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OVERVIEW

We now turn from our review of basic statistics to a review of some of the basic concepts from
Mendelian genetics (the rules of gene transmission), population genetics (the rules of how genes
behave in populations), and quantitative genetics (the rules of transmission of complex traits, those
with both a genetic and environmental basis).

A Tale of Two Papers: Darwin vs. Mendel

The two most influential biologists in history, Darwin and Mendel, were contemporaries and yet
the initial acceptance of their ideas suffered very different fates. Darwin was concerned with the
evolution of complex traits (and hence concepts from population and quantitative genetics), while
Mendel was concerned with the transmission of traits that had a simple genetic basis (often a single
gene). Modern genetics and evolutionary theory was dependent on a successful fusion of their two
key ideas (Mendel’s that genes are discrete particles, Darwin’s of evolution by natural selection).
Against this background, its interesting to consider the initial fates of both of their original papers.

In 1859, Darwin published his Origin of Species. It was an instant classic, with the initial printing
selling out within a day of its publication. His work had an immediate impact that restructured
biology. However, Darwin’s theory of evolution by natural selection, as he originally presented
it, was not without problems. In particular, Darwin had great difficulty dealing with the issue of
inheritance. He fell back on the standard model of his day, blending inheritance. Essentially, both
parents contribute fluids to the offspring, and these fluids contain the genetic material, which is
blended to generate the new offspring. Mathematically, if z denotes the phenotypic value of an
individual, with subscripts for father (f ), mother (m) and offspring (o), then blending inheritance
implies

zo = (zm + zf )/2 (3.1a)

In 1867, in what was the first population genetics paper, the Scottish engineer Fleming Jenkin
pointed out a serious problem with blending inheritance. Consider the variation in trait value in
the offspring,

Var(zo) = Var[(zm + zf )/2] =
1
2

Var(parents) (3.1b)

Hence, under blending inheritance, half the variation is removed each generation and this must
somehow be replenished by mutation. This simple statistical observation posed a very serious
problem for Darwin, as (under blending inheritance) the genetic variation required for natural
selection to work would be exhausted very quickly.

The solution to this problem was in the literature at the time of Jenkin’s critique. In 1865,
Gregor Mendel gave two lectures (delivered in German) on February 8 and March 8, 1865, to
the Naturforschedenden Vereins (the Natural History Society) of Brünn (now Brno, in the Czech
Republic). The Society had been in existence only since 1861, and Mendel had been among its
founding members. Mendel turned these lectures into a (long) paper, ”Versuche über Pflanzen-
Hybriden” (Experiments in Plant Hybridization) published in the 1866 issue of the Verhandlungen
des naturforschenden Vereins (the Proceedings of the Natural History Society in Brünn). You can read the
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paper on-line (in English or German) at http:www.mendelweb.org/Mendel.html. Mendel’s key
idea: Genes are discrete particles passed on intact from parent to offspring.

Just over 100 copies of the journal are known to have been distributed, and one even found its
way into the library of Darwin. Darwin did not read Mendel’s paper (the pages were uncut at the
time of Darwin’s death), though he apparently did read other articles in that issue of the Verhand-
lungen. In contrast to Darwin, Mendel’s work had no impact and was completely ignored until 1900
when three botanists (Hugo DeVries, Carl Correns, and Erich von Tschermak) independently made
observations similar to Mendel and subsequently discovered his 1866 paper.

Why was Mendel’s work ignored? One obvious suggestion is the very low impact journal in
which the work was published, and his complete obscurity at the time of publication (in contrast,
Darwin was already an extremely influential biologist before his publication of Origins). However,
this is certainly not the whole story. One additional factor was that Mendel’s original suggestion was
perhaps too mathematical for 19th century biologists. While this may be correct, the irony is that
the founders of statistics (the biometricians such as Pearson and Galton) were strong supporters of
Darwin, and felt that early Mendelian views of evolution (which proceeds only by new mutations)
were fundamentally flawed.

BASIC MENDELIAN GENETICS

Mendel’s View of Inheritance: Single Locus

To understand the genesis of Mendel’s view, consider his experiments which followed seven traits of
the common garden pea (as we will see, seven was a very lucky number indeed). In one experiment,
Mendel crossed a pure-breeding line of yellow peas to a pure-breeding line of green peas. Let P1

and P2 denote these two parental populations. The cross P1 × P2 is called the first filial, or F1,
population. In the F1, Mendel observed that all of the peas were yellow. Crossing members of the
F1 (i.e., F1 × F1) gives the second filial or F2 population. The results from the F2 were shocking –
1/4 of the plants had green peas, 3/4 had yellow peas. This outbreak of variation, recovering both
green and yellow from yellow parents, blows the theory of blending inheritance right out of the
water. Further, Mendel observed that P1, F1 and F2 yellow plants behaved very differently when
crossed to the P2 (pure breeding green). WithP1 yellows, all the seeds are yellow. Using F1 yellows,
1/2 the plants had yellow peas, half had green peas. When F2 yellows are used, 2/3 of the plants
have yellow peas, 1/3 have green peas. Summarizing all these crosses,

Cross Offspring
P1 Yellow Peas
P2 Green Peas

F1 = P1 × P2 Yellow Peas
F2 = F1 × F1 3/4 Yellow Peas, 1/4 green Peas
P1 yellow ×P2 Yellow Peas
F1 yellow ×P2 1/2 Yellow Peas, 1/2 green Peas
F2 yellow ×P2 2/3 Yellow Peas, 1/3 green Peas

What was Mendel’s explanation of these rather complex looking results? Genes are discrete parti-
cles, with each parent passing one copy to its offspring.

Let an allele be a particular copy of a gene. In diploids, each parent carries two alleles for
each gene (one from each parent). Pure Yellow parents have two Y (or yellow) alleles, and thus
we can write their genotype as Y Y . Likewise, pure green parents have two g (or green) alleles,
and a genotype of gg. Both Y Y and gg are examples of homozygous genotypes, where both alleles
are the same. Each parent contributes one of its two alleles (at random) to its offspring, so that the
homozygous Y Y parent always contributes a Y allele, and the homozygous gg parent always a g
allele. In the F1, all offspring are thus Y g heterozygotes (both alleles differing). The phenotype
denotes the trait value we observed, while the genotype denotes the (unobserved) genetic state.
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Since the F1 are all yellow, it is clear that both the Y Y and Y g genotypes map to the yellow pea
phenotype. Likewise, the gg genotype maps to the green pea phenotype. Since the Y g heterozygote
has the same phenotype as the Y Y homozygote, we say (equivalently) that the Y allele is dominant
to g or that g is recessive to Y .

With this model of inheritance in hand, we can now revisit the above crosses. Consider the
results in the F2 cross. Here, both parents are Y g heterozygotes. What are the probabilities of the
three possible genotypes in their offspring?

Prob(YY) = Pr(Y from dad) * Pr(Y from mom) = (1/2)*(1/2) = 1/4
Prob(gg) = Pr(g from dad) * Pr(g from mom) = (1/2)*(1/2) = 1/4
Prob(Yg) = 1-Pr(YY) - Pr(gg) = 1/2

Note that we can also compute the probability of a Y g heterozygote in the F2 as follows:

Prob(Yg) = Pr(Y from dad)* Pr(g from mom) + Pr(g from dad)*Pr(Y from mom)
= (1/2)(1/2) + (1/2)(1/2) = 1/2

Hence, Prob(Yellow phenotype) = Pr(YY) + Pr(Yg) = 3/4, as Mendel observed. This same logic can
be used to explain the other crosses. (For fun, explain the F2 yellow ×P2 results).

The Genotype to Phenotype Mapping: Dominance and Epistasis

For Mendel’s simple traits, the genotype to phenotype mapping was very straightforward, with
complete dominance. More generally, we will be concerned with metric traits, namely those that
we can assign numerical value, such as height, weight, IQ, blood chemistry scores, etc. For such
traits, dominance occurs when alleles fail to act in an additive fashion, i.e. if αi is the average trait
value of allele Ai and αj the average value of allele j, then dominance occurs when Gij 6= αi + αj ,
namely that the genotypic value forAiAj does not equal the average value of allele iplus the average
value of allele j.

In a similar fashion, epistasis is the non-additive interaction of genotypes. For example, sup-
poseB− (i.e., eitherBB orBb) gives a brown coat color, while bb gives a black coat. A second gene,
D is involved in pigment deposition, so that D− individuals deposit normal amounts of pigment,
while dd individuals deposit no pigment. This is an example of epistasis, in that both B− and bb
individuals are albino under the dd genotype. For metric traits, epistasis occurs when the two-locus
genotypic value is not simply the sum of the two single-locus values, namely thatGijkl 6= Gij +Gkl.

Mendel’s View of Inheritance: Multiple Loci

For the seven traits that Mendel followed, he observed independent assortment of the genetic
factors at different loci (genes), with the genotype at one locus being independent of the genotype at
the second. Consider the cross involving two traits: round vs. wrinkled seeds and green vs. yellow
peas. The genotype to phenotype mapping for these traits is RR,Rr = round seeds, rr = wrinkled
seeds, and (as above) Y Y, Y g = yellow, gg = green. Consider the cross of a pure round, green (RRgg)
line × a pure wrinkled yellow (rrY Y ) line. In the F1, all the offspring are RrY g, or round and
yellow. What happens in the F2?

A quick way to figure this out is to use the notationR− to denote both theRR andRr genotypes.
Hence, round peas have genotype R−. Likewise, yellow peas have genotype Y−. In the F2, the
probability of getting an R− genotype is just

Pr(R− |F2) = Pr(RR|F2) + Pr(Rr|F2) = 1/4 + 1/2 = 3/4

Since (under independent assortment) genotypes at the different loci are independently inherited,
the probability of seeing a round, yellow F2 individual is

Pr(R− Y−) = Pr(R−) · Pr(Y−) = (3/4) ∗ (3/4) = 9/16
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Likewise,

Pr(yellow, wrinkled) = Pr(rrY−) = Pr(rr) · Pr(Y−) = (1/4) ∗ (3/4) = 3/16
Pr(green, round) = Pr(R− gg) = Pr(R−) · Pr(gg) = (3/4) ∗ (1/4) = 3/16
Pr(green, wrinkled) = Pr(rrgg) = Pr(rr) · Pr(gg) = (1/4) ∗ (1/4) = 1/16

Hence, the four possible phenotypes are seen in a 9 : 3 : 3 : 1 ratio.
Under the assumption of independent assortment, the probabilities for more complex geno-

types are just as easily found. Crossing AaBBCcDD × aaBbCcDd, what is Pr(aaBBCCDD)?

Pr(aaBBCCDD) = Pr(aa) ∗ Pr(BB) ∗ Pr(CC) ∗ Pr(DD)

= (1/2 ∗ 1) ∗ (1 ∗ 1/2) ∗ (1/2 ∗ 1/2) ∗ (1 ∗ 1/2) = 1/25

Likewise,

Pr(AaBbCc) = Pr(Aa) ∗ Pr(Bb) ∗ Pr(Cc) = (1/2) ∗ (1/2) ∗ (1/2) = 1/8

Mendel was Wrong: Linkage

Shortly after the rediscovery of Mendel, Bateson and Punnet looked at a cross in peas involving
a flower color locus (with the purple P allele dominant over the red p allele) and a pollen shape
locus (with the long allele L dominant over the round allele l). They examined the F2 from a pure-
breeding purple long (PPLL) and red round (ppll) cross. The resulting genotypes, and their actual
and expected numbers under independent assortment, were as follows:

Phenotype Genotype Observed Expected
Purple long P − L− 284 215
Purple round P − ll 21 71
Red long ppL− 21 71
red round ppll 55 24

This was a significant departure from independent assortment, with an excess of PL and pl gametes
over Pl and pL, evidence that the genes are linked, physically associated on the same chromosome.

Interlude: Chromosomal Theory of Inheritance

Early light microscope work on dividing cells revealed small (usually) rod-shaped structures that
appear to pair during cell division. These are chromosomes. It was soon postulated that Genes are
carried on chromosomes, because chromosomes behaved in a fashion that would generate Mendel’ s
laws — each individual contains a pair of chromosomes, one from each parent, and each individual
passes along one random chromosome from each pair to its offspring. We now know that each
chromosome consists of a single double-stranded DNA molecule (covered with proteins), and it is
this DNA that codes for the genes.

Humans have 23 pairs of chromosomes (for a total of 46), consisting of 22 pairs of autosomes
(chromosomes 1 to 22) and one pair of sex chromosomes – XX in females, XY in males. Humans also
have another type of DNA molecule, namely the mitochondrial DNA genome that exists in tens to
thousands of copies in the mitochondria present in all our cells. mtDNA is usual in that it is strictly
maternally inherited — offspring get only their mother’s mtDNA.

Linkage

If genes are located on different chromosomes, they (with very few exceptions) show independent
assortment. Indeed, peas have only 7 chromosomes, so was Mendel lucky in choosing seven traits
at random that happen to all be on different chromosomes? (Hint, the probability of this is rather
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small). However, genes on the same chromosome, especially if they are close to each other, tend to
be passed onto their offspring in the same configuration as on the parental chromosomes.

Consider the Bateson-Punnett pea data, and let PL/pl denote that in the parent, one chromo-
some carries the P and L alleles (at the flower color and pollen shape loci, respectively), while
the other chromosome carries the p and l alleles. Unless there is a recombination event, one of
the two parental chromosome types (PL or pl) are passed onto the offspring. These are called the
parental gametes. However, if a recombination event occurs, a PL/pl parent can generate Pl and
pL recombinant gametes to pass onto its offspring.

Let c denote the recombination frequency — the probability that a randomly-chosen gamete
from the parent is of the recombinant type. For a PL/pl parent, the gamete frequencies are

Gamete Type Frequency Expectation under independent assortment
PL (1− c)/2 1/4
pl (1− c)/2 1/4
pL c/2 1/4
Pl c/2 1/4

Parental gametes are in excess, as (1 − c)/2 > 1/4 for c < 1/2, while recombinant gametes are in
deficiency, as c/2 < 1/4 for c < 1/2. When c = 1/2, the gamete frequencies match those under
independent assortment.

Suppose we cross PL/pl×PL/pl parents. What are the expected genotype frequencies in their
offspring?

Pr(PPLL) = Pr(PL|father) ∗ Pr(PL|mother) = [(1− c)/2] ∗ [(1− c)/2] = (1− c)2/4

Likewise, Pr(ppll) = (1 − c)2/4. Recall from the Bateson-Punnett data that freq(ppll) = 55/381 =
0.144. Hence, (1− c)2/4 = 0.144, or c = 0.24.

A (slightly) more complicated case is computing Pr(PpLl). Two situations (linkage configura-
tions) occur, as PpLl could be PL/pl or Pl/pL.

Pr(PL/pl) = Pr(PL|dad) ∗ Pr(pl|mom) + Pr(PL|mom) ∗ Pr(pl|dad)

= [(1− c)/2] ∗ [(1− c)/2] + [(1− c)/2] ∗ [(1− c)/2] = (1− c)2/2

Pr(Pl/pL) = Pr(Pl|dad) ∗ Pr(pL|mom) + Pr(Pl|mom) ∗ Pr(pl|dad)

= (c/2) ∗ (c/2) + (c/2) ∗ (c/2) = c2/2

Thus, Pr(PpLl) = (1− c)2/2 + c2/2.
Generally, to compute the expected genotype probabilities, one needs to consider the frequen-

cies of gametes produced by both parents. Suppose dad = Pl/pL, mom = PL/pl.

Pr(PPLL) = Pr(PL|dad)Pr(PL|mom) = [c/2] ∗ [(1− c)/2]

Notation: when the allele configurations on the two chromosomes are PL/pl, we say that alleles P
and L are in coupling, while for Pl/pL, we say that P and L are in repulsion.

Map Distances are Obtained from Recombination Frequencies via Mapping Functions

Construction of a genetic map involves both the ordering of loci and the measurement of distance
between them. Ideally, distances should be additive so that when new loci are added to the map,
previously obtained distances do not need to be radically adjusted. Unfortunately, recombination
frequencies are not additive and hence are inappropriate as distance measures. To illustrate, suppose
that three loci are arranged in the order A, B, and C with recombination frequencies cAB , cAC , and
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cBC . Each recombination frequency is the probability that an odd number of crossovers occurs
between the markers, while 1 − c is the probability of an even number (including zero). There are
two different ways to get an odd number of crossovers in the interval A–C: an odd number in A–B
and an even number in B–C, or an even number in A–B and an odd number in B–C. If there is no
interference, so that the presence of a crossover in one region has no effect on the frequency of
crossovers in adjacent regions, these probabilities can be related as

cAC = cAB (1− cBC) + (1− cAB) cBC = cAB + cBC − 2cAB cBC

This is Trow’s formula. More generally, if the presence of a crossover in one region depresses the
probability of a crossover in an adjacent region,

cAC = cAB + cBC − 2(1− δ)cAB cBC

where the interference parameter δ ranges from zero if crossovers are independent (no interference)
to one if the presence of a crossover in one region completely suppresses crossovers in adjacent
regions (complete interference).

Thus, in the absence of very strong interference, recombination frequencies can only be consid-
ered to be additive if they are small enough that the product 2cABcBC can be ignored. This is not
surprising given that the recombination frequency measures only a part of all recombinant events
(those that result in an odd number of crossovers). A map distance m, on the other hand, attempts
to measure the total number of crossovers (both odd and even) between two markers. This is a
naturally additive measure, as the number of crossovers between A and C equals the number of
crossovers between A and B plus the number of crossovers between B and C.

A number of mapping functions attempt to estimate the number of cross-overs (m) from the
observed recombination frequency (c). The simplest, derived by Haldane (1919), assumes that
crossovers occur randomly and independently over the entire chromosome, i.e., no interference.
Let p(m, k) be the probability of k crossovers between two loci m map units apart. Under the
assumptions of this model, Haldane showed that p(m, k) follows a Poisson distribution, so that the
observed fraction of gametes containing an odd number of crossovers is

c =
∞∑
k=0

p(m, 2k + 1) = e−m
∞∑
k=0

m2k+1

(2k + 1)!
=

1− e−2m

2
(3.2a)

where m is the expected number of crossovers. Rearranging, we obtain Haldane’s mapping func-
tion, which yields the (Haldane) map distance m as a function of the observed recombination
frequency c,

m = − ln(1− 2c)
2

(3.2b)

For small c,m ' c, while for largem, c approaches 1/2. Map distance is usually reported in units of
Morgans (after T. H. Morgan, who first postulated a chromosomal basis for the existence of linkage
groups) or as centiMorgans (cM), where 100 cM = 1 Morgan. For example, a Haldane map distance
of 10 cM (m = 0.1) corresponds to a recombination frequency of c = (1− e−0.2)/2 ' 0.091.

Although Haldane’s mapping function is frequently used, several other functions allow for
the possibility of crossover interference in adjacent sites. For example, human geneticists often use
Kosambi’s mapping function (1944), which allows for modest interference,

m =
1
4

ln
(

1 + 2c
1− 2c

)
(3.2c)
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The Prior Probability of Linkage and Morton’s Posterior Error Rate

Time for an interesting statistical aside motivated by linkage analysis. Morton in 1955 introduced
the concept of a Posterior Error Rate (PER), in the context of linkage analysis in humans. Morton’s
PER is simply the probability that a single significant test is a false positive. Framing tests in terms
of the PER highlights the screening paradox, namely that ”type I error control may not lead to
a suitably low PER”. For example, we might choose α = 0.05, but the PER may be much, much
higher, so that a test declared significant may have a much larger probability than 5% of being a
false-positive. The key is that since we are conditioning on the test being significant (as opposed to
conditioning on the hypothesis being a null, as occurs with α), this could include either false positives
or true positives, and the relative fractions of each (and hence the probability of a false positive) is
a function of the single test parameters α (the Type I error) and β (the Type II error), and fraction of
null hypotheses, π0. To see this, apply Bayes’ theorem,

Pr(false positive | significant test) =
Pr(false positive | null true) · Pr(null)

Pr(significant test)
(3.3a)

Consider the numerator first. Let π0 be the fraction of all hypotheses that are truly null. The
probability that a null is called significant is just the type I error α, giving

Pr(false positive | null true) · Pr(null) = α · π0

Now, what is the probability that a single (randomly-chosen) test is declared significant? This event
can occur because we pick a null hypothesis and have a type I error or because we pick an alternative
hypothesis and avoid a type II error. Writing the power as 1−β (β being the type II error, the failure
to reject an alternative hypothesis), the resulting probability that a single (randomly-draw) test is
significant is just

Pr(significant test) = απ0 + (1− β)(1− π0)

Thus

PER =
α · π0

α · π0 + (1− β) · (1− π0)
=
(

1 +
(1− β) · (1− π0)

α · π0

)−1

(3.3b)

In Morton’s original application, since there are 23 pairs of human chromosomes, he argued that
two randomly-chosen genes had a 1/23 ' 0.05 prior probability of linkage, i.e., 1 − π0 = 0.05 and
π0 = 0.95. Assuming a type I error of α = 0.05 and 80% power to detect linkage (β = 0.20), this
would give a PER of

0.05 · 0.95
0.05 · 0.95 + 0.80 · 0.05

= 0.54

Hence with a type-one error control ofα= 0.05%, a random test showing a significant result (p ≤ 0.05)
has a 54% chance of being a false-positives. This is because most of the hypotheses are expected to
null — if we draw 1000 random pairs of loci, 950 are expected to be unlinked, and we expect 950 ·
0.05 = 47.5 of these to show a false-positive. Conversely, only 50 are expected to be linked, and we
would declare 50 · 0.80 = 40 of these to be significant, so that 47.5/87.5 of the significant results are
due to false-positives.

Molecular Markers

DNA from natural populations is highly polymorphic, in that if we looked at the DNA sequences
of a particular region for a random sample from the population, no two sequences would be the
same (except for identical twins). In humans, one polymorphism occurs roughly every 100 to 1000
bases, with any two random humans differing by over 20 million DNA differences. This natural
variation in DNA provides us with a richly abundance set of genetic (or molecular) markers for
gene mapping.
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A variety of molecular tools have been used to detect these differences. For our proposes, we just
consider the two most widely used types of markers, SNPs (single nucleotide polymorphisms)
and STRs (simple tandem repeats). SNPs result from the change in a single base, for example
AAGGAA to AAGTAA. As a result, there are typically only two alleles in any population and
the level of polymorphism between individuals can be modest. In contrast, STRs (also called
microsatellites) are variations in the lengths of short repeated regions. For example, –ACACAC—
vs. –ACACACAC— (e.g., AC3 vs AC4). Such differences are easily scored with a variety of DNA
sequencing technologies.

One advantage of STRs is that they have very high mutation rates (typically on the order of
1/500 vs. the 1/billions for SNPs) and hence there are usually a large number of alleles segregating in
the population. As a result, STR sites are generally very polymorphic, making them ideal for certain
types of mapping, such as within a family or extended pedigree. SNPs, on the other hand, have very
low mutation rates, and since there is usually (at most) two alleles, the amount of polymorphism
for a SNP is much less than a typical STR. Thus, they tend to be much less informative in pedigree
studies. However, the low mutation rate means that the SNP alleles tend to be quite stable over long
periods of time, making them ideal for population-level association studies where allele identities
must remain unchanged over long periods of evolutionary time to have any statistical power.

BASIC POPULATION GENETICS

Mendelian genetics provides the rules of transmission from parents to offspring, and hence (by
extension) the rules (and probabilities) for the transmissions of genotypes within a pedigree. More
generally, when we sample a population we are not looking at a single pedigree, but rather a
complex collection of pedigrees. What are the rules of transmission (for the population) in this
case? For example, what happens to the frequencies of alleles from one generation to the next?
What about the frequency of genotypes? The machinery of population genetics provides these
answers, extending the mendelian rules of transmission within a pedigree to rules for the behavior
of genes in a population.

Allele and Genotype Frequencies

The frequency pi for allele Ai is just the frequency of AiAi homozygotes plus half the frequency of
all heterozygotes involving Ai,

pi = freq(Ai) = freq(AiAi) +
1
2

∑
i6=j

freq(AiAj) (3.4)

The 1/2 appears since only half of the alleles in heterozygotes are Ai. Equation 3.4 allows us
to compute allele frequencies from genotypic frequencies. Conversely, since for n alleles there are
n(n + 1)/2 genotypes, the same set of allele frequencies can give rise to very different genotypic
frequencies. To compute genotypic frequencies solely from allele frequencies, we need to make the
(often reasonable) assumption of random mating. In this case,

freq(AiAj) =
{
p2
i for i = j

2pipj for i 6= j
(3.5)

Equation 3.5 is the first part of the Hardy-Weinberg theorem, which allows us (assuming
random mating) to predict genotypic frequencies from allele frequencies. The second part of the
Hardy-Weinberg theorem is that allele frequencies remain unchanged from one generation to the
next, provided: (1) infinite population size (i.e., no genetic drift), (2) no mutation, (3) no selection,
and (4) no migration. Further, for an autosomal locus, a single generation of random mating
gives genotypic frequencies in Hardy-Weinberg proportions (i.e., Equation 3.5) and the genotype
frequencies forever remain in these proportions.
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Gamete Frequencies, Linkage, and Linkage Disequilibrium

Random mating is the same as gametes combining at random. For example, the probability of
an AABB offspring is the chance that an AB gamete from the father and an AB gamete from the
mother combine. Under random mating,

freq(AABB) = freq(AB|father) · freq(AB|mother) (3.6a)

For heterozygotes, there may be more than one combination of gametes that gives raise to the same
genotype,

freq(AaBB) = freq(AB|father) · freq(aB|mother) + freq(aB|father) · freq(AB|mother) (3.6b)

If we are only working with a single locus, then the gamete frequency is just the allele frequency,
and under Hardy-Weinberg conditions, these do not change over the generations. However, when
the gametes we consider involve two (or more) loci, recombination can cause gamete frequencies to
change over time, even under Hardy-Weinberg conditions. At linkage equilibrum, the frequency
of a multi-locus gamete is just the product of the individual allele frequencies. For example, for two
and three loci,

freq(AB) = freq(A) · freq(B), freq(ABC) = freq(A) · freq(B) · freq(C)

In linkage equilibrium, the alleles at different loci are independent — knowledge that a gamete
contains one allele (say A) provides no information on the allele at the second locus in that gamete.
More generally, loci can show linkage disequilibrium (LD), which is also called gametic phase
disequilibrium as it can occur between unlinked loci. When LD is present,

freq(AB) 6= freq(A) · freq(B)

Indeed, the disequilibrium DAB for gamete AB is defined as

DAB = freq(AB)− freq(A) · freq(B) (3.7a)

Rearranging Equation 3.7a shows that the gamete frequency is just

freq(AB) = freq(A) · freq(B) +DAB (3.7b)

DAB > 0 implies AB gametes are more frequent than expected by chance, while DAB < 0 implies
they are less frequent.

We can also express the disequilibrium as a covariance. Code allele A as having value one,
other alleles at this locus having value zero. Likewise, at the other locus, code allele B with value
one and all others with value zero. The covariance between A and B thus becomes

Cov(AB) = E[AB]− E[A] · E[B] = 1 · freq(AB)− (1 · freq(A)) · (1 · freq(B)) = DAB (3.8)

If the recombination frequency between the two loci is c, then the disequilibrium after t gener-
ations of recombination is simply

D(t) = D(0)(1− c)t (3.9)

Hence, with lose linkage (c near 1/2) D decays very quickly and gametes quickly approach their
linkage equilibrium values. With tight linkage, disequilibrium can persist for many generations.
As we will see, it is the presence of linkage disequilibrium that allows us to map genes.
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The Effects of Population Structure

Many natural populations are structured, consisting of a mixture of several subpopulations. Even if
each of the subpopulations are in Hardy-Weinberg proportions, samples from the entire population
need not be. Suppose our sample population consists of n subpopulations, each in HW equilibrium.
Let pik denote the frequency of alleleAi in population k, and letwk be the frequency that a randomly-
drawn individual is from subpopulationk. The expected frequency of anAiAi homozygote becomes

freq(AiAi) =
n∑
k=1

wk · p2
ik (3.10a)

while the overall frequency of allele Ai in the population is

pi =
n∑
k=1

wk · pik (3.10b)

We can rearrange this as

freq(AiAi) = p2
i −

(
p2
i −

n∑
k=1

wk · p2
ik

)
= p2

i + Var(pi) (3.10c)

Hence, Hardy-Weinberg proportions hold only if Var(pi) = 0, which means that all the subpopu-
lations have the same allele frequency. Otherwise, the frequency of homozygotes is larger than we
expect from Hardy-Weinberg (based on using the average allele frequency over all subpopulations),
as

freq(AiAi) ≥ p2
i

While homozygotes are always over-represented, there is no clear-cut rule for heterozygotes. Fol-
lowing the same logic as above yields

freq(AiAj) = 2pipj + Cov(pi, pj) (3.11)

Here, the covariance can be either positive or negative.
Population structure can also introduce linkage disequilibrium (even among unlinked alleles).

Consider an AiBj gamete and assume that linkage-equilibrium occurs in all subpopulations, then

Freq(AiBj) =
n∑

k]=1

wk · pAik · pBik

The expected disequilibrium is given by

Dij = Freq(AiBj)− Freq(Ai) · Freq(Bj)

=
n∑

k]=1

wk · pAik · pBjk −
(

n∑
k=1

wk · pAik

)(
n∑
k=1

wk · pBik

)
(3.12)

Consider the simplest case of two populations, where the allele frequencies for Ai differ by δi and
by δj for Bj . In this case, Equation 3.12 simplifies to

Dij = δi · δj · [w1(1− w1) ] (3.13)

Hence, in order to generate disequilibrium, the subpopulations must differ in allele frequencies at
both loci. Further, the amount of disequilibrium is maximal when both subpopulations contribute
equally (w1 = 0.5).
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Forces that Change Allele Frequencies: Genetic Drift

Under the Hardy-Weinberg assumptions, not only are genotype frequencies predictable from allele
frequencies, but allele frequencies also remain unchanged from one generation to the next. Hardy-
Weinberg is thus the answer to Fleming Jenkin’s concern over blending inheritance: in the absence of
other forces, the amount of standing genetic variation remains unchanged. However evolutionary
forces do result in allele frequencies changing over time, and we start of discussions of these forces
by considering one of the most basic (and most subtle), genetic drift.

Genetic drift arises because populations are finite, and as a result of sampling 2N gametes to
form the N individuals for the next generation, changes (typically very small) in allele frequencies
occur. Over long periods of time these small changes result (in the absence of any other forces) in all
but one allele being lost from the population. To formally model genetic drift, suppose the current
allele frequency is p and the population size is N , then the allele frequency in the next generation is
a random variable given by 1/N times a Binomial random variable drawn from Bion(p,N ),

Pr(i copies→ j copies) =
(2N)!

(2N − j)!j!

(
i

2N

)j (2N − i
2N

)2N−j
(3.14)

The net result is that the mean change in allele frequency is zero (if the current frequency is p, the
expected frequency in the next generation is also p). However, the variance in the change in allele
frequency is p(1− p)/2N . Summarizing,

E(∆p|p) = 0, σ2(∆p) =
p(1− p)

2N

This sampling generates a random walk, a walk that stops when the allele being followed reaches
frequencies zero (allele is lost) or one (allele is fixed). If the starting frequency of an allele is p, its
ultimate probability of fixation is also p. Hence, if allele A1 has frequency 0.1 and allele A3 has
frequency 0.05, then the probability neither are eventually fixed by drift is 1− 0.1− 0.05 = 0.85.

Thus, under drift an allele is ultimately either lost or fixed, with the time scale for this process
scaling with N . In particular, starting with a single copy p = 1/(2N), the expected time to fixation
is 4N generations, with a standard error also on the order of 4N generations.

Coalescence Theory

There is a very rich statistical theory associated with genetic drift (Lecture 7). In particular, over the
last 15 years or so, the problem has been framed using the very powerful approach of coalescence
theory, which follows the distribution of time back to a common ancestor for alleles being drawn
from a sample. The idea is that under drift, one can eventually trace all existing alleles in a population
back to a single DNA molecule from which they all descend. If the mutation rate is high relative to
the population size (see below), the alleles may show considerable sequence variation. However,
the strength of the coalescent approach is that we first deal with the genealogy (i.e., the full age
distribution) of the alleles in a sample, and then superimpose our particular mutation model on this
sample.

For two randomly-drawn sequences from an ideal population of size N , the time back to their
most recent common ancestor follows a geometric distribution with success parameter q = 1/(2N),
so that

Pr(Coalescence in generation t) =
(

1− 1
2N

)t−1( 1
2N

)
' 1

2N
exp

(
− t

2N

)
(3.15)

The mean coalescence time is E[t] = 2N generations with variance σ2(T ) = 4N2. Hence, the
probability that two randomly-chosen alleles have a common ancestor within the last τ generations
is

1− Pr(no common ancestor in last τ generations) = 1− (1− q)τ (3.16)
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Forces that Change Allele Frequencies: Mutation

Mutation is another evolutionary force that can change allele frequencies. Historically, models of
mutation were rather simplistic, with an allele simply mutating back and forth between two states,
i.e., allele M mutates to m and vice-versa. Under this simple model, if µ is the mutation rate from
M to m and ν the back mutation rate from m to M , then the change in allele frequency over one
generation is obtained as follows. If p is the current frequency of M , the probability that it does not
mutate to m is (1 − µ), while the chance that the 1 − p of the alleles that are m mutate to M is ν.
Putting these together given the new frequency p′ as,

p′ = (1− µ)p+ ν(1− p) (3.17a)

Thus, allele frequencies change, but on the order of the mutation rate, which are on the order 10−4

to 10−9 per generation (i.e., very slowly). The allele frequencies change until an equilibrium value
is reached where p′ = p. Substituting into Equation 3.17a gives the equilibrium value p̃ as satisfying

p̃ = (1− µ)p̃+ ν(1− p̃), or p̃ =
µ

µ+ ν
(3.17b)

In 1964, Kimura and Crow produced a much more realistic model of gene mutation, motivated
by the structure of a DNA sequence. Their infinite-alleles model assumes that since the DNA se-
quence for a typical gene consists of up to several thousand nucleotides, that any particular mutation
is unlikely to be recovered by a back mutation. Rather, each new mutation likely gives a different
DNA sequence, and hence a new allele (if we are scoring alleles from DNA sequencing). This gen-
erates a very large (essentially infinite) collection of alleles. Kimura and Crow were interested in the
balance between genetic drift removing variation and mutation introducing new variation. Their
analysis showed that the expected heterozygosity H at the mutation-drift equilibrium is

H =
4Nµ

1 + 4Nµ
(3.18)

We can use coalescence theory to see where their result comes from. A heterozygote occurs when
the two alleles in a random individual differ in sequence. The expected time back to the common
ancestor for two randomly-chosen chromosomes is given by Geometric(1/2N), which has an ex-
pected value of 2N generations. Hence, if mutations follow a Possion distribution with a (per copy,
per generation) mutation rate µ, an approximation for the expected number of mutations is 2 ·2N ·µ.
The “extra” 2 follows since the expected number of mutation from one allele back to the MRCA
is 2Nµ, and likewise the expected number of mutations from the other allele back to the MRCA
is also 2Nµ. Hence, if 4Nµ > 1, we expect most individuals to be heterozygotes (high levels of
polymorphism), while if 4Nµ < 1, most will be homozygotes (low polymorphism).

The second class of mutational models that is currently popular are the stepwise mutational
models for the change in microsatellites. Recall that microsatellites (or STRs) are scored by the
number of repeats of a basic sequence (i.e. an ACACAC is three repeats of the AC unit). When a
mutation occurs, the repeat number changes, typically by plus or minus one. Hence, two sequences
with (say) 10 repeats could be the same sequence which has not mutated or could be sequences that
have converged by mutation (i.e. a nine could mutate to a 10 and an 11 could mutate to a 10). Hence,
identity in state (the sequences being identical) under the stepwise model does not imply identity
by descent. In the infinite alleles model, identity in state does imply identity by descent, as no two
alleles have the same state unless they have a common ancestor and have suffered no mutation.
The basic symmetric single-step mutation model has the following structure: if the current number
of repeats is i, then with probability µ the allele remains in state i in the next generation. Otherwise
with probability µ/2 it mutates to state i + 1 or with probability µ/2 to state i − 1. The analysis of
even this apparently simple model is rather involved, eventually requiring the use of Type II Bessel
Functions.
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Forces that Change Allele Frequencies: Selection

The finalforce we consider is natural selection, wherein not all genotypes leave the same expected
number of offspring. Such differences in fitness result in some alleles being lost, others being fixed.
Let Wij denote the fitness of genotype Gij , which is the expected number of offspring that Gij
leave. To see the effects of selection, consider the simple case of one locus with two alleles, A and a.
Assume the genotype frequencies are in Hardy-Weinberg before selection (as occurs with random
mating). Following selection, some of the genotypes leave more offspring than others,

Genotypes AA Aa aa
Frequency p2 2p(1− p) (1− p)2

before selection
Fitness WAA WAa Waa

Frequency p2WAA/W 2p(1− p)WAa/W (1− p)2Waa/W
after selection

where
W = p2WAA + 2p(1− p)WAa + (1− p)2Waa

W = E[Wij ] is the mean population fitness, the average fitness of a randomly-chosen individual.
If Wij > W , then the genotype Gij , on average, leaves more offspring than a randomly-chosen
individual (W ). Hence, the weighting Wij/W is the contribution following selection. To obtain the
allele frequency p′ following selection, since Freq(A) = freq(AA) + (1/2)freq(Aa),

p′ =
p2WAA + p(1− p)WAa

W
= p

pWAA + (1− p)WAa

W
(3.19a)

The rankings of the fitnesses for the genotypes determine the ultimate fate of an allele. If WXX ≥
WXx > Wxx, then alleleX fixed and allelex is lost. IfWXx > WX ,Wxx then we have overdominance
and selection maintains both alleles X and x.

A more general expression when there are n alleles at a locus is

p′i = pi
Wi

W
, Wi =

n∑
j=1

pjWij , W =
n∑
i=1

piWi (3.19b)

Here, Wi is the marginal fitness of allele i, the mean fitness of a random individual carrying a
copy of allele i. If Wi > W (A random individual carrying i has a higher fitness than a random
individual), and the frequency of allele i increases. If Wi < W , allele i decreases. If Wi = W , the
frequency of i does not change. At an equilibrium point, the marginal fitnesses for all segregating
alleles are equal, i.e. Wi = W for all i.

Interaction of Selection and Drift

Finally, consider the interactions between drift and selection. A classic result, due to Kimura (1957),
is that if the genotypes AA : Aa : aa have additive fitnesses, 1 + 2s : 1 + s : 1, then the probability
U(p) that allele A is fixed given it starts at frequency p is

U(p) =
1− exp(−4Nsp)
1− exp(−4Ns)

(3.20)

Note that if s > 0, we expect (in an infinite population) that A is fixed by selection, while if s < 0, A
is lost. However, when the population size is finite, if selection is sufficiently weak relative to drift,
the allele can behave as if it essentially neutral. In particular, if 4N | s | << 1, U(p) ' p and thus
the allele behaves as if it essentially neutral. Conversely, if 4N | s | >> 1, selection dominates, with
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A having a very high probability of fixation when 4Ns >> 1 and essentially a zero probability of
fixation when 4Ns << −1.

Finally, a most interesting case is when a highly-favored allele (4Ns >> 1) enters the population
as a single copy p = 1/(2N). Here U = 2s. Note that this is independent of the actual population
size, so that even is a very large population, a favored allele introduced as a single copy still has a
small probability of fixation. If s = 0.1, a 10% advantage (which is huge in evolutionary terms), the
fixation probability for a single copy is only 20%.

BASIC QUANTITATIVE GENETICS

When there is a simple genetic basis to a trait (i.e., phenotype is highly informative as to geno-
type), the machinery of Mendelian genetics is straightforward to apply. Unfortunately, for many
(indeed most) traits, the observed variation is a complex function of genetic variation at a number of
genes plus environmental variation, so that phenotype is highly uninformative as to the underlying
genotype. Developed by R. A. Fisher in 1918 (in a classic and completely unreadable paper that
also introduced the term variance and the statistical method of analysis of variance), quantitative
genetics allows one to make certain statistical inferences about the genetic basis of a trait given only
information on the phenotypic covariances between sets of known relatives.

The machinery of quantitative genetics thus allows for the analysis of traits whose variation is
determined by both a number of genes and environmental factors. Examples are traits influenced
by variation at only a single gene that are also strongly influenced by environmental factors. More
generally, a standard complex trait is one whose variation results from a number of genes of equal
(or differing) effect coupled with environmental factors. Classic examples of complex traits include
weight, blood pressure, and cholesterol levels. For all of these there are both genetic and environ-
mental risk factors. Likewise, in the genomics age, complex traits can include molecular traits, such
as the amount of mRNA for a particular gene on a microarray, or the amount of protein on a 2-D
gel.

The goals of quantitative genetics are first to partition total trait variation into genetic (nature)
vs. environmental (nurture) components. This information (expressed in terms of variance compo-
nents) allows us to predict resemblance between relatives. For example, if a sib has a disease/trait,
what are your odds? Recently, molecular markers have offered the hope of localizing the underly-
ing loci contributing to genetic variation, namely the search for QTL (quantitative trait loci). The
ultimate goal of quantitative genetics in this post-genomic era is the prediction of phenotype from
genotype, namely deducing of the molecular basis for genetic trait variation. Likewise, we often
speak of eQTLs (expression QTLs), loci whose variation influences gene expression (typically the
amount of mRNA for a gene on a microarray). As we will see, operationally QTLs involve a ge-
nomic region, often of considerable length. The ultimate goal is to find QTNs, for quantitative trait
nucleotides, the specific nucleotides (as opposed to genomic regions) underlying the trait variation.

Dichotomous (Binary) Traits

While much of the focus of quantitative genetics is on continuous traits (height, weight, blood
pressure), the machinery also applies to dichotomous traits, such as disease presence/absence. This
apparently phenotypic simplicity can easily mask a very complex genetic basis.

Loci harboring alleles that increase disease risk are often called disease susceptibly (or DS) loci.
Consider such a DS locus underlying a disease, with alleles D and d, where allele D significantly
increases disease risk. In particular, suppose Pr(disease | DD) = 0.5, so that the penetrance of
genotype DD is 50%. Likewise, suppose for the other genotypes that Pr(disease | Dd ) = 0.2,
Pr(disease | dd) = 0.05. Hence, the presence of aD allele significantly increases your disease risk, but
dd individuals can rarely display the disease, largely because of exposure to adverse environmental
conditions. Such dd individuals showing the disease are called phenocopies, as the presence of
the disease does not result from them carrying a high-risk allele. If the D allele is rare, most of the
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observed disease cases are environmental (from dd) rather than genetically (from D−) causes. For
example, suppose freq(d) = 0.9, what is Prob (DD | show disease)? First, the population prevalence
K (the frequency) of the disease is

K = freq(disease)
= Pr(DD) ∗ Pr(disease|DD) + Pr(Dd) ∗ Pr(disease|Dd) + Pr(dd) ∗ Pr(disease|dd)
= 0.01 ∗ 0.5 + 2 ∗ 0.1 ∗ 0.9 ∗ 0.2 + 0.81 ∗ 0.05 = 0.0815

Hence, roughly 8% of the population shows the disease. Bayes’ theorem (Lecture 1) states that

Pr(b|A) =
Pr(A|b) ∗ Pr(b)

Pr(A)
(3.21)

Applying Bayes’ theorem (with A = disease, b = genotype),

Pr(DD|disease) =
Pr(disease|DD) ∗ Pr(DD)

Pr(disease)
=

0.5 ∗ 0.01
0.0815

= 0.06

Hence, if we pick a random individual showing the disease, there is only a 6% chance that they have
the high-risk (DD) genotype. Likewise, Pr(Dd | disease) = 0.442, Pr(dd | disease) = 0.497.

Contribution of a Locus to the Phenotypic Value of a Trait

The basic model for quantitative genetics is that the phenotypic value P of a trait is the sum of a
genetic value G plus an environmental value E,

P = G+ E (3.22)

The genetic valueG represents the average phenotypic value for that particular genotype if we were
able to replicate it over the distribution (or universe) of environmental values that the population
is expected to experience.

The genotypic valueG is usually the result of a number of loci that influence the trait. However,
we will start by first considering the contribution of a single locus, whose alleles are alleles Q1 and
Q2. We need a parameterization to assign genotypic values to each of the three genotypes, and there
are three slightly different notations used in the literature:

Genotypes
Q1Q1 Q1Q2 Q2Q2

C C + a(1 + k) C + 2a
Average Trait Value: C C + a+ d C + 2a

C − a C + d C + a

Here C is some background value, which we usually set equal to zero. What matters here is the
difference 2a between the two homozygotes, and the relative position of the heterozgotes compared
to the average of the homozygotes. These are estimated by

a =
G(Q2Q2)−G(Q1Q1)

2
, d = G(Q1Q2)− G(Q2Q2) + G(Q1Q1)

2
(3.23a)

If it is exactly intermediate, d = k = 0 and the alleles are said to be additive. If d = a (or equivalently
k = 1)), then alleleQ2 is completely dominant toQ1 (i.e.,Q1 is completely recessive). Conversely, if
d = −a (k = −1) thenQ1 is dominant toQ2. Finally if d > a (k > 1) the locus shows overdominance
with the heterozygote having a larger value than either homozygote. Thus d (and equivalently k)
measure the amount of dominance at this locus. Note that d and k are related by

ak = d, or k =
d

a
(3.23b)

The reason for using both d and k is that different expressions are simpler under different parame-
terizations.
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Example: Apolipoprotein E and Alzheimer’ s age of onset

One particular allele at the apolipoprotein E locus (we will call it e, and all other allelesE) is associated
with early age of onset for Alzheimer’s. The mean age of onset for ee, Ee, and EE genotypes are
68.4, 75.5, and 84.3, respectively. Taking these to be estimates of the genotypic values (Gee, GEe,
and GEE ), the homozygous effect of the E allele is estimated by a = (84.3 − 68.4)/2 = 7.95.
The dominance coefficient is estimated by ak = d = GEe − [Gee + GEE ]/2 = −0.85. Likewise,
k = d/a = 0.10.

Example: the Booroola (B) gene

The Booroola (B) gene influences fecundity in the Merino sheep of Australia. The mean litter sizes
for the bb, Bb, and BB genotypes based on 685 total records are 1.48, 2.17, and 2.66, respectively.
Taking these to be estimates of the genotypic values (Gbb, GBb, and GBB ), the homozygous effect
of the B allele is estimated by a = (2.66 − 1.48)/2 = 0.59. The dominance coefficient is estimated
by taking the difference between bb and Bb genotypes, a(1 + k) = 0.69, substituting a = 0.59, and
rearranging to obtain k = 0.17. This suggests slight dominance of the Booroola gene. Using the
alternative d notation, from Equation 3.23b, d = ak = 0.59 · 0.17 = 0.10

Fisher’s Decomposition of the Genotypic Value

Quantitative genetics as a field dates back to R. A. Fisher’s brilliant (and essentially unreadable)
1918 paper, in which he not only laid out the field of quantitative genetics, but also introduced the
term variance and developed the analysis of variance (ANOVA). Not surprisingly, his paper was
initially rejected.

Fisher had two fundamental insights. First, that parents do not pass on their entire genotypes to
their offspring, but rather pass along only one of the two possible alleles at each locus. Hence, only part
of G is passed on and thus we decompose G into component that can be passed along and those
that cannot. Fisher’s second great insight was that phenotypic correlations among known relatives can
be used to estimate the variances of the components of G.

Fisher suggested that the genotypic value Gij associated with an individual carrying a QiQj
genotype can be written in terms of the average effects α for each allele and a dominance deviation
δ giving the deviation of the actual value for this genotype from the value predicted by the average
contribution of each of the single alleles,

Gij = µG + αi + αj + δij (3.24)

The predicted genotypic value is Ĝij = µG + αi + αj , where µG is simply the average genotypic
value,

µG =
∑

Gij · freq(QiQj)

Note that since we assumed the environmental values have mean zero, µG = µP , the mean phe-
notypic value. Likewise Gij − Ĝij = δij , so that δ is the residual error, the difference between the
actual value and that predicted from the regression. Since α and δ represent deviations from the
overall mean, they have expected values of zero.

You might notice that Equation 3.24 looks like a regression. Indeed it is. Suppose we have only
two alleles, Q1 and Q2. Notice that we can re-express Equation 3.24 as

Gij = µG + 2α1 + (α2 − α1)N + δij (3.25)

where N is the number of copies of allele Q2, so that

2α1 + (α2 − α1)N =


2α1 for N = 0, e.g, Q1Q1

α1 + α2 for N = 1, e.g, Q1Q2

2α2 for N = 2, e.g, Q2Q2

(3.26)
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Thus we have a regression, whereN (the number of copies of alleleQ2) is the predictor variable,
the genotypic value G the response variable, (α2 − α1) is the regression slope, and δij the residuals
of the actual values from the predicted values. Recall from the standard theory of least-squares
regression that the correlation between the predicted value of a regression (µG + αi + αj) and the
residual error (δij) is zero, so that σ(αi, δj) = σ(αk, δj) = 0.

To obtain the α, µG and δ values, we use the notation of

Genotypes: Q1Q1 Q1Q2 Q2Q2

Average Trait Value: 0 a(1 + k) 2a
frequency (HW): p2

1 2p1p2 p2
2

A little algebra gives
µG = 2p1 p2 a(1 + k) + 2p2

2 a = 2p2 a(1 + p1k) (3.27a)

Recall that the slope of a regression is simply the covariance divided by the variance of the predictor
variable, giving

α2 − α1 =
σ(G,N2)
σ2(N2)

= a [ 1 + k ( p1 − p2 ) ] (3.27b)

See Lynch and Walsh, Chapter 4 for the algebraic details leading to Equation 3.27b. Since we have
chosen the α to have mean value zero, it follows that

piα1 − p2α2 = 0

When coupled with Equation 3.27b this implies (again, see L & W Chapter 4)

α2 = p1a [ 1 + k ( p1 − p2 ) ] (3.27c)
α1 = −p2a [ 1 + k ( p1 − p2 ) ] (3.27d)

Finally, the dominance deviations follow since

δij = Gij − µG − αi − αj (3.27e)

Note the important point that both α and δ are functions of allele frequency and hence change as the
allele (and/or genotype) frequencies change. While theGij values remain constant, their weights are
functions of the genotype (and hence allele) frequencies. As these change, the regression coefficients
change.

Average Effects and Additive Genetic Values

The αi value is the average effect of allele Qi. Animal breeders are concerned (indeed obsessed)
with the breeding values (BV) of individuals, which are related to average effects. The BV is also
called the additive genetic value, A. The additive genetic value associated with genotype Gij is
just

A(Gij) = αi + αj (3.28a)

Likewise, for n loci underlying the trait, the BV is just

A =
n∑
k=1

(
α

(k)
i + α

(k)
j

)
(3.28b)

namely, the sum of all of the average effects of the individual’s alleles. Note that since the addi-
tive genetic values are functions of the allelic effects, they change as the allele frequencies in the
population change.
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So, why all the fuss over breeding/additive-genetic values? If the additive genetic value of one
parent is A1, and the other parent is chosen at random, then the average value of their offspring µo
is

µo = µ+
A1

2
where µ is the population mean Similarly, the expected value of the offspring given the additive of
both parents is just their average,

µ0 = µG +
A1 +A2

2
(3.29)

The focus on additive genetic values thus arises because they predict offspring means.

Genetic Variances

Recall that the genotypic value is expressed as

Gij = µg + (αi + αj) + δij

The term µg+(αi+αj) corresponds to the regression (best linear) estimate ofG, while δ corresponds
to a residual. Recall from regression theory that the estimated value and its residual are uncorrelated,
and hence α and δ are uncorrelated. Since µG is a constant (and hence contributes nothing to the
variance) and α and δ are uncorrelated,

σ2(G) = σ2(µg + (αi + αj) + δij) = σ2(αi + αj) + σ2(δij) (3.30)

Equation 3.30 is the contribution from a single locus. Assuming linkage equilibrium, we can sum
over loci,

σ2(G) =
n∑
k=1

σ2(α(k)
i + α

(k)
j ) +

n∑
k=1

σ2(δ(k)
ij )

This is usually written more compactly as

σ2
G = σ2

A + σ2
D (3.31)

where σ2
A is the additive genetic variance and represents the variance in breeding values in the

population, while σ2
D denotes the dominance genetic variance and is the variance in dominance

deviations.
Suppose the locus of concern hasm alleles. Since (by construction) the average values of α and

δ for a given locus have expected values of zero, the contribution from that locus to the additive
and dominance variances is just

σ2
A = E[α2

i + α2
j ] = 2E[α2 ] = 2

m∑
i=1

α2
i pi, and σ2

D = E[δ2 ] =
m∑
i=1

m∑
j=1

δ2
ij pi pj (3.32)

For one locus with two alleles, these become

σ2
A = 2p1 p2 a

2[ 1 + k ( p1 − p2 ) ]2 (3.33a)

and
σ2
D = (2p1 p2 ak)2 (3.33b)

The additive (dashed line), dominance (dotted line) and total (σ2
G = σ2

A + σ2
D, solid line) variance

are plotted below for several different dominance relationships.
Note (from both the figures and from Equation 3.33) that there is plenty of additive variance even

in the face of complete dominance. Indeed, dominance (in the form of the dominance coefficient
k) enters the expression for the additive variance. This is not surprising as the α arise from the
best-fitting line, which will incorporate some of the departures from additivity. Conversely, note
that the dominance variance is zero if there is no dominance (σ2

D = 0 if k = 0). Further note that σ2
D

is symmetric in allele frequency, as p1p2 = p1(1− p1) is symmetric about 1/2 over (0,1).
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Additivity: k = 0
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Epistasis

Epistasis, nonadditive interactions between alleles at different loci, occurs when the single-locus
genotypic values do not add to give two (or higher) locus genotypic values. For example, suppose
that the average value of an AA genotype is 5, while a BB genotype is 9. Unless the value of the
AABB genotype is 5 + 4 = 9, epistasis is present in that the single-locus genotypes do not predict
the genotypic values for two (or more) loci. Note that we can have strong dominance within each
locus and no epistasis between loci. Likewise we can have no dominance within each locus but
strong epistasis between loci.

The decomposition of the genotype when epistasis is present is a straightforward extension of
the no-epistasis version. For two loci, the genotypic value is decomposed as

Gijkl = µG + (αi + αj + αk + αl) + (δij + δkl)
+ (ααik + ααil + ααjk + ααjl)
+ (αδikl + αδjkl + αδkij + αδlij)
+ (δδijkl)

= µG +A+D +AA+AD +DD (3.34)

Here the breeding valueA is the average effects of single alleles averaged over genotypes, the dom-
inance deviation D the interaction between alleles at the same locus (the deviation of the single
locus genotypes from the average values of their two alleles), while AA, AD and DD represent the
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(two-locus) epistatic terms. AA is the additive-by-additive interaction, and represents interactions
between a single allele at one locus with a single allele at another. AD is the additive-by-dominance
interaction, representing the interaction of single alleles at one locus with the genotype at the other
locus (e.g. Ai and BjBk), and the dominance-by-dominance interaction DD is any residual inter-
action between the genotype at one locus with the genotype at another. As might be expected, the
terms in Equation 3.34 are uncorrelated, so that we can write the genetic variance as

σ2
G = σ2

A + σ2
D + σ2

AA + σ2
AD + σ2

DD (3.35)

More generally, with k loci, we can include terms up to (and including) k-way interactions. These
have the general from of AnDm which (for n+m ≤ k) is the interaction between the α effects at n
individual loci with the dominance interaction (δ) at m other loci. For example, with three loci, the
potential epistatic terms are

σ2
AA + σ2

AD + σ2
DD + σ2

AAA + σ2
AAD + σ2

ADD + σ2
DDD
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Lecture 3 Problems

1. Suppose lociA andB are linked, with c = 0.25. Further, suppose freq(AB) = 0.1, freq(A) =
0.5 and freq(B) = 0.5. Assume a random mating population.

a. Under Hardy-Weinberg, what is the frequency of anAA homozygote? ABB homozygote?

b. Assuming gametes combine at random, what is the expected frequency of an AABB indi-
vidual assuming the above gamete frequencies.

c. What is the initial disequilibrium for the AB gamete, DAB?

d. After four generations of recombination, what is the disequilibrium, DAB(4)? What is
freq(AB)? What is freq(AABB)?

2. Consider a locus with four alleles with the following allele frequencies and marginal fitnesses
(for these frequencies)

Allele 1 2 3 4
Frequency 0.1 0.2 0.3 0.4
Wi 1.1 0.9 2.0 0.8

a. Compute W .

b. What is the frequency of allele 3 after selection?

c. What is the frequency of allele 4 after selection?

3. For populations of size 50 and 500, compute the probabilities that two randomly-chosen
alleles have a most recent common ancestor of less than 50, 500, and 2000 generations.

4. Consider the Booroola gene mentioned in the notes.

a. For freq(B) = 0.3, compute αB , αb, and the breeding values of all three genotypes.

b. For freq(B) = 0.8, compute αB , αb, and the breeding values of all three genotypes.

5. For the above two frequencies for Booroola, compute σ2
G, σ2

A, and σ2
D

6. What is the covariance between an individual’s breeding value A and its phenotypic value
P ? (Assume Cov(G,E) = 0.) Hint, use the properties of the covariance and decompose P
into its various genetic and environmental components.

7. What is the best linear predictor of an individual’s breeding value A given that we observe
their phenotypic value P
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Solutions to Lecture 3 Problems

1. a. 0.52 = 0.25 for both homozygotes. Hence, one might expect freq(AABB) = 0.252 =
0.0625

b. freq(AABB) = freq(AB)2 = 0.12 = 0.01

c. DAB(0) = freq(AB)− freq(A) · freq(B) = 0.1− 0.5 · 0.5 = −0.15

d. DAB(4) = (1− c)4DAB(0) = −0.15(1− .25)4 = −0.047,

freq(AB)(4) = freq(A)freq(B) +DAB(4) = 0.20.

freq(AABB) = freq(AB)(4) · freq(AB)(4) = 0.04

2.

a. W = 0.1 · 1.1 + 0.2 · 0.9 + 0.3 · 2.0 + 0.4 · 0.8 = 1.21

b. p′3 = 0.3 · (2.0/1.21) = 0.496

b. p′4 = 0.4 · (0.8/1.21) = 0.264

3. Pr(MCRA < τ ) = 1− (1− 1/[2N ])τ

N Pr(< 50) Pr(< 500) Pr(< 200)
50 0.395 0.993 1.000
500 0.049 0.394 0.865

4. For Booroola , a = 0.59, k = 0.17. In our notation, p2 = freq(B)

a. For p2 = freq(B) = 0.3, p1 = freq(b) = 0.7

α2 = αB = p1a [ 1 + k ( p1 − p2 ) ] = 0.7 · 0.59 [ 1 + 0.17 ( 0.7− 0.3 ) ] = 0.441

α1 = αb = −p2a [ 1 + k ( p1 − p2 ) ] = −0.189

BV (BB) = 2αB = 0.882, BV (Bb) = αB + αb = 0.252, BV (BB) = 2αb = −0.378,

b. For freq(B) = 0.8,
αB = 0.106, αb = −0.423

BV (BB) = 2αB = 0.211, BV (Bb) = αB + αb = −0.318, BV (BB) = 2αb = −0.848,

5. a For p2 = freq(B) = 0.3

σ2
A = 2p1p2a

2 [ 1 + k ( p1 − p2 ) ]2 = 0.167

σ2
D = (2p1p2ak)2 = 0.002, σ2

G = σ2
A + σ2

D = 0.169

b For p2 = freq(B) = 0.8

σ2
A = 0.090, σ2

D = 0.001, σ2
G = 0.091

Lecture 3, page 22



6. Cov(P,A) = Cov(G+ E,A) = Cov(A+D + E,A) = Cov(A,A) = V ar(A)

7. The regression is A = µA + bA |P (P − µp). The slope is

bA |P =
Cov(P,A)

VP
=
Cov(A,A)

VP
=
V ar(A)
VP

= h2

Hence, A = h2(P − µp) as the mean breeding value (by construction) is zero, i.e.., µA = 0
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