:
Linear models, MLE, Bayesian

• Most studies UNDERPOWERED, esp. for
“fine” mapping



What is a “QTL”

• A detected “QTL” in a mapping experiment
is a region of a chromosome detected by
linkage.

• Usually large (typically 10-40 cM)

• When further examined, most “large”
QTLs turn out to be a linked collection of
locations with increasingly smaller effects

• The more one localizes, the more
subregions that are found, and the smaller
their effect


