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Natural selection is not evolution — R. A. Fisher (1930)

Previous chapters examined the response to selection, assuming that the nature of selection
is known. Here we are concerned with the complementary issue of measuring how selection
acts on particular phenotypes (phenotypic selection). The estimation of selection involves
two related issues: measuring individual fitness and measuring how the phenotype of a
particular character influences individual fitness. The latter question is often phrased in
terms of estimating W (z), the expected fitness for an individual with character value z.

The first half of this chapter deals with various aspects of individual fitness, focusing on
fitness components and measuring fitness over multiple episodes of selection. We conclude
by examining the properties of an especially useful statistic, the population variance in
relative fitness (the opportunity for selection), which bounds the maximum possible within-
generation change in the mean and variance of any character.

The second half moves from individual fitness to the complementary problem of pre-
dicting the expected fitness of an individual given its phenotypic value. Our discussion here
is concerned with selection acting exclusively on a single character. This admittedly unre-
alistic situation offers the advantage of allowing basic methodological points to be stressed
without the additional complications inherent in a multivariate analysis. In Chapter 29 we
extend these univariate ideas to the situation where individual phenotypic value is a vector
z. The major complication with multiple characters is selection on phenotypically correlated
characters. A within-generation change in the distribution of a trait may be due to direct
selection on that character, indirect effects of selection on correlated (and often unmeasured)
characters, or both. Excellent discussions on the detection of selection in natural populations
can be found in Endler (1986), Manly (1985), Primack and Kang (1989), Brodie et al. (1995),
and Kingsolver and Pfenning (2007), while summaries of the estimates of selection values
can be found in Endler (1986), Kingsolver et al. (2001), Hoekstra et al. (2001), Conner (2001),
Hereford et al. (2004), and Kingsolver and Pfenning (2007). The use of individual fitness data
is developed in Arnold and Wade (1984a,b) and Lande and Arnold (1983), whose approach
we largely follow.

EPISODES OF SELECTION AND THE ASSIGNMENT OF FITNESS

Selection can often be subdivided into discrete components called episodes of selection. For
example, a distinction is often made between viability selection (differences in survivorship)
and fertility selection (differences in number of offspring per mating). Tradeoffs may be
found, wherein a trait that does well in one episode does poorly in another. For example,
large body size is usually favored in adults of Darwin’s Medium Ground Finch Geospiza
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fortis (Boag and Grant 1981, Price et al. 1984), while small body size is apparently favored
in juveniles (Price and Grant 1984). The possibility of tradeoffs between natural and sexual
selection first suggested by Darwin (1859) has also received significant attention (Darwin
1859, 1871, Fisher 1930; recent ideas are reviewed in Arnold 1983, Bateson 1983, Bradbury and
Andersson 1987, more current references?). Sexual selection results from variance in male
mating success due to male-male competition for females and/or female choice of particular
males, while natural selection results from variance in all other fitness components, such as
viability and fertility differences, differences in parental care, etc.

Fitness Components

We start with two simplifying assumptions. The first is that generations are discreet and non-
overlapping, so that the actual timing of reproduction is unimportant. Second, we assume that
parental phenotypes (or more generally, phenotypes of other individuals that interact with
our focal individual) have no influence on that individual’s fitness. Some of consequences
when these assumptions fail will be considered shortly.

Under these simplifying assumptions, the lifetime (or total) fitness of an individual is
the number of descendants it leaves at the start of the next generation. Likewise, under these
assumptions when measuring the total fitness of an individual, care must be taken not to cross
generations or to overlook any stage of the life cycle in which selection acts. To accommodate
these concerns, lifetime fitness is defined as the total number of zygotes (newly fertilized
gametes) that an individual produces. Measuring total fitness from any other starting point
in the life cycle (e.g., from adults in one generation to adults in the subsequent generation) can
result in a very distorted picture of true fitness of particular phenotypes (Prout 1965, 1969). If
generations are crossed, measures of selection on a particular parental phenotype in reality
are averages over both parental and offspring phenotypes, which can differ considerably.

Systems for measuring lifetime fitness have been especially well developed for labora-
tory populations of Drosophila (reviewed by Sved 1989). Measurements of lifetime fitness in
field situations are more difficult and (not surprisingly) are rarely accomplished (although
see Chapter 16). Attention instead is usually focused on particular episodes of selection or
particular phases of the life cycle. Fitness components for each episode of selection are de-
fined to be multiplicative. For example, lifetime fitness can be partitioned as (probability of
surviving to reproductive age)·(number of mates)·(number of zygotes per mating). Number
of mates is a measure of sexual selection, while the viability and fertility components mea-
sure natural selection. A commonly measured fitness component is reproductive success,
the number of offspring per adult, which confounds natural (fertility) and sexual selec-
tion (in males, the number of matings per adult). Clutton-Brock (1988) reviews estimates of
reproductive success from natural populations. (More recent references?)

Fitness components can themselves be further decomposed. For example, fertility in
plants might be decomposed as (seeds per plant) = (number of stems per plant)·(number
of inflorescences per stem)·(average number of seed capsules per inflorescence)·(average
number of seeds per capsule). This decomposition allows us to ask questions of the form:
do plants differ in number of seeds mainly because some plants have more stems, or more
flowers per stem, or are there tradeoffs between these? The nature of fitness components is
often set by ecological or behavioral, rather than evolutionary, concerns. Ideally, components
should be sequential, with one episode finishing before the next begins, or (as with the
plant example) represent non-overlapping events. This, of course, need not be the case. For
example, total number of mates (which is seemingly a measure of sexual selection) can be
the result of (say) average number of mates per day times number of days lived. The former
is a strict measure of sexual selection, the latter (viability) is a measure of natural selection,
so that number of mates here is actually a compound measure of both natural and sexual
selection.
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Estimates of fitness can be obtained from either longitudinal or cross-sectional stud-
ies. A longitudinal study follows a cohort of individuals over time, while a cross-sectional
study examines individuals at a single point in time. Cross-sectional studies typically gen-
erate only two fitness classes (e.g., dead versus living, mating versus unmated). Analysis of
cross-sectional studies involves a considerable number of assumptions (Lande and Arnold
1983, Arnold and Wade 1984b), and longitudinal studies are preferred. Unfortunately, these
usually require far more work and may be impossible to carry out in many field situations.
As mentioned, age-structured populations pose further complications that will be considred
shortly.

Assigning Fitness Components

We now turn to the task of partitioning measures of individual fitnesses in a longitudinal
study into fitness components. A cohort of n individuals (indexed by 1 ≤ r ≤ n) is followed
through several discrete (non-overlapping) episodes of selection. Let Wj(r) be the fitness
measure for the jth episode of selection for the rth individual. For example, if we are fol-
lowing viability then Wj is either zero (dead) or one (alive) at the census period. Relative
fitness components wj(r) = Wj(r)/W j will turn out to be especially useful (as wj = 1). At
the start of the study, the frequency of each individual is 1/n, giving for the first (observed)
episode of selection

W 1 =
1
n

n∑
r=1

W1(r) (28.1a)

We need to caution at this point that considerable selection may have already occurred prior to
the life cycle stages being examined. Following the first episode of selection, the new fitness-
weighted frequency of the rth individual is w1(r)/n, implying that the mean fitness W 2 for
the second episode of selection is given by

W 2 =
n∑
r=1

W2(r) · w1(r) ·
(

1
n

)
(28.1b)

In general, for the jth episode of selection,

W j =
n∑
r=1

Wj(r) · wj−1(r) · wj−2(r) · · ·w1(r) ·
(

1
n

)
(28.1c)

Note that if Wj(r) = 0, further fitness components for r are unmeasured. Letting pj(r) be
the fitness-weighted frequency of individual r after j episodes of selection, it follows that
p0(r) = 1/n and

pj(r) = wj(r) · pj−1(r) =
1
n

j∏
i=1

wi(r) (28.2a)

The first term (1/n) is the initial frequency of individual r, while the product is the total
relative fitness for individual r following the j episodes of selection. Thus, Equation 28.1c
can also be expressed asW j =

∑
Wj(r)·pj−1(r). Using these weights allows fitness-weighted

moments to be calculated, e.g., the mean of a particular character following the jth episode
satisfies

zj =
∑

z(r) · pj(r) (28.2b)

where z(r) is the value of the character of individual r. Likewise, the sample variance is

Var(zj) =
n

n− 1

(∑
z2(r) · pj(r)− [ zj ]2

)
(28.2c)
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Example 28.1. Total reproductive success and its components, mating success (W1) and
fertility (W2, eggs per successful mating), were measured in 38 male bullfrogs (Rana catesbeiana)
in a longitudinal study by Howard (1979). For illustrative purposes, we use part of this data
set to examine these fitness components for five males.

Male z W1 W2 w1 p1 w2 p2

1 145 1 25,820 0.714 0.143 1.628 0.233
2 128 1 22,670 0.714 0.143 1.429 0.204
3 148 0 0 0.000 0.000 0.000 0
4 138 2 7,230 1.429 0.286 0.456 0.130
5 141 3 15,986 2.143 0.429 1.008 0.432

Before selection, each male has frequency 1/5 = 0.20, giving

W 1 =
1
5

(
1 + 1 + 0 + 2 + 3

)
=

7
5

= 1.4, and w1 =
W1

1.4

While the observed frequencies of individuals have not changed after the first episode of selec-
tion (all are still present in the population), fitness-weighted frequencies change due to differ-
ences in acquiring mates. For male 2, p1(2) = 0.2 · 0.714 = 0.143 (e.g., 14.3% of all matings
in the population involve male 2), with the values for the other adults being computed simi-
larly. Hence, if we were to take offspring from these adults after this episode of selection, then
for a randomly-drawn offspring, the probability that it’s parent is male 2 is 0.143. The mean
fertility per mating is

W 2 =
∑

W2(r) · p1(r)

= (25, 820 · 0.143) + (22, 670 · 0.143) + (7, 230 · 0.286) + (15, 986 · 0.429)

= 15, 860

If each reproducing male were weighted equally, average fertility per individual (independent
of the number of times each mates) is (1/4) ·(25, 820+22, 670+7, 230+15, 986) = 17, 927.
The actual mean fertility per mating W 2 is lower because males 4 and 5 sired the most
clutches, but had much lower fertility than the other (successful) males. Using w2(r) =
W2(r)/(15, 860) and recalling Equation 28.2a, the final fitness weighting for male 1 is (1/5) ·
0.714 · 1.628 = 0.233. The remaining p2 values are computed similarly. Howard also mea-
sured body size z (in mm). Using the body sizes for the males given above, the pre-selection
the mean and variance are z0 = 140.0 and Var[z0] = 59.5. From Equation 28.2b, the fitness-
weighted mean following the first episode of selection is

z1 = 145 · 0.143 + 128 · 0.143 + 148 · 0 + 138 · 0.286 + 141 · 0.429 = 139.0

Similarly,

z2
1 = 1452 · 0.143 + 1282 · 0.143 + 1482 · 0 + 1382 · 0.286 + 1412 · 0.429 = 19, 325

Hence

Var(z1) =
5
4

(19, 325− 138.9962) = 6.39

Thus, if we again take a hypothetical offspring following the first episode of selection, the
mean character value of the adult that produced this randomly-chosen offspring is 139.0.
Likewise, z2 = 138.8 and Var[z2] = 67.7.
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Potential Issues With Assigning Discrete Fitness Values

In many studies, fitness falls cleanly into discrete categories. Often these are simply binary
such as alive/dead or mated/unmated. Blanckenhorn et al. (1999) note that biased sampling
is not uncommon in such situations. There is a tendency to oversample the rare fitness
class in order to increase the power on measured trait. For example, if 10 percent of the
population dies, there can be a tendency to have more than ten percent of the measures
on individuals showing mortality in order to increase the statistical power to detect small
differences between the fitness classes. Such a sampling scheme generates biased estimates
of phenotypic selection. Oversampling of a rare fitness class results in an underestimation of
selection differentials. Conversely, when selection is on the common class (suppose we have
85% mortality in our sample window), then oversampling the surviving individuals results
in an overestimation of the selection differential. Zuk (1988) and Blanckenhorn et al. (1999)
present corrections of these sources of bias, provided we know the true population frequency
of each fitness class.

Example 28.2. Suppose 10 percent mortality occurs during an episode of selection and one
is examining whether a focal trait influences fitness. The trait may be somewhat difficult to
measure relative to simply scoring individuals as dead or alive, and thus it is tempting to
oversample dead individuals in order to gain more power for testing whether a different in
trait value occurs in the living versus dead groups. Suppose the mean of the trait is 100 in
surviving individuals and 50 in those showing mortality. With 10% mortality, the mean (before
selection) is just 0.1 · 50 + 0.1 · 100 = 95 giving a selection differential of 100 − 95 = 5.
However, if one oversamples dead individuals to gain more precision in the mean of the trait
in this group, say with 25 percent of the sample being dead individuals, then the sample
(before selection) mean becomes 0.25 · 50 + 0.75 · 100 = 87.5 and the resulting selection
differential is overestimated as S = 100− 87.5 = 12.5.

A second issue with assigning fitness values to discrete classes was noted by Brodie
and Janzen (1996): the absolute value of fitness assigned to a class can, in some cases,
influence measures of selection. In the binary case where fitness is scored as 0 and x (such
as dead/living, not mated/mated) any (strictly positive) value can be chosen for x as the
relative fitnesses are independent of the choice of x. However, with three (or more) discrete
fitness classes, this is no longer true. They present an example where laboratory survivorship
was followed over a four year period in turtles. One could code this data as simply 0 (do
not survive) or 1 (survive). However, the data could also be scored as zero through four,
depending on the latest year of survival. They also note that it might make sense to double
the assigned fitness value in year four, as this is when reproduction typically starts in nature.
These two schemes give different relative fitness values for the surviving age classes and
hence different measures of selection. The problem arises here in that only one component
(viability) of selection is measured, but (in nature) reproduction would also be occurring
which is not measured here, and the different proposed fitness-weighting schemes attempt
to partially accommodate this.

Assigning Components of Offspring Fitness to Their Mothers

Generally when assigning reproduction fitness, offspring should be counted at the zygote
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stage. If offspring are counted later in life, they can have experienced selection based on
their own, as opposed to their parents’, phenotypes (Lande and Arnold 1983, Cherverud and
Moore 1994), confounding the targets of selection. However, it is not uncommon for avian and
mammalian evolutionary geneticists to count only “successful”offspring. For example, eggs
in the nest is a close measure of number of zygotes produced, but offspring are often scored
as hatchlings, fledglings, or even only when they themselves join the reproductive pool.
These measures move increasingly away from number of zygotes and can reflect selection
on features of the offspring. Many biologists would counter that maternal care is critical, and
success of offspring is a maternal, rather than offspring, trait (Grafen 1988). Where indeed
does one draw the line? The strict “line in the sand”at zygotes is formally correct provided
parental phenotypes have no influence on offspring fitness. However, it is also clear than in
species with significant maternal investment in offspring care (such as birds and mammals,
as well are plants with significant maternal endosperm contribution in their seeds) that the
genotype and phenotype of the mother can influence the fitness of her offspring independent
of offspring phenotype.

Much of this apparent confusion arises from thinking about this as a univariate selec-
tion problem. In reality this is a multiple trait problem, with offspring survival potential
involving both the direct effect of an offspring on its own fitness and an indirect effect from
the genotype/phenotype of their mother (Kirkpatrick and Lande 1989). Recall that we have
seem similar discussions before in Chapter 18, wherein the fitness of an individual is influ-
enced by its own phenotype (its direct effect) and the associate effects of those individuals
(potentially parents, other relatives, or even unrelated) around it. Chapter 36 examines the
dynamics of such direct/indirect maternal effects models in details. From the standpoint of
assigning fitnesses, when maternal phenotype has no effect on the fitness of her offspring,
assigning the fitness of the mother by counting offspring after potential episodes of selection
(such as viability selection) have occurred is misleading. Conversely, if the maternal phe-
notype does impact survival of her offspring independent of their own direct effects, then
failure to include this also creates a misleading picture (Wolf and Wade 2001). In terms of
correlated traits, one can view maternal preference as one trait and offspring performance as
another. Both can influence the fitness of an offspring. If these are uncorrelated (no genetic or
phenotypic correlation between the direct and maternal effects), maternal fitness should be
assigned as the number of offspring following the episodes of selection in the offspring that
are influenced by the maternal performance trait. For example, a trait may influence survival
to fledging, but then have no future impact. Simply counting number of eggs laid misses the
maternal contribution. Conversely, even if the maternal contribution is important, if there
are correlations between direct and maternal traits, then a misleading picture of selection
can arise unless we uncouple these. Given this somewhat schizophrenic view, how should
one proceed? One suggestion is to do the analysis with several measures of reproductive
success (based on counting offspring at different stages) and see how consistent the results
are. There is also no substitute for a detailed biological understanding of the system being
studied, which may suggest when one should be concerned about potential maternal effects.

Example 28.3. Wilson et al. (2005) examined the effects of birth weight, birth date, and
litter size on reproductive success in a population of Soay sheep (Ovis aries) in Scotland. Two
surrogate measures of lifetime fitness were used: lifetime breeding success (LBS, the number of
progeny produced during lifetime) and lifetime reproductive success (LRS, which the authors
defined for this study as the number of progeny produced that survived to age one). LRS is a
measure that potentially combines offspring and maternal fitness, while LBS ignores viability
effects after birth (although, of course, they could still be present before birth). Likewise,
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fitness-trait associations were consider from two different perspectives, the direct value in the
offspring and the indirect value from their mother. Consider the association of birth-weight
with total fitness. From an offspring’s perspective, this is just the association between their
birth weight and either the LBS or LRS measure of total fitness. Conversely, from the maternal
perspective, this is the association between the average weight of her offspring with her own
LBS or LRS. Wilson et al. found that selection gradients on birth weights were much greater
through offspring LBS than through maternal LBS. Analysis using LRS at the fitness measure
found qualitatively and quantitatively similar results.

Concurrent Episodes, Reproductive Timing and Individual Fitness λind
The partitioning of selection into discrete episodes is, of course, an abstraction of the real
world. Often this is simply done for the convenience of a researcher who wishes to measure
individual fitness by considering just one or two episodes, potentially looking for tradeoffs
between them. Selection episodes (e.g., viability and reproduction) often occur concurrently,
rather than sequentially. For example, in the turtle data of Brodie and Janzen, one has only
information about viability (in the laboratory), and how to weight this to account for viability
translating into reproductive success raises issues in assigning fitness values. Methods to
partition concurrent episodes into their components have been proposed (e.g., Hamon 2005).
The more general problem is assigning an appropriate measure of fitness that accounts for
reproductive timing.

We have been stressing the use of lifetime reproductive success (LRS), but this is a
rate-insensitive measure, counting only the total number of offspring, not the actual timing
at which they are produced. If reproduction occurs in a discrete window and generations
are non-overlapping, LRS does indeed provide a good measure of fitness. However, when
generations overlap, the actual timing of reproductive events can be more important than
the total number of offspring. Consider three individuals, all of which produce a total of
forty offspring during their lifespan, so that each have the same fitness as measured by LRS.
However, suppose individual one has 10 offspring each at ages 2, 3, 4, and 5, individual 2
has 20 offspring at both ages 4 and 5, and individual three has 20 offspring at ages 2 and
3. Clearly, individual three has a higher rate of offspring production, even though it has the
same LRS as the other two individuals. How do we account for this?

One solution is based on age-projection (or Lesile) matrices (Leslie 1945, 1948; Caswell
1989, 2001). While first proposed by Lenski and Service (1982), who worried that such mea-
sured might be biased, it was McGraw and Caswell (1996) who forcefully argued for this
approach as a measure of individual fitness in age-structured populations. Recall from Chap-
ter 23 that the growth rate of an age-structure population can be determined from `x, the
probability of surviving from age (or class) x to x+ 1, and fx, the fecundity in class x. This
information is expressed in a k × k matrix, where k is the upper age limit on reproduction.
The first row of the Lesile matrix contains the fecundities, while the below-diagonal line
consists of the `x values,

L =


f1 f2 · · · fk−1 fk
`1 0 · · · 0 0
0 `2 · · · 0 0
...

. . . 0 0
0 0 · · · `k−1 0

 (28.3a)

If n(t) is a vector of the number of individuals in each age/stage class at some time t, then
n(t+ 1) = Ln(t). The (asymptotic) growth rate λ for this population is given by the largest
eigenvalue of L (Chapter 23, Appendix 4). Now consider a particular individual who last
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reproduces at age m. The resulting Lesile matrix for this individual is

Lind =


f1 f2 · · · fm−1 fm
1 0 · · · 0 0
0 1 · · · 0 0
...

. . . 0 0
0 0 · · · 1 0

 (28.3b)

where fx is half the number of offspring the individual produced at age x (the half to
account for both males and females contributing to the population and hence we do not
wish to double-count offspring). Note that LRS = 2

∑k
j fj . While Lind is very similar to

a population growth matrix, the fecundities are those observed for the focal individual (as
opposed to population averages for each age class), and we know this individual survives
to (at least) age m so that we replace the `x (average survival per age class) with ones,
indicating actual survival. The “growth”rate λind for this individual is simply given by the
largest eigenvalue of Lind. Alternatively, this satisfies the equation

m∑
i=1

fi λ
−i
ind = 1 (28.3c)

Lenski and Service (1982) expressed concern that λind is a biased measure, as the average of
the λind does not equal the population average growth rate λ. McGraw and Caswell (1996)
note two sources of bias. First, for any given phenotypic class, the particular realization
Lind for an individual in that class is a biased estimator of the matrix for that class (i.e.,
the trait-value z dependent survival fx(z), and fecundity `x(z)). The reason is that random
death prevents a proper estimation of the fx values, especially for later ages. The second
source of bias is that the average of the leading eigenvalue for each realization of Lind
does not necessarily equal the leading eigenvalue for the average matrix. Despite these
concerns, McGraw and Caswell (1996) still favor this measure, while Lenski and Service
(1982) developed a resampled measure with less bias. Alternatively, if the mean population
growth rate λ is known, then an unbiased estimator for the relative fitness for individual j is

w(j) = λ

k∑
i=1

fi(j) λ−i (28.3d)

where fi(j) denotes j’s fecundity at age i.

Example 28.4. When generations overlap, the timing of reproduction can be at least as
important as the lifetime reproductive success (LRS, the total number of offspring produced).
Consider the three hypothetical individuals mentioned above, all of whom have a LRS of
40, but have differences in the timing of reproduction. The Leslie matrices for these three
individuals become

L1 =


0 5 5 5 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , L2 =


0 0 0 10 10
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , L3 =

 0 10 10
1 0 0
0 1 0

 ,



λ
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Here, λ1 = 2.77, λ2 = 1.97, and λ3 = 3.58, Hence, individuals one and two are 77% and
55% (respectively) as fit as individual 3.

Example 29.1 shows that individuals with the same LRS can have very different λind,
indeed the rankings of individuals based on LRS versus λind can be rather different (Fig-
ure 29.1). It should not be surprising that Brommer et al. (2002) note several cases where
inferences on selection are different when λind is used in place of LRS. An especially telling
example in shown in Figure 29.1, which plots these two measures of fitness for female Ural
owls (Strix uralensis). Note that there is a diminishing return in λind with increasing LRS.
This occurs because reproductive contributions later in life are increasingly down-weighted.
While there are strengths to using λind, it is not without problems. Brommer et al. (2002)
make the important point that the stage when offspring are scored (e.g., eggs vs. hatchlings)
is critical. Although LRS can also change given differences in the stage of scoring, the effects
can be much more dramatic for λind, which differentially-weights offspring produced at
different ages.

Figure 29.1. Lifetime reproductive success (LRS) versusλind in 56 Ural owls where offspring
as measured as fledglings. Note here that increasingly LRS results in diminishing returns in
λind, which occurs because additional reproduction later in life is increasingly down-weighted
by λind. After Brommer et al. (2002).

We remark in closing that there is a robust discussion in the literature on the appropri-
ate measures of selection in age-structured populations (a partial list includes Charlesworth
1980, Lande 1982, Charlesworth 1983, Lenski and Service 1982, Travis and Henrich 1986,
Partridge and Harvey 1988, Henle 1991, de Gong 1994, Metz et al. 1992, Kozlowski 1993,
Charlesworth et al. 1994, McGraw and Caswell 1996, Brommer 2000, Brommer et al. 2003,
Metcalf and Pavard 2007). Indeed, Stearns (1976) said it best: “Fitness: something everyone
understand but no one can define precisely.” In part this arises because different ques-
tions (e.g., can a new phenotype invade a population versus change in a trait value) can
result in different appropriate fitness definitions. The issue of selection response in such
age-structured populations was considered in Chapter 23 and will be again in Chapter 36.
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VARIANCE IN INDIVIDUAL FITNESS

How do we compare the amount of selection acting on different populations? At first glance,
one might consider using the standardized selection differential (the selection intensity)
ı = S/σ for comparing the relative strength of individual selection between populations.
The drawback with ı as a measure of overall selection on populations is that it is character
specific. Hence, ı is appropriate if we are interesting in comparing the strength of selection on
a particular character, but inappropriate if we wish to compare the overall strength of selection
on individuals. Two populations may have the same ı value for a given character, but if that
character is tightly correlated with fitness in one population and only weakly correlated in
the other, selection is much stronger in the latter population. Further, considerable selection
can occur without changing the mean (e.g., stabilizing selection). Standardized differentials
also exist for the variance, but the problem of character-specificity still remains.

A much cleaner measure (independent of the characters under selection) is I , the op-
portunity for selection, defined as the variance in relative fitness:

I = σ2
w =

σ2
W

W
2 (28.4)

This measure was introduced by Crow (1958, reviewed in 1989), who referred to it as the In-
dex of Total Selection and was independently developed by O’Donald (1970). I is estimated
by

Î = Var(w) =
n

n− 1

(
w2 − 1

)
(28.5)

Crow noted that if fitness is perfectly heritable (e.g., h2(fitness) = 1), then I = ∆w, the
scaled change in fitness. Following Arnold and Wade (1984a,b) we call I the opportunity
for selection, as any variation in individual fitness represents an opportunity for a within-
generation change in a trait. The opportunity for selection bounds the maximum value of
ı. This follows by using (respectively), the definition of a correlation ρ, the Price-Robertson
identity S = σ(z, w), and the fact that |ρ| ≤ 1, to give

| ρz,w | =
|σ(z, w)|
σzσw

=
|S|
σz
√
I
≤ 1,

implying
| ı | ≤

√
I (28.6)

Thus, the most that any mean can be shifted within a generation is
√
I phenotypic standard

deviations.

Example 28.5. To estimate I for the bullfrog data used in Example 28.1, we first compute
the lifetime relative fitnesses as w = w1 · w2, which gives relative lifetime fitnesses of 1.162,
1.020, 0, 0.652, and 2.160 for the five chosen males. Thus

w2 = (1/5)
[
1.1622 + 1.0202 + 02 + 0.6522 + 2.1602

]
= 1.496

giving

Î =
5
4

(1.496− 1) = 0.62

Hence, the most selection can change the mean of any character within a generation is
√
I '

0.79 standard deviations. The observed change in male body size (in standard deviations)
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from Example 28.1 is (138.8 − 140)/
√

59.5 = −0.155, less than one-fifth of the maximum
absolute change of 0.79.

The usefulness of I as a bound of ı depends on the correlation between relative fitness
and the character being considered. Figure 28.2 shows scatterplots of relative fitness versus
two characters (z1 and z2) measured in the same set of individuals. The marginal distributions
of fitness are identical for both characters (since the same set of individuals was measured),
and hence both have the same opportunity for selection. The association between relative
fitness and z1 is fairly strong, while there is no relationship between relative fitness and z2,
so that z1 realizes much, while z2 realizes none, of the opportunity for change.

Figure 28.2. The fraction of the opportunity for selection I that is translated into a change
in the mean depends on the correlation between relative fitness and the character. Characters
z1 and z2 have the same marginal distribution of fitness, but only the regression ofw on z1 is
significant. Thus (within a generation) selection changes the mean of z1 but not z2.

In many cases individual fitnesses are not recorded, instead average fitness for each
phenotypic class is estimated. In such cases, we can still obtain a lower bound for I , as the
following example illustrates.

Example 28.6. O’Donald (1970, 1971) analyzed the data of Dowdeswell (1961), who looked
for selection on eyespot number on the hindwing of the European butterfly Maniola jurtina
(see Brakefield 1984 for a review of the biology of this character). Dowdeswell compared the
population distribution of eyespot number between a series of wild-collected females and a
series of females reared from larvae. Presumably, the difference in distributions was due to
selection on adults. By comparing the relative eyespot frequencies in reared and wild adults,
fitnesses for each phenotypic class were estimated (see O’Donald 1971 for details).
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Eyespot
number Fitness Number

0 1.000 124
1 0.699 67
2 0.657 34
3 0.548 10
4 0.000 2

Here number represents the number of females in a particular eyespot class in the laboratory
sample. Thus,

W =
1

237
[(1 · 124) + (0.699 · 67) + (0.675 · 34) + (0.548 · 10)] ' 0.838

W 2 =
1

237
[
(12 · 124) + (0.6992 · 67) + (0.6752 · 34) + (0.5482 · 10)

]
' 0.736

Thus

Var(W ) =
237
236

(
0.736− 0.8382

)
' 0.034

and

Î =
0.034
0.8382

' 0.048

This is an underestimate, as to properly estimate I the distribution of individual fitnesses, rather
than mean fitness for each phenotypic class (character fitnesses), is required. These data only
allow us to estimate the between-group variance in fitness (the variance in average fitness for
the different eyespot classes). This gives an underestimate of I because it neglects within-group
variance (the variance in fitness among individuals with the same number of eyespots).

Partitioning I Across Episodes of Selection

The total opportunity for selection can be partitioned into opportunities associated with each
episode. Such a partitioning allows the relative strength of selection to be compared across
episodes as well as bounding the change in means and variances due to selection during any
particular episode. Denote the opportunity of selection associated with the jth episode by Ij .
By analogy with the definition of I , Arnold and Wade (1984a) suggest that the appropriate
definition is the variance in the relative fitnesses of the jth fitness component:

Ij = σ2 (wj) = E(w2
j )− 1 (28.7a)

which is estimated by

Îj = Var(wj) =
n

n− 1

(
w2
j − 1

)
=

n

n− 1

(∑
r

w2
j (r) pj−1(r)− 1

)
(28.7b)

Arnold and Wade show that the partition for I over k episodes of selection is given by

I =
k∑
j=1

Ij +R (28.8)
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where the remainder term, R, represents a complex sum of covariances between fitness
components (see Arnold and Wade 1984a for details).

Example 28.7. Compute the estimates of I1 and I2 using the data from Example 28.1. Using
the relative fitnesses given in the table, p0(r) = 1/5 giving

w2
1 =

1
5
(
0.7142 + 0.7142 + 02 + 1.4292 + 2.1432

)
' 1.531

Likewise

w2
2 =

∑
r

w2
2(r) p1(r) = 1.6282 · 0.143 + 1.4292 · 0.143

+ 0.4562 · 0.286 + 1.0082 · 0.429 ' 1.165

Hence

Î1 =
5
4

(1.531− 1) ' 0.664

and

Î2 =
5
4

(1.165− 1) ' 0.206

Since Î = 0.62 (Example 28.5), Î1 + Î2 = 0.87 6= Î . From Equation 28.8,

R̂ = 0.62− 0.87 = −0.25

reflecting the strong negative covariance within individuals between the first and second
fitness components (in this data set, individuals with highw1 tend to have a loww2 and vice
versa).

Correcting Lifetime Reproductive Success for Random Offspring Mortality

As noted by Clutton -Brock (1988), the variance in female lifetime reproductive success tends
to increase with the age at which the offspring are counted. For example, in birds I typically
increases as we measure reproductive success by counting eggs, hatchings, and fledged
offspring. One might expect to see this pattern when maternal care is important, but it can
also arise simply from random offspring mortality. Cababa and Kramer (1991) noted that
a correction by Crow and Morton (1955), originally suggested for allele frequency change,
can be used to adjust for random mortality. Suppose (before an episode of selection) that the
mean family size is µ with variance σ2

1 . If offspring mortality is entirely random, with s the
probability of survival, then the mean after selection is just sµ and the variance σ2

2 satisfies

σ2
2/(sµ)− 1

sµ
=
σ2

1/µ− 1
µ

(28.9a)

Thus, Cababa and Kramer find that the opportunity for selection under random offspring
mortality is given by

I2 = I1 +
1/s− 1
µ

(28.9b)
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Thus, random offspring mortality always inflates the variance in reproductive success, with
the effect inversely proportional to the survival probability s and mean family size µ. The
effect of random mortality is most exaggerated for small mean family size and high random
mortality. Cababa and Kramer apply this correction to 43 case studies of vertebrate repro-
ductive success. In all these cases, the mean decreased and the variance increased with time
of offspring enumeration. A study of 16 birds found the predicted value of I2 from Equation
28.9b was roughly 45% of the observed value, while a study of 12 birds and mammals found
it to be around 67% of the observed value. Thus, not all of the reduction in I2 over time is
due to random mortality (at least as given by the Crow-Morton model). However, a large
fraction of the reduction can indeed to accounted for by this simple model.

Variance in Mating Success: Bateman’s Principles

As we (briefly) review in Chapter 42, selection on mate choice – sexual selection — is a
major field of study in evolutionary biology. The total reproductive output of an individual
is the product of their number of mates and the average fecundity (number of offspring) per
mating. Number of mates represent sexual selection, while fecundity per mating is a measure
of natural selection. In a classic paper that was overlooked for many years, Bateman (1948)
used data from mating success and fecundity in laboratory populations of Drosophila to
propose several principles regarding sexual selection. These can be expressed in terms of
opportunities for selection (Arnold 1994, Arnold and Duvall 1994):

1. Males show a greater variance in number of offspring than do females. The opportunity for
selection based on total fecundity, a composite measure of both sexual and natural
selection, is greater for males than females.

2. Males show a greater variance in number of mates than do females. The opportunity for
selection when measured by number of mates in larger in males than in females.
This is a direct measure of sexual selection.

3. The total number of offspring in males is an increasing function of number of mates, but is
largely independent of number of mates in females. Provided that females have mated,
their fecundity is largely independent of the number of mates. Thus, in females, the
average fecundity/mating should be a decreasing function of number of mates, as her
total fecundity, (number of mates) * (fecundity per mating), is largely independent
of the number of mates (provided they have at least one).

The essence of Bateman’s observations is that the fitness of females is not increased by
additional matings, while male fitness is, so that the third principle drives the first two.
While these three principles serve as a useful baseline for thinking about sexual selection,
Arnold (1994) and Arnold and Duvall (1994) show that each of these can be violated in
different mating systems. If female fecundity also increases with number of matings (such
as can occur when males provide nuptial gifts), then we expect sex-specific differences in the
opportunity for selection based on both total reproductive success and number of mates to
decrease. A hypothetical (extreme) example is in some mantids, wherein the female eats her
mate, accruing additional nutrition. In such cases, “successful”males mate just once, while
female fecundity could easily (in theory) be an increasing function of number of mates.
Arnold and Duvall (1994) suggest that the regression of total fecundity on number of mates
(a measure of principle three) provides a metric of the impact of sexual selection on total
fitness, and denote this regression coefficient as the sexual selection gradient.

Some Caveats in Using the Opportunity for Selection

There are several subtle issues in the interpretation of I . To begin with, even though I appears
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to remove scaling effects due to different types of fitnesses, for estimates of I to be truly
comparable, they must be based on consistent measures of fitness (Trial 1985). Consider the
opportunity for selection based on number of mates per male (sexual selection) Is versus the
opportunity for selection based on total male reproductive success (the number of offspring
per male) Irs. Total male reproductive success depends on both number of mates and fertility
per mating. Recalling Equation 28.8, Irs = Is+If+R, where If is the opportunity for selection
based on differences in male fertility per mating. Hence, Irs is expected to exceed Is unless
there is sufficient negative covariance between the mating success and fertility components
(R < −If ).

A second point is that if the variance in fitness is not independent ofW , comparisons of
I values between populations are compromised. This occurs in cross-sectional studies that
measure sexual selection by simply counting the number of mating pairs (in such studies, an
unequal sex ratio further biases comparisons of I between the sexes). If the time scale is such
that only single matings are observed, the fitness of any individual is either 1 (mating) or 0
(not mating). The resulting fitness of randomly-drawn individuals is binomially distributed
with mean p (the mean copulatory success for the sex being considered) and variance p(1−p),
hence

I =
p(1− p)
p2

' 1
p

if p << 1 (28.10)

In this case, the mean and variance in individual fitness are not independent, and the op-
portunity for selection depends entirely on mean population fitness. As the time window
for observing mating pairs decreases, fewer matings are seen and p decreases, increasing I .
As the data plotted in Figure 28.3 illustrate, the opportunity for selection is often inflated if
the observation period is short relative to the total mating period.

Figure 28.3. The ratio of the opportunity for selection on reproductive success to the lifetime
opportunity for the coreid bug Colpula lativentris as a function of observation period. Males
are given by filled circles, females by open circles. Note the inflation in I when very short
intervals are considered. After Nishida (1989).

A second example of the lack of independence betweenW and σ2
W was given by Down-

hower et al. (1987). The Poisson distribution is a reasonable model for the number of mates
under random mating. Indeed, Joshi et al. (1999) found that the Poisson distribution provides
an excellent fit for male mating success in laboratory populations of Drosophila melanogaster.
Assuming that the number of mates for any given male follows a Poisson distribution, the
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variance in number of mates equals the mean number of mates, giving

I =
W

W
2 = W

−1

whereW is the mean number of mates per male. Thus, differences in I between populations
do not necessarily indicate biological differences in male mating ability. For example, in a pop-
ulation of 100 males, if only 5 females mate, average male mating success isW = 0.05, while
if 50 females mate, W = 0.5. For this example, differences in I come solely from variation
in the number of mating females, not biological differences between males in their ability to
acquire mates. Downhower et al. conclude from this example that comparing I values with
the Poisson prediction (I = W

−1
), or some other appropriate random distribution, may

help clarify the interpretation of I . For this case, values of I less than the Poisson prediction
indicate a more uniform distribution of fitness than expected if mate choice is random, while
values in excess of this expectation indicate disproportionately high fitness among a limited
set of individuals. In a study of four species with lek mating systems (matings typically
occur only in a specified area), Mackenzie et al. (1995) found that the combination of random
mating and variation in male attendance at the lek account for roughly 40% of the variation
in male mating success. Thus, the variance in success was inflated by random factors, but
still contains a substantial fraction of unexplained variance.

This comparison of I to the value expected under a Poisson distribution of individual
fitness is an attempt to account for differences in opportunities for selection due to differences
in mean fitness. In effect, this is a problem of stabilizing the variances (LW Chapter 11). Since I
is the squared coefficient of variation in fitness, it is plagued by the same statistical problems
as the Roginskii-Yablokov effect — even if σ2(W ) and W are independent, recall from LW
Chapter 11 that a negative correlation is often expected between x/y and y even when x and
y are independent. Thus, in most cases we expect I to be somewhat dependent on W .

The Poisson mating example further points out that random variation (differences in
individual fitness not attributable to intrinsic differences between individuals) reduces the
correlation between phenotypic value and relative fitness. For this reason, measures of se-
lection based entirely upon variance in mating success have been criticized (Banks and
Thompson 1985, Sutherland 1985a,b, Koenig and Albano 1986, more recent refs?). Although
carefully controlled studies can reduce the error variance induced by chance (e.g., Houck et
al. 1985), accounting for inflation of the opportunity for selection by random effects remains
a problem.

DESCRIBING PHENOTYPIC SELECTION: INTRODUCTORY REMARKS

The discussion thus far in this chapter largely dealt with the fitness of individuals, indepen-
dent of any knowledge of their phenotypes. Selection can favor certain phenotypes, leading
to our second major topic — how do particular character values influence the fitness of
an individual? Our interest in a particular character may be in predicting how selection
changes it over time, which requires knowledge of the genetics of that character. Alternately,
we may simply wish to explore the ecological implications of a character by examining how
expected fitness changes with character value. While only the relationship of total fitness
to the character is needed to describe the evolutionary response to selection, partitioning
fitness across episodes of selection can enhance our understanding of the ecology of that
trait.

One simple approach for detecting selection on a character is to compare the (fitness-
weighted) phenotypic distribution before and after some episode of selection. We assume (for
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this chapter) that any such within-generation change following an episode of selection is not
due to selection on a phenotypically-correlated trait, relaxing this very unrealistic assump-
tion in Chapter 29. Further, recall from Chapter 16 that a spurious fitness-trait correlation
arises if both are correlated with an environmental variable. Even if there is no selection
acting on traits phenotypically-correlated to our focal character nor trait-fitness correlations
through an environmental variable, an one important caveat is that growth or other onto-
genetic changes, immigration, and environmental changes can also change the phenotypic
distribution. We must take great care to account for these factors. Typically, selection on a
character is measured by considering changes in the mean and variance, rather than changes
in the entire distribution. Indeed, as was discussed in Chapters 10-14, in many cases the en-
tire selection response following a generation of selection can be reasonably predicted from
the within-generation change in these two moments. As we have already seen, there are a
number of subtle issues in assigning fitnesses to phenotypes. A thoughtful review of some
of these issues is given by Grafen (1988), Cherverud and Moore (1994) and Wolf and Wade
(2001).

Figure 28.4. Phenotypic selection has historically been roughly classified into three basic
forms depending on the local geometry of W (z): stabilizing (A), directional (B), and dis-
ruptive (C). As D illustrates, populations can simultaneously experience multiple forms of
selection.

Fitness Surfaces

W (z), the expected fitness of an individual with phenotype z, describes a fitness surface
(or equivalently a fitness function or fitness profile), relating fitness and character value.
The relative fitness surface w(z) = W (z)/W is often more convenient than W (z), and we
use the two somewhat interchangeably. The nature of selection on a character in a particular
population is determined by the local geometry of the individual fitness surface over that
part of the surface spanned by the population (Figure 28.4). If fitness is increasing (decreas-
ing) over some range of phenotypes, a population having its mean value in this interval
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experiences directional selection. Curvature of the fitness surface is important as well, with
stabilizing or disruptive selection being possible when curvature is present. IfW (z) contains
a local maximum, a population with members within that interval experiences stabilizing
selection. If the population is distributed around a local minimum, disruptive selection
occurs. More generally, we can have positive (upward or concave) or negative (downward
or convex) curvature without having a maximum/minimum, and hence not formally stabi-
lizing or disruptive selection (respectively). As is illustrated in Figure 28.4D, when the local
geometry of the fitness surface is complicated (e.g., multimodal) the simplicity of description
offered by these three types of selection breaks down, as the population can experience all
three simultaneously.

W (z) may vary with genotypic and environmental backgrounds. In some situations
(e.g., predators with search images, sexual selection, dominance hierarchies, truncation se-
lection) the fitness of a phenotype depends on the frequency of other phenotypes in the
population. In this case, fitnesses are said to be frequency-dependent.

Mean population fitness W is also a fitness surface, describing the expected fitness of
the population as a function of the distribution of phenotypes (p(z,Θ) whereΘ is the vector
of distribution parameters such as the mean and variance) in that population,

W (Θ) =
∫
W (z) p(z,Θ) dz

Hence, mean fitness can be thought of as a function of the parameters of the phenotypic
distribution, and we are interested in how change in these parameters changes W . For
example, if z is normally distributed, mean fitness is a function of the mean µz and variance
σ2
z for that population.

Figure 28.5. In this example, a small change in z can result in a large change in the individual
fitness surfaceW (z). However, since the mean population fitnessW (µz) averages individual
fitnesses over the phenotypic distribution, shown as the stippled curve, small changes in µz
result in only small changes in W (µz).

To stress the distinction between the W (z) and W fitness surfaces, the former is re-
ferred to as the individual fitness surface, the latter the mean fitness surface. Knowing the
individual fitness surface allows us to compute the mean fitness surface for any specified
phenotypic distribution p(z), but the converse is not true. The importance of the mean fit-
ness surface is that it provides one way of describing how the population changes under
selection. When the breeders’ equation holds, the first two partial derivatives of W with
respect to µz describes the change in mean and variance (Equations 10.23c and 28.17). More
generally, partials of W with respect to higher phenotypic moments describe the dynamics
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of selection in the Barton-Turelli response equations (e.g., Equations 24.26 and 24.29). Mean
fitness surfaces are considerably smoother than the individual fitness surfaces that gener-
ate them (Figure 28.5). The individual fitness surface may have discontinuities and rough
spots — regions where very small changes in phenotypic value result in large changes in
individual fitness. Mean population fitness averages over W (z), smoothing out these rough
spots. This smoothing facilitates the existence the various partials of mean fitness used in
the Barton-Turelli equations (Chapter 24).

DESCRIBING PHENOTYPIC SELECTION: CHANGES IN PHENOTYPIC MOMENTS

Selection for particular phenotypes changes in the trait distribution (although it need not
change all moments, for example, the mean may be unchanged). Thus, selection is detected
by testing for differences between the distribution of phenotypes before and after some
episode of selection. Nonparametric tests such as the Kolmogorov-Smirnov test (Sokal and
Rohlf 1994) have the advantage of making no assumptions about the form of the distribution,
but suffer from low power. While complete distributions can be compared, the most common
procedure for detecting selection is to test for changes in phenotypic moments. Standard
statistical tests for differences in means (t-tests) and variances (F -tests) can be used, but these
rely on normality assumptions that are often violated, and nonparametric tests are often
more appropriate. Differences in means can be tested using the Wilcoxon-Mann-Whitney
test, while Conover’s squared rank test (Conover 1999) can be used to test for changes in
variances. Other nonparametric tests for changes in variance exist, but care must be exercised,
as some (e.g., the Siegel-Tukey test) are quite sensitive to differences in means; see Conover
(1999) and Sprent and Smeeton (2007). While these issues are important, the main problem
in detecting selection on a character is that changes in the moments may be due entirely
to selection on phenotypically correlated characters (Chapter 29). Keeping this important
caveat in mind, we now examine measures of selection for single characters.

Directional Selection

Three measures of the within-generation change in phenotypic mean have been previously
introduced: the directional selection differential S, the standardized directional selection
differential (selection intensity) ı, and the directional selection gradient β. These measures
are interchangeable (using an appropriate scaling factor) for selection acting on a single
character (e.g., Equations 10.5, 10.9 and 10.23a). When multiple characters are considered, the
multivariate extension of β is the measure of choice, as it measures the amount of selection
on a character over and above that attributable to selection on any other phenotypically
correlated traits under consideration, while S (and hence ı) confounds these direct and
indirect effects (Equation 29.4).

Quadratic Selection

Similar measures can be defined to quantify the change in variance. At first blush this seems
best described by σ2

z∗ − σ2
z , where σ2

z∗ is the phenotypic variance following selection. The
problem with this measure is that directional selection reduces the variance. Lande and
Arnold (1983) showed that

σ2
z∗ − σ2

z = σ
[
w, (z − µz)2

]
− S2 (28.11)

(proved, for the multivariate version, in Example 29.2). Hence, directional selection decreases
the phenotypic variance by S2. With this in mind, Lande and Arnold suggest a corrected
measure, the stabilizing selection differential

C = σ2
z∗ − σ2

z + S2 (28.12)
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which describes selection acting directly on the variance. As we will see below, the term
stabilizing selection differential may be misleading, so following Phillips and Arnold (1989)
we refer to C as the quadratic selection differential. Correction for the effects of directional
selection is important, as claims of stabilizing selection based on a reduction in variance fol-
lowing selection can be due entirely to reduction in variance caused by directional selection.
Similarly, disruptive selection can be masked by directional selection (e.g., Example 28.10).
Provided that selection does not act on characters phenotypically correlated with the one
under study, C provides information on the nature of selection on the variance. Positive
C indicates selection to increase the variance (as would occur with disruptive selection),
while negative C indicates selection to reduce the variance (as would occur with stabilizing
selection). As we discuss shortly, C < 0 (C > 0) is consistent with stabilizing (disruptive)
selection, but not sufficient. A further complication in interpreting C is that if the phenotypic
distribution is skewed, selection on the variance changes the mean (e.g., Equations 5.44b,
24.27, 24.28). This causes a non-zero value of S that in turn inflates C (Figure 28.6).

Figure 28.6. Even when a population is under strict stabilizing selection, the mean can
change if the phenotypic distribution is skewed. A standard fitness function for stabilizing
selection isW (z) = 1− b(θ− z)2. O’Donald (1968) found that, even if the population mean
is at the optimum value (µz = θ), S is nonnegative if the skew is nonzero (µ3,z 6= 0) as
S = −(bµ3,z)/(1 − bσ2

z). The solid line and stippled curve represent the pre- and post-
selection phenotypic distributions. Left: If phenotypes are distributed symmetrically about
the mean (µ3,z = 0), the distribution after selection has the same mean whenµz = θ. Right: If,
however, the distribution is skewed, more of the distribution lies on one side of the mean than
the other. Since the distribution is “unbalanced”, the longer tail experiences more selection
than the shorter tail, changing the mean.

Analogous to S equaling the covariance between z and relative fitness, Equation 28.11
implies C is the covariance between relative fitness and the squared deviation of a character
from its mean

C = σ
[
w, (z − µ)2

]
(28.13)

As was the case with S, the opportunity for selection bounds the maximum possible
within-generation change in variance (Arnold 1986). ExpressingC as a covariance and using
the definition of a correlation gives C = ρw,(z−µ)2 σw σ[(z − µ)2]. Since ρ2 ≤ 1, we have

C2 ≤ σ2
w σ

2[(z − µ)2] = I ·
(
µ4,z − σ4

z

)
(28.14a)

whereµ4,z = E[(z−µ)4]. Equation 28.14a follows fromσ2[(z−µ)2] = E[(z−µ)4]−E[(z−µ)2]2.
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Thus,

|C| ≤
√
I (µ4,z − σ4

z) (28.14b)

If z is normally distributed, µ4,z = 3σ4
z (Kendall and Stewart 1977), giving

|C| ≤ σ2
z

√
2I (28.14b)

The quadratic analogue of β, the quadratic (or stabilizing) selection gradient γ, was
suggested by Lande and Arnold (1983),

γ =
σ
[
w, (z − µ)2

]
σ4
z

=
C

σ4
z

(28.15)

As was the case of β, in its univariate form γ appears as a simple rescaling of C, while its
multivariate form removes the influence of phenotypic correlations among the measured
traits (Chapter 29).

Gradrients Describe the Local Geometry of the Fitness Surface

A conceptual advantage of β and γ is that they describe the average local geometry of the
fitness surface when phenotypes are normally distributed. When z is normal and individual
fitness are not frequency-dependent, we show in Example A5.4 that β can be expressed
in terms of the geometry of the mean fitness surface, β = ∂ lnW/∂µz = W

−1
∂W/∂µz , the

slope of theW surface with respect to population mean. β can also be expressed as a function
of the individual fitness surface. Lande and Arnold (1983) showed, provided z is normally
distributed, that

β =
∫
∂w(z)
∂z

p(z) dz (28.16a)

implying that β is the average slope of the individual fitness surface, the average being taken over
the population being studied (the multivariate version is proved in Chapter 29). Likewise,
if z is normal,

γ =
∫
∂2w(z)
∂z2

p(z) dz (28.16b)

which is the average curvature of the individual fitness surface (Lande and Arnold 1983).
Thus, β and γ provide a measure of the geometry of the individual fitness surface averaged
over the population being considered.

Gradrients Appear in Selection Response Equations

A final advantage of β and γ is that they appear as the only measure of phenotypic selection
in equations describing selection response. We have already seen (Equation 10.23b) that
under the constraints of the breeders’ equation, ∆µ = σ2

Aβ, which is independent of any
other measure of the phenotype (note that σ2

z is missing). Similarly, for predicting changes in
variance under the infinitesimal model, from Equation 13.7b the expected change in variance
from a single generation of selection is

∆σ2
z =

h4

2
δσ2
z

=
σ4
A

2σ4
z

(
C − S2

)
=
σ4
A

2
(
γ − β2

)
(28.17)

which decomposes the change in variance into changes due to selection on the variance and
changes due to directional selection. Again, note that, when expressed in terms of gradients,
the phenotypic variance term vanishes.
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While the distinction between differentials and gradients seems almost trivial in the
univariate case (only a scale difference), the multivariate versions are considerably different.
As we will see in Chapter 29, gradients have the extremely important feature of removing
the effects of phenotypic correlations.

Partitioning Changes in Means and Variances into Episodes of Selection

Suppose the total amount of within-generation selection is partitioned into k episodes of
selection. Let µj and σ2

j be the (fitness-weighted) mean and variance after the jth episode of
selection (µ = µ0 and σ2 = σ2

0 are the mean and variance before the first measured episode
of selection).

The definitions of S, C, β, and γ suggest (Arnold and Wade 1984a) that appropriate
measures for the jth episode of selection are given by

Sj = µj − µj−1 (28.18a)
Cj = σ2

j − σ2
j−1 + S2

j (28.18b)

βj =
Sj
σ2
j−1

(28.18c)

γj =
Cj
σ4
j−1

(28.18d)

The properties for S and C hold for episodes of selection. Thus,

Sj = σ(wj , z) and Cj = σ[wj , (z − µj−1)2]

where wj is the fitness for the jth episode of selection. Likewise, substituting Ij for I in
Equations 28.6 and 28.14c bounds both Sj and Cj .

Example 28.8. For Example 28.1, following male body size over two episodes of selection
we find that Ŝ1 = z1 − z0 = −1, Ŝ2 = −0.25 and Ŝ = −1.25. Likewise,

Ĉ1 = Var[z1]− Var[z0] + Ŝ 2
1 = 6.4− 59.5 + (−1)2 ' −52.1

Similar calculations yield Ĉ2 ' 61.4 and Ĉ ' 9.80. Based on this limited data set, there
appears to be directional selection to reduce body size during both episodes. In addition, there
is selection to reduce the variance in body size during the first episode (mate choice) countered
by selection to increase this variance during the second episode (fertility per mating).

How do these individual episode measures relate to the total measure over all episodes?
The partitions for S and C are additive, with

S =
k∑
j=1

Sj (28.19a)

and

C =
k∑
j=1

Cj +

S 2 −
k∑
j=1

S 2
j

 (28.19b)



MEASUREMENT OF UNIVARIATE SELECTION 323

Partitioning β and γ requires a little more care, as we have to account for changes in the
phenotypic variance following each episode. Rewriting Sj = σ2

j−1βj gives

β =
k∑
j=1

βj

[
σ 2
j−1

σ 2
0

]
(28.19c)

Thus, the total selection gradient is a weighted sum of the individual gradients associated
with each episode. In their original paper, Arnold and Wade (1984a) stated that the total
selection gradient is the sum of gradients associated with each selective episode, but the
above expression shows this holds only when selection does not change the phenotypic
variance (Kalisz 1986, Wade and Kalisz 1989). The partition of γ follows similarly,

γ =
k∑
j=1

γj

[
σ4
j−1

σ4
0

]
+

1
σ4

0

[
S 2 −

k∑
j=1

S 2
j

]
(28.19d)

Choice of the Reference Population: “Independent Partitioning”
Using the above additive partitioning scheme, selection differentials and gradients for a
particular episode are based on their fitness-weighted values from the previous episode and
are (with appropriate weighting) additive across episodes. Several authors have suggested
that using an independent partitioning instead can provide additional insight into the
nature of selection (Conner 1988, Koenig and Albano 1987, Koenig et al. 1991, Preziosi and
Fairbairn 2000). Under an independent partitioning, one uses the observed distribution of
phenotypes as the reference population (as opposed to their fitness-weighted distribution)
when computing statistics for each episode. Such a partition does not weight for previous
selection (and hence provides a misleading picture for evolutionary response), but it may
provide insight into the action of selection in particular episode, as Example 28.9 highlights.

Example 28.9. To illustrate the difference between additive and independent partition,
Koenig et al. (1991) present the following hypothetical data set relating body size with natural
(survival) and sexual (mating rate) selection.

Size Suriviorship Mating Success Total Mates
z (Days alive), W1 (Mates/days alive), W2 W1W2

11 1 3 3
12 1 2 2
13 1 1 1
11 10 1 10
12 10 2 20
13 10 3 30

Here, the mean of z before selection is 12. Focusing on total mates, the mean number of mates
is 11, and the fitness-weighted mean is

1
6

[
11
(

3 + 10
11

)
+ 12

(
2 + 30

11

)
+ 13

(
1 + 20

11

)]
= 12.3

Thus, the total selection differential on size due to size-related differences in number of mates
of 12.3-12 = 0.3. However, the selection differential in survivorship is zero, and so the positive



324 CHAPTER 28

differential on total mates arises due to the fitness-weighted differences in W2. However,
suppose one simply followed mating success per day and had no knowledge of survivorship.
Taking all six individuals being equally-weighted (1/6) as the reference population,W 2 = 2,
giving the mean after selection as

1
6

[
11
(

3 + 1
2

)
+ 12

(
2 + 2

2

)
+ 13

(
1 + 3

2

)]
= 12

Thus, the selection differential on mating rate using this reference population is zero. If we
ignore differences in survival, there are no differences in sexual selection (mating rate). The
net differential on total mates arises because individuals with lower fitness in the first episode
are given less weight when computing the additive partition, while there are equally weighed
using the independent partition.

The example highlights the critical important of accounting for all selection. If the study
simply followed survivorship or simply followed mates/day, no trait-fitness associations
would have been seen. Grafen (1988) has coined the very appropriate term of the invisible
fraction for that population undergoing selection that is not seen by the investigator. This
missing data will significantly bias estimates of selection (e.g., Bennington and McGraw
1995, Hadfield 2008).

Koenig et al. (1991) stress that the additive and independent partitions are comple-
mentary measures. The additive partition correctly accounts for how fitness builds up over
episodes of selection, while the independent partition examines whether or not a trait has
fitness consequences independent of selection at other stages. Examining both measures can
provide the investigator with insight into the biology of the system being examined. Fur-
ther, if episodes are not sequential, then the additive partition is not appropriate, while the
independent partition can still be used to evaluate potential targets of selection.

Standard Errors for Estimates of Differentials and Gradients

Since it is difficult to measure all individuals in a population, the effects of selection are
usually estimated from a sample. Even with a longitudinal study, the cohort being followed
is usually viewed as a representative sample of phenotypes from the population. This is not
always the case — e.g., a cohort may be chosen to intentionally include the most extreme
phenotypes at much higher frequencies than they are found in the population.

There are a number of statistical issues in extrapolating from these samples to the entire
population, many of which still are unresolved. For example, individual fitness usually is
measured with error. There is generally a bias to underestimate individual fitness — marked
individuals may not be recaptured and hence recorded as having zero fitness, and the number
of mates and/or offspring can be easily underestimated.

Assuming individual fitness is measured without error, the methods of LW Appendix
1 can be used to obtain approximate large sample variances for estimators of differentials
and gradients. The (exact) sampling variance for the directional selection differential is

σ2
(
Ŝj

)
=
σ2
j

nj
+
σ2
j−1

nj−1
(28.20a)

where nj is the sample size for the jth episode. Using the approximation methods from LW
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Appendix 1, the large-sample variance for C is approximately

σ2
(
Ĉj

)
' 4S 2

j σ
2
(
Ŝj

)
+ 8Sj

(
µ3,j

nj
+
µ3,j−1

nj−1

)
+
µ4,j − σ4

j

nj
+
µ4,j−1 − σ4

j−1

nj−1
(28.20b)

If phenotypes are normally distributed, this reduces to

σ2
(
Ĉj

)
' 4S 2

j σ
2
(
Ŝj

)
+ 2

[
σ4
j

nj
+
σ4
j−1

nj−1

]
(28.20c)

If the scaled skewnessk3 (LW Equation 2.8) and kurtosisk4 (LW Equation 2.12a) are small, this
normal approximation can used. These results assume that the fitness-weighted distributions
of phenotypes in episodes j and j− 1 are independent. If the same individuals are followed
and the character measured only once, any measurement error in z for an individual carries
over to all episodes, creating a correlation between episodes.

Example 28.10. Boag and Grant (1981) observed intense natural selection in Geospiza fortis
(Darwin’s medium ground finch) during a severe drought on Daphne Major Island in the
Galápagos. The estimated mean and variance for body weight in 642 adults before the drought
were respectively, 15.79 and 2.37, while the estimated mean and variance of 85 surviving
adults after the drought was 16.85 and 2.43. Thus Ŝ = 16.85− 15.79 = 1.06 and Equation
28.20a gives the standard deviation of this estimate as

SE
(
Ŝ
)
'
√

2.37
642

+
2.43
85
'
√

0.0323 ' 0.180

implying that the directional selection differential on body size is significantly positive. There
appears to be very little selection on the variance when the uncorrected change in variance
Var(z∗) − Var(z) = 2.43 − 2.37 = 0.06 is used. However, using the quadratic selection
differential to correct for the reduction in the variance from directional selection gives

Ĉ = 0.06 + 1.062 = 1.14

consistent with selection to increase the variance in addition to directional selection. From
Equation 28.20c, assuming body size is normally distributed before and after the drought,

SE
(
Ĉ
)
'

√
4 · (1.06)2 · 0.0323 + 2

[
(2.37)2

642
+

(2.43)2

85

]
' 0.549

Ĉ is 2.08 standard errors above zero, suggesting that it is significant.

As is discussed below, β and γ can be estimated from the coefficients of the linear and
quadratic regressions (respectively) of relative fitness on phenotypic value. An advantage
of this approach is that powerful resampling methods such as the jackknife can be used
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to estimate approximate confidence intervals (e.g., Mitchell-Olds and Shaw 1987, Mitchell-
Olds and Bergelson 1990), and randomization tests can be used to test for significance (e.g.,
Moore 1990, Hews 1990). These procedures are rather insensitive to the exact shape of the
phenotypic distribution. The most significant advantage of using regressions is that this
approach is easily extended to multiple characters, which removes the confounding effects
of phenotypic correlations between measured characters (Chapter 29).

DESCRIBING PHENOTYPIC SELECTION: INDIVIDUAL FITNESS SURFACES

We can decompose the fitness W of an individual with character value z into the sum of its
expected fitness W (z) plus a residual deviation e,

W = W (z) + e

The residual variance for a given z, σ2
e(z), measures the variance in fitness among individuals

with phenotypic value z. Estimation of the individual fitness surface is thus a generalized
regression problem, the goal being to choose a candidate function for W (z) that miminizes
the average residual varianceEz[σ2

e(z) ]. Since the total variance in fitness σ2
W equals the sum

of the within-group (individuals with the same trait value) and between-group variance in
fitness,

σ2
W − Ez[σ2

e(z) ]
σ2
W

is the fraction of individual fitness variation accounted for by a particular estimate of W (z),
and this provides a measure for comparing different estimates. In the limiting case where
fitness is independent of z (and any characters phenotypically correlated with z),W (z) = W ,
so that the between-phenotypic variance is zero while σ2

e(z) = σ2
W .

There are at least two sources of error contributing to e. First, there can be errors in
measuring the actual fitness of an individual (these are almost always ignored, although
this can induce serious, even fatal, biases, see Hadfield 2008)). Second, the actual fitness of a
particular individual can deviate considerably from the expected value for its phenotype due
to chance effects and selection on other characters besides those being considered. Generally,
these residual deviations are heteroscedastic (Mitchell-Olds and Shaw 1987, Schluter 1988).
To see how this arises naturally, consider fitness measured by survival to a particular age.
While W (z) = pz is the probability of survival for an individual with character value z,
the fitness for a particular individual is either 0 (does not survive) or 1 (survives). Thus the
residual has only two possible values, e = 1 − pz with probability pz and e = −pz with
probability 1 − pz , giving σ2

e(z) = pz(1 − pz). Unless pz is constant over z, the residuals
are heteroscedastic. Note in this case that even after removing the effects attributable to
differences in phenotypes, there still is substantial variance in individual fitness.

Inferences about the individual fitness surface are limited by the range of phenotypes
in the population. Unless this range is very large, only a small region of the fitness surface
can be estimated with any precision. Estimates of the fitness surface at the tails of the current
phenotypic distribution are extremely imprecise, yet potentially very informative, suggest-
ing what selection pressures populations at the margin of the observed range of phenotypes
may be under. A further complication is that the fitness surface changes as the environment
changes so that year to year estimates can differ (e.g., Kalisz 1986) and cannot be lumped
together to increase sample size. Finally, as emphasized in Chapter 16, organisms often mod-
ify their environments as they evolve, so that the biotic environment can change through
selection, modifying the nature of future selection.

Linear and Quadratic Approximations of W (z)
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The individual fitness surface W (z) can be very complex and a wide variety of functions
may be chosen to approximate it. The simplest and most straightforward approach is to use
a low-order polynomial (typically linear or quadratic).

Consider first the simple linear regression of relative fitnessw as a function of phenotypic
value z. Since the directional selection gradient β = S/σ2

z = σ(w, z)/σ2
z , it follows from

regression theory (LW Equation 3.14b) thatβ is the slope of the least-squares linear regression
of relative fitness on z,

w = a+ βz + e (28.21a)

Hence the best linear predictor of relative fitness isw(z) = a+βz. Since the regression passes
through the expected values of w and z (1 and µ, respectively), this can be written as

w = 1 + β(z − µz) + e (28.21b)

giving w(z) = 1 + β(z − µz). Assuming the fitness function is well described by a linear
regression, β is the expected change in relative fitness given a unit change in z. From LW
Equation 3.17, the fraction of variance in individual fitness accounted for by this regression
is

r2
z,w =

Cov2(z, w)
Var(z) · Var(w)

= β̂ 2 Var(z)

Î
(28.22)

If the fitness surface shows curvature, as might be expected if there is stabilizing and/or
disruptive selection, a quadratic regression is more appropriate,

w = a+ b1z + b2(z − µz)2 + e (28.23a)

Since the regression passes through the mean of all variables, we can rewrite this as

w = 1 + b1(z − µz) + b2
[
(z − µz)2 − σ2

z

]
+ e (28.23b)

The regression coefficients b1 and b2 nicely summarize the local geometry of the fitness
surface. Evaluating the derivative of Equation 28.23 at z = µz gives

∂w(z)
∂z

∣∣∣∣
z=µz

= b1 and
∂2w(z)
∂z2

∣∣∣∣
z=µz

= 2b2 (28.24)

Hence b1 is the slope and 2b2 the second derivative (curvature) of the best quadratic fitness
surface around the population mean. b2 > 0 indicates that the best-fitting quadratic of
the individual fitness surface has an upward (concave) curvature, while b2 < 0 implies
the curvature is downward (convex). Lande and Arnold (1983) suggest that b2 > 0 indicates
disruptive selection, while b2 < 0 indicates stabilizing selection. Their reasoning follows from
elementary geometry in that a necessary condition for a local minimum is that a function is
concave in some interval, while a necessary condition for a local maximum is that the function
is convex. Mitchell-Olds and Shaw (1987) and Schluter (1988) argue that this condition is
not sufficient. Stabilizing selection is generally defined as the presence of a local maximum
in w(z) and disruptive selection by the presence of a local minimum, while b2 indicates
curvature, rather than the presence of local extrema. As Figure 28.7 shows, the fitness function
can curve downward without the population experiencing a local maximum or can curve
upward without having a local minimum.

We solve for the regression coefficients b1 and b2 by transforming Equation 28.23 into a
standard multiple regression problem by setting x1 = z and x2 = (z − µz)2 and applying
the methods of LW Chapter 8. To proceed, we need expressions for σ(x1, x2), σ(x1, w),
and σ(x2, w). From LW Equation A1.14, σ(x1, x2) = σ

(
z, (z − µz)2

)
= µ3,z , the skew of the
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phenotypic distribution before selection. Likewise, from Equations 10.7 and 28.13,σ(x1, w) =
σ(z, w) = S and σ(x2, w) = σ( (z − µz)2, w) = C. Substituting these into the results from
LW Example 8.3 (which gives exact expressions for the partial regression coefficients in a
bivariate regression), and noting that σ2( (z − µz)2 ) = µ4,z − σ4

z , gives

b1 =
σ2(x2) · σ(x1, w)− σ(x1, x2) · σ(x2, w)

σ2(x1) · σ2(x2)− σ2(x1, x2)
=

(µ4,z − σ4
z) · S − µ3,z · C

σ2
z · (µ4,z − σ4

z)− µ2
3,z

(28.25a)

b2 =
σ2(x1) · σ(x2, w)− σ(x1, x2) · σ(x2, w)

σ2(x1) · σ2(x2)− σ2(x1, x2)
=

σ2
z · C − µ3,z · S

σ2
z · (µ4,z − σ4

z)− µ2
3,z

(28.25b)

The estimators of b1 and b2 are obtained by replacing µk,z with their sample estimates and
using Ĉ and Ŝ.

Figure 28.7. The relationship between γ and curvature of the fitness function (solid line).
Dashed curve is the distribution of z. A:W (z) is strictly linear, hence γ = 0. B:W (z) curves
downward (is convex), but has no maximum. Hence, γ < 0, implying stabilizing selection
by the Lande-Arnold criterion, when in fact selection is entirely directional. C: Stabilizing
selection only, as there is no change in the mean. D: A combination of directional and stabilizing
selection (as the population mean is not under the optimal fitness value). From Mitchell-Olds
and Shaw (1987).

Provided z is normally distributed before selection, µ3,z = 0 and µ4,z − σ4
z = 2σ4

z . In
this case, the definitions of β and γ imply, respectively, that b1 = β and b2 = γ/2, giving the
univariate version of the Lande-Arnold regression,

w = 1 + β(z − µz) +
γ

2

(
(z − µz)2 − σ2

z

)
+ e (28.26)
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developed by Lande and Arnold (1983), motivated by Pearson (1903), and hence we also
occasionally refer to this as the Pearson-Lande-Arnold regression. The Lande-Arnold re-
gression thus provides a connection between selection gradients (directional and stabilizing)
and quadratic approximations of the individual fitness surface.

An important point from Equation 28.25a is that if skew is present (µ3,z 6= 0), b1 6= β and
the slope term in the linear regression (the best linear fit) of w(z) differs from the slope term
in the quadratic regression (the best quadratic fit) of w(z). This arises because the presence
of skew generates a covariance between z and on (z − µz)2. The biological significance of
this can be seen by reconsidering Figure 28.6, where the presence of skew in the phenotypic
distribution results in a change in the mean of a population under strict stabilizing selection
(defined as the population mean being at the optimum of the individual fitness surface).
Skew generates a correlation between z and (z − µz)2 so that selection acting only (z − µz)2

generates a correlated change in z. From the Robertson-Price identity (Equation 10.7), the
within-generation change in mean equals the covariance between phenotypic value and
relative fitness. Since covariances measure the amount of linear association between variables,
in describing the change in mean, the correct measure is the slope of the best linear fit of
the individual fitness surface. If skew is present, using b1 from the quadratic regression to
describe the change in mean is incorrect, as this quadratic regression removes the effects on
relative fitness from a linear change in z due to the correlation between z and (z − µz)2.

Hypothesis Testing and Approximate Confidence Intervals

While there is a large body of theory for testing the significance of regression coefficients,
much of it assumes homoscedastic and normally-distributed residuals. As mentioned above,
these two assumptions are almost always violated with fitness data, invalidating standard
tests for significance found in most standard statistical programs (Mitchell-Olds and Shaw
1987). Fortunately, there are a variety of resampling methods available for hypothesis testing
that are robust to heteroscedasticity and non-normal residuals, and we briefly mention three
procedures (jackknife confidence intervals, randomization tests of significance, and cross-
validation) here.

Jackknife estimates were introduced by Tukey (1958) as a generalized statistical tool.
A nice introduction can be found in Sokal and Rohlf (1994), with more detailed treatments
in Miller (1974), Wu (1986), Shao and Tu (1996), and Manly (1997). The idea is simple: to
base parameter estimates on the behavior of the estimate in subsamples of the original data.
Consider the estimator of β for the linear regression given by Equation 28.21a. Denote by
β̂ the standard least-squares estimate of β using the full data set of n individuals, and let
β̂i denote the estimator using the complete data set minus data for the ith individual. The
resulting jackknife estimator is

β̂jack =
1
n

n∑
i=1

φi = φ where φi = nβ̂ − (n− 1)β̂i (28.27a)

which has approximate large-sample variance

Var
(
β̂jack

)
' 1
n(n− 1)

n∑
i=1

(φi − φ )2 (28.27b)

Approximate large-sample confidence intervals follow using Equation 28.27b and the fact
that β̂jack is approximately t-distributed withn−1 degrees of freedom. The jackknife estima-
tor and its sampling variance are well behaved even when the residuals are heteroscedastic,
allowing for valid hypothesis testing (Wu 1986). Wu gives a slightly improved jackknifed es-
timator by weighting theφi values, but the difference between the weighted and unweighted
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estimates is usually small for large sample sizes. A program for computing both the weighted
and unweighted jackknife estimates for multiple character quadratic fitness regressions has
been developed by Mitchell-Olds (1989).

Randomization tests provide another approach for testing the significance of a regres-
sion. Again, the idea behind this class of tests is simple but computationally intensive. A
particular value of β̂ under the hypothesis of no association between fitness and z is gener-
ated by assigning the n individual fitnesses at random to the observed phenotypic values
and estimating β for this scrambled (randomized) data set. By repeating this resampling pro-
cedure several hundred times we generate a distribution of regression coefficients under the
null hypothesis of no association between individual fitness and character value. Suppose
we obtain a standard least-square estimate (assuming a linear regression) of β̂=1.25 and upon
subsequent randomization of the same data set we find that only 7 out of 500 randomized
data sets (1.4%) have β̂ values in excess of 1.25. This suggests that this value is significantly
different from zero at the five percent, but not the one percent, level. See Moore (1990) and
Hews (1990) for applications of randomization tests to fitness data. (updated refs?)

A final issue is assessing the validity of the particular model chosen to fit W (z). This is
a difficult task since by their nature fitness data are inherently noisy — the residual variance
can be rather large, even if we have perfectly fit W (z). One approach for checking model
validity is cross-validation (Snee 1977, Picard and Cook 1984, updated references?) wherein
the original data are split into two samples at random. The fitness regression for the particular
model being assumed is estimated using the first sample and the predictive ability of this
model is then checked by seeing how well this regression predicts fitnesses in the second
sample.

Figure 28.8. The power of a univariate regression to detect a directional selection gradient
is a function of the correlation ρ between trait value and relative fitness, where ρ = ı/σw =
β σz/σw . Power is plotted as a function of ρ with curves for sample size starting at n = 25
and successively doubling until 500. Here power is the probability that the sample correlation
is declared significantly different from zero using a test of significance of α = 0.05. After
Hersch and Phillips (2004).
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Power

Another critical issue is the power of a regression to detect selection. As discussed in LW
Appendix 5, power is simply the probability of detecting (i.e., declaring significant) an effect
given a preset significance level. Our focus here is on the power to detect a directional
selection gradient β in a univariate regression. A convenient way to compute power for a
regression is to consider the correlation ρ between the trait value and relative fitness,

ρ =
σ(z, w)
σz σw

=
S

σz σw
=

ı√
I

(28.28a)

which is the ratio of the selection intensity and the square root of the opportunity for selection
(Hersch and Phillips 2004). Note that we can also express ρ as

ρ =
S

σz σw
= β

σz
σw

(28.28b)

The power to detect a directional selection gradient is thus a function of both the strength
of selection (measured by the selection intensity ı = βσz) as well as the variance in total
fitness (I). A strong amount of selection (a large ı) per se does not imply high power, rather
it is the strength of selection relative to the total variance in fitness that is critical. Assuming
normally-distributed residuals, Hersch and Phillips (2004) show that the (adjusted) sample
correlation

r′ =

√
AR(w)
σ2
w

·

√
σ2
z

V ar(z)
· r (28.28c)

can be scaled to follow a students-t distribution,

√
n− 1

(
r′ − ρ√
1− ρ2

)
∼ tn−1 (28.28d)

When the sample correlation r is sufficiently large, the regression is declared to be signifi-
cant. Using these results, power calculations follow from standard approaches (see similar
examples in LW Appendix 5). As shown in Figure 28.8, sample sizes typically need to be
in the hundreds to have significant power of detecting even modest selection. The above
expressions for power assume normally-distributed residuals. As we have mentioned, this as-
sumption is often violated, especially with viability data. With such 0/1 coded fitness data,
the residuals follow binomial, rather than normal, distributions and display heteroscedasity.
Simulations by Hersch and Phillips (2004) show that using the above expressions overesti-
mates power when residuals are binomially–distributed.

Quadratic Surfaces Can be Very Misleading

A serious problem with quadratic regressions as estimators of W (z) is that the fitted curve
allows for at most only a single local maximum or minimum. Fitness surfaces with multiple local
maxima, or even sharp transitions, are thus very poorly described by a quadratic. Figure
28.9 gives a particularly illustrative example, showing that a quadratic fit to a truncation
selection fitness function creates a spurious local minimum.

Given this potential for a very misleading view of the fitness surface, why all the focus on
quadratic regressions? There are two primary motivations. First, the quadratic is the simplest
function that allows for curvature, and hence the simplest estimate of any non-linearity in the
fitness surface. Second, and much more importantly, when the conditions for the breeders’
equation hold (Chapters 10, 13, 24), the sole measures of phenotypic change entering into
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the selection response equations for mean and variance are the coefficients from the best
linear (β) and quadratic (γ) fit. Hence, even if the fitness surface is very poorly described by
a quadratic, even to the point of being very misleading (Figure 28.9), one would still extract
the coefficients for the response in the mean and variance by using the quadratic estimate of
this surface. There is thus the potential for conflict in the use of quadratic regressions between
ecologists (who wish to ascertain how traits influence fitness) and evolutionary biologists
(who wish to see how these traits will evolve). In reality, both viewpoints are correct. The
more accurate the description of the fitness surface, the more ecological insight into the trait,
but this fitness surface also needs to be translated into the evolutionary dynamics of the trait.

Figure 28.9. Examples of a misleading approximation of W (z) resulting from using a
quadratic regression. Left. A hypothetical example wherein phenotypes are normally dis-
tributed with only individuals exceeding one phenotypic standard deviation surviving (so
that W (z) is the square-wave function). The best quadratic regression erroneously suggests
the presence of disruptive selection (by introducing a false minimum), rather than the strict
directional selection that is actually occurring. From Schluter (1988). Right. Data from Mitchell-
Olds and Bergelson (1990) on individual fitness as a function of the character z = late growth
rate for the annual plant Impatiens capensis. The data clearly depart from linearity, show-
ing curvature. The best-fitting quadratic (plotted) indicates a mimimun in fitness (disrup-
tive selection) around x ' −2.4. However, assuming exponentially increasing fitness with
w(z) + 0.5 = exp(0.52 + 0.46 · z − 0.002 · z2) gives a better fit of the data, suggesting
that strict directional selection is acting on z as this function monotonically increases over the
character range measured. After Mitchell-Olds and Bergelson (1990).

Fitting Other Parametic Fitness Functions

If our sole focus is in describing the fitness surface (as opposed to extracting components of
selection response), then other parameteric forms besides the simple quadratic are possible.
One obvious candidate is a Gaussian fitness function,

W (z) = a exp
(
− (z − θ)2

ω

)
(28.29)

Weldon (1901), in one of the first studies of selection on a quantitative trait in nature, re-
marked that the Gaussian seems to be a good description of the fitness function, and it was
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used by Cavalli-Sforza and Bodmer (1972) to model the human birth weight-survival rela-
tionship seen by Karn and Penrose (1951). Likewise, the exponential function can also be
used (Mitchell-Olds and Bergelson 1990, see Figure 29.8).

For viability data, a variety of approaches from survival analysis can be used. Since
individual viability fitness data is coded as zero/one, logistic regression is a natural choice
(Janzen and Stern 2006), with

W (z) = Pr(survival | z) =
exp(−a+ bz)

1 + exp(−a+ bz)
(28.30)

Note thatW (z) increases from zero to one as z increases. Logistic regressions naturally handle
the heteroscedatic nature of residuals for viability, and maximum likelihood (LW Appendix
3) can be used to estimate model parameters. Modifications of logistic regressions can also
be used to estimate fitness using capture-recapture data (Kingsolver and Smith 1995).

More general approaches to survival functions come from the analysis of clinical trails
(Klein and Moeschberger 1997, Lawless 2003) and time-to-failure failure analysis from in-
dustrial statistics (Kenett and Zacks 1998), both example of surivial analysis. Manly (1976)
suggested use of the double exponential fitness function for viability data, where

W (z) = Pr(survival | z) = exp(− exp(a+ bz) (28.31)

This is a special case of the proportional hazards model (Cox 1972), where the probability of
survival to time t is given by a general risk for every individual in the population (specified
by some monotonically non-decreasing function g(t), so that probability of survival declines
with increasing t), and a specific (proportional) risk for the particular phenotype z, giving

W (z, t) = Pr(survival | z, t) = exp(− exp(ag(t) + bz) (28.32a)

Likewise, if survival at stage j is measured, the proportional hazards model can be written
as

W (z, j) = Pr(survival | z, t) = exp(− exp(hj + bz) (28.32b)

One advantage of using such models is that they can allow for certain types of missing, or
censored, data (Little and Rubin 2002).

Nonparametric Approaches: Schluter’s Cubic-Spline Estimate

In order to more reliably estimate the fitness function, Schluter (1988) developed a non-
parametric method that makes no assumptions about the functional form of the fitness
surface. Schluter’s approach fits the data using a series of cubic splines (a series of cubic
polynomials that join smoothly together) using a jackknife method as the “best fit” criterion.
This requires assumptions about the distribution of the residuals e as a function of phenotypic
value z. Schluter developed a program to estimate W (z) assuming either normally, binomi-
nally, or Poisson distributed residuals. Binomially distributed residuals arise naturally with
survival data, while Poisson distributed residuals are a reasonable model for number of off-
spring or mates. Schluter’s program also has a resampling procedure that generates rough
confidence intervals on estimates of W (z). Examples of fitness surfaces estimated using this
approach are given in Figure 28.10. Interestingly, when one of one of the classic examples
of stabilizing selection, the data of Karn and Penrose (1951) relating survival and human
birth weight, is reanalyzed using Schluter’s method, the local maximum is not significant.
Parametric tests of the significance of estimated local maximum/minimum are discussed
by Mitchell-Olds and Shaw (1987) for quadratic regressions, while nonparametric tests are
discussed by Schluter (1988).
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Figure 28.10. Examples of fitness surfaces generated using Schluter’s method. The actual
fitness values for individuals are indicated by +, the solid curve indicates the cubic-spline
estimate of W (z). Left: Probability of survival as a function of beak depth in Darwin’s finch
Geospiza fortis. The dashed curve indicates the estimate of the surface by a quadratic regression,
which generates a spurious minimum. Center: Number of young produced as a function of
tarsus length in song sparrows. Right: Survival of male human infants as a function of birth
weight. From Schluter (1988).

The Importance of Experimental Manipulation

Several authors have stressed that regression approaches should be viewed as only the
preliminary step in any analysis of the actual agents of selection, treating any regression
estimates as an initial hypothesis to be further tested by experimental manipulation (Mitchell-
Olds and Shaw 1987, 1990; Schluter 1988; Wade and Kalisz 1990, Kingsolver and Pfenning
2007). Spurious correlations between a character and fitness can be generated in a variety of
ways: environmental correlations between character value and fitness (Chapter 16), selection
on unmeasured characters correlated with the observed character (Chapter 29), and loci with
direct fitness effects having pleiotropic effects on the character being measured (Chapter 5).
Recall Example 5.8, in which loci with overdominant effects on fitness also had additive
effects on a character z not under selection. In this example, while there was a perfect linear
regression ofW (z) on zwith larger values having higher mean fitness, z declined as selection
proceeds. In this case, selection was not acting on z, contrary to what we would surmise
from a fitness regression. Likewise, when individuals in the population differ in amount of
inbreeding (such as occurs in many plants), highly inbred individuals may suffer a reduction
in fitness due to inbreeding depression. If the measured character being considered also
suffers inbreeding depression, this generates a trait-fitness correlation that is entirely due
to levels of inbreeding rather than intrinsic differences between phenotypic values (Willis
1996). Directional and concave (stabilizing) selection will appear stronger when inbreeding
is present, overestimating their effects.

Mitchell-Olds and Shaw (1987) and Wade and Kalisz (1990) suggest that interactions
between environmental effects and fitness are extremely important, a point also discussed
at some lenght in Chapter 16. For example, Breden and Wade (1989) observed a positive
relationship between group size and fitness in the imported willow leaf beetle. However,
when predators were excluded, there was no relationship. Thus, in this case β is correlated
with the environment (presence/absence of predators). A second (hypothetical) example
is the case where individuals reared in higher-quality environments both obtain a larger
size and also have more offspring than individuals from lower-quality environments. This
generates a correlation between body size and fitness. However, it is the quality of the
environment, not body size per se, that is the causal agent influencing the number of offspring
in this case. Wade and Kalisz suggest computing fitness regressions in several different
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environments, and looking for correlations between β (and/or γ) and the environmental
treatment. Such correlations strongly imply that the environmental character is a causal
agent of selection.

Given all of these potentials for false associations, the most direct test of a trait-fitness
association suggested by a regression is phenotypic manipulation, the artificial modification
of trait values followed by a fitness assessment in nature (Sinervo and Basolo 1996, Travis
and Reznick 1998).

Example 28.11. Grether (1996) examined male mating success and survival in a Califor-
nia population of the rubyspot damselfly (Hetaerina americana). Mature males of this species
are marked by a red spot at the base of their wings, and Grether was interested in whether
variation in the size of this spot influences sexual and/or natural selection. Three fitness com-
ponents were measured: reproductive life span (a measure of survival selection), mating rate
(a measure of sexual selection), and lifetime mating success (a combination of both survival
and sexual selection). All three of these showed significant selection gradients with red spot
size, but not with body size. Thus, the Lande-Arnold regression suggests that larger spot size
is favored by both sexual (mating rate) and natural (reproductive life span) selection. As a test
of this, Grether examined these components in three additional groups: an “enlarged ” group
where red ink was used to increase spot size, a “sham” group where the same area was filled
with clear ink, and an unmanipulated group. Mate success (mates per day) was significantly
greater in the enlarged group, while unchanged in the sham versus control groups. Thus,
experimental manipulated confirms the role of red spot size in sexual selection. Surprisingly,
however, males with enhanced spots had mortality rates 23% higher than the controls, while
the sham and control groups showed no differences. Thus, contrary to what the fitness regres-
sions suggest, direct manipulation show that increasing spot size decreases survival. Hence,
unmeasured traits (or other factors) generated an apparently strong selection gradient that
could not be verified by phenotypic manipulation.
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