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Using Molecular Data to Detect Selection:

Signatures From Multiple Historical Events

Model selection is a process of seeking the least inadequate model from a predefined set,
all of which may be grossly inadequate as a representation of reality — Welch (2006)

Draft version 24 Jan 2012

Chapter 8 reviewed tests for detecting an ongoing, or very recently completed, single episode
of positive selection. Here we examine the complementary class of events, the cumulative
signature left by multiple historical selective events. In contrast to the large variety of ap-
proaches for detecting ongoing/recent selection, there are only two basic approaches that
use divergence data to detect the signal from multiple episodes of positive selection. The
first is contrasting the levels of polymorphism within a population with the level of diver-
gence between populations, using either different classes of sites within the same gene (the
McDonald-Kreitman test) or different genes (the HKA test). As these require a population
sample to determine the amount of polymorphism, we refer to them as population-based di-
vergence tests. The second approach contrasts the rates of evolution at different sites within
a gene over a number of species within a phylogeny. Such phylogeny-based divergence
tests do not require a population sample, as the signal comes entirely from the pattern of
divergence, not polymorphism. Specifically, in the absense of positive selection, the rate of
replacement substitutions is generally expected to be less than the rate of silent substitutions.
Sites where the replacement rate exceeds the silent substitution rate provides a very robust
signal of positive selection (e.g., Example 9.2).

While population-based divergence tests look for an excess of replacement substitutions
across an entire gene when comparing two populations, divergence-based tests look for an
excess of substitutions at single codons when examined over an entire phylogeny. As a result,
phylogeny-based divergence tests likely detect the smallest percentage of selection, as they
require a very special class of events: repeated positive selection on the same codon over a
number of species. By contrast, the HKA and MK tests are less stringent, simply requiring
multiple substitutions over the entire gene. Since the power of divergence-basd methods
is a function of the number of substitutions, one or even a few very important adaptive
substitutions would leave little signal for any of these tests. If we are fortunate enough to
catch these during their sojourn to fixation, the methods of Chapter 8 can be used to detect
these single events.

The tests examined in Chapter 8 and the two approaches to be examined here are com-
plementary, with each picking up signals of selection that would be missed by the other two.
Tests for ongoing events cast a wide net in that many ongoing/recent events leave some
signal, albeit perhaps very weak. However, this signal decays very quickly, so that most
sites that have experienced at least some positive selection over some reasonable amount of
evolutionary time in the past will leave no signal for these tests. Conversely, HKA and MK
tests entirely miss genes with a single or a very few relatively recent adaptive substitutions,
but can detect genes where multiple adaptive substitutions have occurred across the gene
during the divergence of two populations. Phylogeny-based tests capture the least number
of genes under selection, showing a signal only in very special cases (the same codons are
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repeated targets of selection). The appropriate time scales of detected events also vary over
approaches, with only very recent single events having the potential to be detected using
methods from Chapter 8. HKA and MK tests require enough time for a sufficient number
of adaptive substitutions to accumulate in the divergence of a gene between two popula-
tions/species, while phylogeny-based tests (generally) require even longer time, allowing
for multiple substitutions to occur at the same codon across a number of species. An excep-
tion is the analysis of rapid-evolving viruses, wherein signatures of selection may be found
within a phylogeny generated over a very modest amount of time.

QUICK OVERVIEW OF THE KEY CONCEPTS

We start with a brief overview of population- versus phylogeny-based approaches before
considering each on considerable detail. For the casual reader, this section introduces the
key ideas without all of the technical burdens.

A History of Selection Alters the Ratio of Polymorphic to Divergent Sites

Population-based tests contrast the pattern of within-species polymorphism and between-
species divergence to see if they are in concordance with their neutral expectations. Under
drift, the amount of within-population heterozygosity and between-population (or species)
divergence is positively correlated, as both are functions of µ. In particular, under the equi-
librium neutral model, the standing heterozygosity (H) and between-population divergence
(d) for the ith gene being considered are

Hi = 4Neµi, di = 2tµi (9.1a)

Hence,
Hi

di
=

4Neµi
2tµi

=
2Ne
t

(9.1b)

Since the gene-specific mutation rates cancel, under the equilibrium neutral model the H/d
ratio at any locus should be roughly the same, namely 2Ne/t (subject to random sampling).

Example 9.1. McDonald and Kreitman (1991a) examined the Adh (Alcohol dehydrogenase)
locus in the sibling species Drosophila melanogaster and D. simulans, as well as an outgroup
species, D. yakuba. Within this gene, they contrasted replacement (non-synonymous) and
silent (synonymous) sites. The DNA change for a replacement mutation results in a change in
an amino acid, while a silent mutation still codes for the ancestral animo acid. Equation 9.1b
indicates that the ratio of number of polymorphisms to number of fixed differences should be
the same for both categories. This is a simple association test, and significance can be assessed
using either a χ2 approximation or (much better) Fisher’s exact test which accommodates
small numbers in the observed table entries. Of the 24 fixed differences, 7 were replacement
and 17 synonymous. The total number of polymorphic sites segregating in either species was
44, 2 of which were replacement and 42 synonymous. The resulting association table becomes

Fixed Polymorphic
Synonymous 17 42
Replacement 7 2

Fisher’s exact tests gives a p = 0.0073, a highly significant lack of fit to the neutral equilib-
rium model. Based on the ratio of 42/2 syn/repl polymorphisms, the expected number x of
replacement fixations is 17/ x = 42/2 , or x = 0.81. Hence, one replacement polymorphism is
expected under drift, while 7 were seen, suggesting roughly 6 adaptive substitutions.
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A History of (Positive) Selection Alters the Silent to Replacement Substitution Rates

Phylogeny-based divergence tests do not require polymorphism data, but rather simply con-
trast the divergence rates at silent versus replacement sites. Silent sites are treated to a first
approximation as proxies for neutral sites, although we have seen that they may be under
weak selection in some cases (Chapter 7). Since they change an amino acid within the protein
coded for by the target gene, replacement sites are generally viewed as being under much
stronger selection, much of it purifying. Indeed, the signal of negative selection (removal of
new deleterious mutations) is widespread in just about every protein-coding gene, with the
substitution rate of silent sites usually being much higher than that for replacement sites
when averaged over the entire gene. This pattern is expected under the neutral theory if
a higher fraction of mutations in replacement sites are deleterious relative to silent sites.
However, there are cases where, for a limited region within a gene, the replacement substi-
tution rate can exceed that of the silent sites (Example 9.2), suggesting adaptive fixation (i.e.,
positive selection).

Example 9.2. One of the classic early examples of using sequence data to detect signatures of
positive selection is the work of Hughes and Nei (1988, 1989) on mice and human major histo-
compatibility complex (MHC) Class I and Class II loci. These loci are highly polymorphic and
are involved in antigen-recognition. Hughes and Nei compared the ratio of synonymous to
nonsynonymous nucleotide substitution rates in the putative antigen-recognition sites versus
the rest of these genes. For both classes of loci, they found a significant excess of nonsynony-
mous substitutions in the recognition sites and a significant deficiency of such substitutions
elsewhere. If both types of substitutions were neutral, the rates per site are expected to be
roughly equal. If negative selection is acting, the expectation is that the synonymous substi-
tution rate would be significantly higher (reflecting removal of deleterious nonsynonymous
mutations). However, if positive selection sufficiently common for new mutations, one ex-
pects an excess of nonsynonymous substitutions. The observed patterns for both Class I and II
loci were consistent with positive selection within that part of the gene coding for the antigen
recognition site and purifying selection for the rest of the gene.

A large number of studies prior to Hughes and Nei found that an excess of synonymous
substitutions is by far the norm for almost all genes, implying that most nonsynonymous
changes are selected against. Indeed, when one looks over an entire Class I (or II) MHC gene,
this pattern is also seen. The insight of Hughes and Nei was to use data on protein structure to
specifically focus on the putative antigen-binding site, and compare this region with the rest of
the gene as an internal control. Further, there has to be a consistent pattern of new mutations
being favored at the same few sites for such a signature to appear. A single favorable new
mutation here and there through the evolution of a gene, when set against the background of
most nonsynonymous mutants being deleterious, will still leave an overall signature of a vast
excess of synonymous substitutions. Hughes and Nei concluded that a significant number of
the new mutations that appear within the antigen-binding site are indeed favorable.

While there are several variant notations in the literature, we use Ks to denote the
synonymous (silent) substitution rate andKa the nonsynonymous rate (a denoting a change
in an animo acid). A value ofKa/Ks > 1 indicates a long-term pattern of positive selection at
replacement sites. As Example 9.2 illustrates, even when this is occurring at specific regions
within a gene, averaged over the entire gene sequence Ka/Ks is usually less than one.
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Hughes and Nei had the two advantages of (i) knowing the potentially sites of positive
selection (so the other sites could be excluded in the analysis) and (ii) a situation in which
numerous replacements driven by positive selection are expected. Thus, while an observation
of Ka/Ks > 1 is almost universally accepted as a selection signature (more correctly, a
signature of a long-term pattern of multiple episodes of positive selection), it is almost
never seen if the entire gene is taken as the unit of analysis. Phylogeny-based methods
accommodate this concern by taking the codon as the unit of analysis, first placing genes
within a phylogeny and then using codon-evolution models to test whether, for some subset
of codons, Ka/Ks > 1.

POPULATION-BASED DIVERGENCE TESTS

The Hudson-Kreitman-Aguadé (HKA) Test

Hudson, Kreitman, and Aguadé (1987) proposed the first test to jointly use information on the
amount of polymorphism within populations and the amount of divergence between pop-
ulations/species. The result was their HKA test, which is formulated as follows. Consider
two species (or distant populations) A and B both at mutation-drift equilibrium with effec-
tive population sizes NA = Ne and NB = αNe. Further assume they separated τ = t/(2Ne)
generations ago from a common population of size N∗e = (NA +NB)/2 = Ne(1 + α)/2, the
average of the two current population sizes. Suppose i = 1, · · · , Lunlinked loci are examined
in both species. We allow the neutral mutation rate µi to vary over loci, but assume that for
a given locus it has been the same in both species, and hence also unchanged during the
divergence. The amount of polymorphism for locus i is a function of θi = 4Neµi in species
A, and 4NBµi = 4(αNe)µi = αθi in species B. The divergence between A and B is 2tµi,
which we can express as

2tµi = 2
t

2Ne
2Neµi = τθi

For L loci, there are L + 2 unknowns: L gene-specific values of θi and the two common
demographic parameters α and τ . To estimate these we have up to 3L observations: the
numbers SAi and SBi of segregating sites at each of theL loci in each species/population, and
the numberDi of substitutions between each pair ofL loci. One uses the data to first estimate
the model parameters, and then performs a goodness-of-fit test. If the model provides a
sufficiently poor fit, the equilibrium neutral model is rejected.

More formally, the HKA test statistic X2 is given by

X2 =
L∑
i=1

X2
i (9.2a)

where

X2
i =

(
SAi − Ê(SAi )

)2

V̂ ar(SAi )
+

(
SBi − Ê(SBi )

)2

V̂ ar(SBi )
+

(
Di − Ê(Di)

)2

V̂ ar(Di)
(9.2b)

is the contribution to overall lack-of-fit from gene i. For nA samples from species A and nB
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samples from species B,

Ê(SAi ) = θ̂ianA , Ê(SAi ) = α̂ θ̂ianB (9.3a)

V̂ ar(SAi ) = θ̂ianA + θ̂i
2
bnA , V̂ ar(SBi ) = α̂θ̂ianA + α̂2θ̂i

2
bnB (9.3b)

Ê(Di) = θ̂i

(
τ̂ +

1 + α̂

2

)
(9.3c)

V̂ ar(Di) = θ̂i

(
τ̂ +

1 + α̂

2

)
+

(
θ̂i(1 + α̂)

2

)2

(9.3d)

where an =
∑n−1
i=1 (1/i) and bn =

∑n−1
i=1 (1/i2). Equations 9.3a and 9.3b follow from the

infinite sites model (Table 8.2). Equation 9.3c follows by re-writing

θi

(
τ +

1 + α

2

)
= 4Neµi

(
t

2Ne
+

1 + α

2

)
= 2µit+ 4µi

Ne(1 + α)
2

where the first term is the between-population divergence due to new mutations and the
second term the divergence from partitioning of the initial polymorphism 4N∗e µi present
in the ancestral population. The HKA test statistic X2 is approximately χ2-distributed with
3L − (L + 2) = 2L − 2 degrees of freedom. Hudson et al. suggest the following system of
equations for the estimating the unknowns given the observed values SAi , S

B
i , Di,

L∑
i=1

SAi = anA

L∑
i=1

θ̂i,
L∑
i=1

SBi = α̂ anB

L∑
i=1

θ̂i

L∑
i=1

Di =
(
τ̂ +

1 + α̂

2

) L∑
i=1

θ̂i (9.4)

SAi + SBi +Di = θ̂i

(
τ̂ +

1 + α̂

2
+ anA + α̂ · anB

)
for 1 = 1, · · · , L− 1

These can be solved numerically for the θ̂i, α̂, and τ̂ , generating the estimated values for
the X2 statistic. The HKA model assumes both no recombination within a gene but free
recombination between genes so we can treat them as independent. If a significant HKA
value is found, the gene-specific Xi values (Equation 9.2b) inidicate the gene (or genes)
contributing the most to the lack of fit.

Example 9.3. Hudson et al. (1987) partitioned the Adh gene into two regions, silent sites and
4-kb of the 5’ flanking region, corresponding to a test using L = 2 loci. (The careful reader
might be concerned that these loci are linked, while the HKA tests assumes independence
across loci. For the high recombination rates in Drosophila, this independence assumption is
not unreasonable.) A sample of 81 Drosophila melanogaster alleles were sequenced, along with
a single allele from its sibling species D. sechellia. Based on sequencing data, the divergence
was 210 differences in the 4052 bp flanking region and 18 differences in the 324 silent sites,
for roughly equal levels of divergence per base pair between the two loci. Based on restriction
enzyme data, within melanogaster, 9 of the 414 5’ flanking sites were variable, while 8 of 79 Adh
silent sites were variable. Thus, while the divergence was roughly equal, there was a four-fold
difference in polymorphism. Hudson et al. modified their test to account for polymorphism
data from only a single species. In this case, α cannot be estimated, so the authors assume
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α = 1 (both species have the same effective population size, an alternative approach would
be to use the value of α giving the smallest X2 value). Given that there is a difference in the
number of sites between the polymorphism and divergence data, let θi be the per-nucleotide
mutation rate (for locus i), so that we have to weight the θi value for each term by the number
of sites compared, giving Equation 9.4 as

SA1 + SA2 = 9 + 8 = a81(414 · θ̂1 + 79 · θ̂2)

D1 +D2 = 210 + 18 = (τ̂ + 1)
(

4052 · θ̂1 + 324 · θ̂2

)
D1 + SA1 = 210 + 9 = 4052 · θ̂1 (τ̂ + 1 + a81)

where a81 =
∑80
i=1 1/i = 4.965. The solutions to this system were found to be

τ̂ = 6.73, θ̂1 = 6.6× 10−3, and θ̂2 = 9.0× 10−3

giving the resulting X2 statistic as 6.09. There are four observations (SA1 , S
A
2 , D1, D2) and

three parameters to fit, giving a test with one degree of freedom. SincePr(χ2
1 > 6.09) = 0.014,

the test indicates a significant departure from the equilibrium neutral model.

Equations 9.3 and 9.4 assume that all L loci are autosomal. If all loci are X-linked, they
still apply. However, if loci are a mixture of autosomal and sex-linked, the θi terms for sex-
linked loci are multiplied by (3/4), as their expected levels of neutral polymorphism are
3Neµi (Begun and Aquadro 1991). If organelle sequences are included, these are completely
linked and treated as a single locus. Further, this locus has a different effective population
size from autosomal genes, also requiring a scaling of its θ value (typically by 1/2, but other
values may be justified). Modifications of HKA were proposed by Wright and Charlesworth
(2004), who present a maximum-likelihood version of the HKA test, and Innan (2006) who
framed the HKA test in terms of the polymorphism-divergence ratio r. This formulation
allowed Innan to consider a joint test involving r and a site-frequency measure (such as
Tajima’s D) to provide more support for selection at a site (Innan’s Two-Dimensional test).

As with site-frequency tests, the HKA test is not robust to demography. Further, since
HKA comparisons are made across different regions in the genome, demographic effects can
be exaggerated relative to the site-frequency tests examined in Chapter 8. An example of
this are attempts to use the HKA test to detect selection on organelle genomes. Since all loci
within an organelle are completely linked, one or more nuclear loci must also be to obtain
an HKA statistic. Even after correcting for differences in effective population size, the test
may still be biased if there is population structure. For most species, organelle genomes are
only transmitted through females. In plants, pollen and seed have very different dispersal
patterns. In many animals, there can be strong sex-specific differences in migration, often
with the male traveling long distances relative to females. In such cases, the pattern of
population structure on nuclear genes (an average of the two parents) can be quiet different
from that on organelle genes (female migration only).

Example 9.4. Ingvarsson (2004) examined chloroplast (cpDNA) diversity in two plants in
the genus Silene (family Caryophyllaceae). A standard HKA test contrasting four noncoding
regions of the chloroplast (treated as a single locus) and two unlinked autosomal genes between
S. vulgaris and S. latifolira gave a highly significant value, with most of the signal coming
from the cpDNA region. However, the estimated FST value (Chapter 2) for cpDNA was
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0.546 versus 0.056 for nuclear genes, showing strong population structure on the organelle
genes and only modest structure on nuclear genes. Assuming an approximate island model
of migration (Chapter 2), Ingvarsson attempted to correct for these differences in the amount
of structure. To a first approximation, the author found that population structure increases
the amount of segregating sites and decreases the divergence, both by a factor of 1 − FST .
Hence, Ingvarsson corrected the number of segregating sites by using Sc = (1−FST )S and
the divergence by Dc = D/(1 − FST ). Applying these corrections to both the cpDNA and
nuclear genes and using the correctedSc andDc values in the HKA test gave a nonsignificant
result. The apparent strong signal of selection appears to be an artifact generated by nuclear
and organelle genes having different population structures.

The McDonald-Kreitman (MK) Test: Basics

One of the most straightforward, and widely used, tests of selection was proposed by McDon-
ald and Kreitman (1991a), which contrasts the amounts of polymorphism and divergence
between two categories of sites within a single gene (Example 9.1). Typically, these are the
synonymous versus replacement sites, but the basic logic can be extended to other compar-
isons as well. Under the neutral theory, deleterious mutations are assumed to occur, but be
quickly removed by selection, not contributing to either polymorphism or divergence. In
the standard neutral-theory expressions for the amount of polymorphism 4Neµ and diver-
gence 2tµ, µ is the effectively neutral mutation rate, the rate at which mutations arise that are
effectively neutral (4Ne|s| ¿ 1). While most mutations at synonymous sites are likely effec-
tively neutral, a much smaller fraction f of new mutations at replacement sites are neutral,
resulting in a lower effectively neutral mutation rate, fµ. Given that f is the reduction in
successful mutations in replacement sites, 1 − f is a measure of functional constraints, with
values near one implying that most new mutations are not effectively neutral. One minor
bookkeeping detail is that the silent and replacement mutations rates in the MK test refer to
the sum total over all sites, so that µs = µns and µa = µfna are the total mutation rates over
the collection of silent and replacement sites in the gene of interest.

Under the equilibrium neutral theory, the expected number of substitutions Di in site
class i is 2tθi, while the expected number Si of segregrating sites in a sample of size n is anθi
(Table 8.1), where θi is the product of 4Ne and the total mutation rate for site class i. Thus,

DA

Ds
=

2tµfna
2tµns

=
µfna
µns

= f
na
ns
,

SA
Ss

=
an4Neµfna
an4Neµns

=
µfna
µns

= f
na
ns

(9.5)

Since Si is a measure of the amount of polymorphism, we also denote it by Pi to conform
to the standard notation for MK tests. Equation 9.5 is the foundation of the MK test, as the
ratio of the number of replacement to site polymorphic silent should equal the ratio of the
number of replacement to silent substitutions. If some replacement sites are under positive
selection, these will contribute very little to within-species polymorphism (Kimura 1969,
Smith and Eyre-Walker 2002) but will result in an excess of replacement substitutions, so
thatDA/Ds > PA/Ps. It is worth noting that a very similar approach proposed by Templeton
(1987, 1996), based on contrasting patterns in the tips verses interiors of estimated gene tree
topologies, predates the MK test.

McDonald and Kreitman provided a more general derivation of the polymorphism ratio
in Equation 9.5, replacing 4Ne (the equilibrium value) by Ttot, the total time on all of the
within-species coalescent branches (Chapter 2). By considering the ratio of the number of
polymorphic sites in the two categories, the common term Ttot cancels, so that any effects
of demography also cancel. Hence, provided mutation rates remain unchanged, the MK test is
not affected by population demography (Hudson 1993, Nielsen 2001). Because the coalescent



248 CHAPTER 9

structure that determines the amount of polymorphism is explicitly removed by taking the
ratio, there is no assumption that the allele frequencies are in mutation-drift equilibrium
nor any assumption about constant population size. This is a very robust feature not shared
by most other tests of selection. However, as we will see shortly, this test is by no means
fool-proof, as changes in the effective population size can influence the effectively neutral
mutation rates, and hence the test. Likewise, mildly deleterious alleles can contribute to
within-species polymorphisms, but not between-species divergence. Their presence inflates
the polymorphism ratio over the divergence ratio, reducing the power to detect positive
selection.

Given the expected equality of these two ratios under neutrality, the MK test is per-
formed by contrasting polymorphism versus divergence data at synonymous and replace-
ment sites for the gene in question through a simple contingency table (Example 9.1). The
presentation of the data required for the MK test is often referred to as a DPRS table, based
on the clockwise order of categories: Divergence (number of substitutions), Polymorphism
(number of segregating sites), Replacement, and Synonymous, with the relevant values
denoted as follows:

Divergence Polymorphism
Silent Ds Ps
Replacement Da Pa

The subscript a denotes replacement (and hence amino-acid changing) sites, with s for
silent sites. Example 9.1 presented the original data used by McDonald and Kreitman, while
Example 9.5 shows how one can modify this basic idea to examine different regions within
the same gene.

Example 9.5. LeCore et al. (2002) examined the FRIGIDA (FRI) gene in Arabidopsis thaliana.
This gene is a key regulator of flowering time, and was the focus of study as European
populations show significant variation in flowering time, with potentially strong selection
for earlier flowering following the end of the ice age. Fixed differences (divergence) were
examined by comparing thaliana with A. lyrata, while data on number of segregating sites
uses populations of thaliana.

Entire coding region Fixed Polymorphic
Synonymous 59 7
Replacement 68 21 Fisher test p = 0.056

Exon 1 Fixed Polymorphic
Synonymous 30 2
Replacement 38 16 Fisher test p = 0.013

Exons 2 and 3 Fixed Polymorphic
Synonymous 29 5
Replacement 30 5 Fisher test p = 1.000

Note the excess of replacement polymorphisms in exon one relative to exons two and three.
These data could be interpreted simply as a reduction on functional constraints in Exon 1
(for example, by a recent reduction in the effective population size, increasing the effectively
neutral mutation rate). However, there is a nice internal control in that exons 2 and 3 don’t
show this pattern, which seems to rule out a reduction in effective population size in thaliana
accounting for the reduction in constraints. The authors note that roughly half of the replace-
ment polymorphisms in Exon 1 are lost-of-function mutations, which result in early flowering.
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Hence, it appears that the excessive replacement polymorphisms likely result from selection
for early flowering in some populations. Further, since a non-functional copy of FRI results
in early flowering, there are a large number of mutational targets to achieve this phenotype
(and hence a high mutation rate), which likely explains the large number of replacement
polymorphisms.

The FRI clearly shows a fairly sharp heterogeneity in patterns of selection when contrasting
exon 1 with the remaining exons, and detecting such within-gene heterogeneity may provide
important functional clues for a putative region under selection. The more general issue of
how to detect any such heterogeneity based on a scan of a region has been examined by
McDonald (1996, 1998) and Goss and Lewontin (1996).

Example 9.5 raises two important statistical issues. First, one should always use Fisher’s
exact test for the goodness-of-fit (which can be found in standard statistical packages, such
as R). χ2 and G tests for contingency tables are large sample approximations, and tend to
perform poorly when any table entry has an expected value less that five.

Second, often multiple tests are performed, and the thorny issue of multiple compar-
isons arises (Appendix 6). If one wishes a false positive rate of q over the collection of all
independent tests, then the Bonferroni correction requires a critical value of p = q/n for each
of the n tests (Appendix 6). For Example 9.5 (with n = 3 tests), p = 0.0033 for each test for a
collective false positive rate over all tests of q = 0.01, and p = 0.017 for an collective prob-
ability of q = 0.05. By this criteria, the experiment-wide significance is closer to 5 percent
than the 1.3 percent reported for Exon 1. As detailed in Appendix 6, Bonferroni corrections
are rather strict, and can be improved upon by sequential Bonferroni methods, or (where
appropriate) using control of the false discovery rate.

While initially presented as a contrast between silent versus replacement sites within
a single gene, the basic logic of the MK test is not limited to either two categories or to the
specific comparison of silent versus replacement sites (Hudson 1993, Templeton 1996).

Example 9.6. Andolfatto (2005) examined 35 coding and 153 non-coding fragments from
a Zimbabwe sample of 12 D. melanogaster X chromosomes, with a single D. simulans X as an
outgroup. The number of observed polymorphic and divergent sites were the lumped into
various subcategories as follows:

Polymorphisms Fisher Test p value
Mutational Class Fixed All sites Minus singletons All Poly Poly(-S)

Synonymous 604 502 323
Replacement 260 115 52 4.7 ·10−7 4.3 ·10−10

Non-coding 3168 2386 1295 0.0144 0.00052
5’ UTRs 328 160 71 2.7 ·10−6 1.7 ·10−10

3’ UTRs 143 86 36 0.033 8.2 ·10−5

Given the small sample size (n = 12 chromosomes), polymorphism data is reported both as
the total number of segregating sites (all sites) and the total number of segregating sites minus
the singletons. The logic for removing singletons is the concern that slightly deleterious alleles
can contribute to segregating sites (although they will be rare) but will not become fixed, and
thus the polymorphism ratio overpredicts the number of fixed sites. Using the synonymous
class as a reference, McDonald-Krietman tests were performed on each of the four different
categories (replacement, non-coding, 5’ UTR, 3’ UTR), and computed separately using either
all polymorphisms or only polymorphisms that were not singletons. Exclusion of singletons
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decreased the p values (increased significance) in all cases. Even after correcting for multiple
tests, all of the comparisons based on polymorphisms minus singletons were highly significant.

Andolfatto observed that the average nucleotide diversity π was higher for synonymous sites
than for any of the other categories displayed above. This suggests stronger constraints on non-
coding regions relative to synonymous sites, and hence stronger purifying selection on these
sites. Conversely, the above tests values all show excessive substitutions relative to the amount
of within-population variation, suggesting that many of the differences were likely fixed by
positive selection. Both of these results (stronger purifying selection on polymorphisms and
stronger positive selection for substitutions) for non-coding DNA over synonymous sites were
very surprising, and suggested that much of what is called non-coding DNA may have some
functional role. A similar study using polymorphism data from D. simulans, which has a larger
effective population size than D. melanogaster, found an even stronger signature of purifying
selection on non-coding DNA (Haddrill et al. 2008).

One issue of concern when dealing with non-coding DNA is obtaining the correct alignment
to ensure that homologous sites are being compared. This is problematic for even moderately-
distant species, as insertions and deletions run rampant, making correct alignment nearly
impossible. Conversely, with coding regions, strong selection to keep the sequence in frame
usually allows for a very easily alignment. Care must then be taken, as with even moderately-
diverged DNA, one may throw out much of the noncoding sequence because of alignment
issues, which could enrich the remaining sequences used in the analysis for those sites under
stronger functional constraints (which are more conversed and thus more easily aligned).

A significant McDonald-Kreitman test occurs whenPa/Da is significantly different from
Ps/Ds. Since the assumption is that the silent site ratio is unchanged by selection, a significant
MK test can occur either through an excess of replacement polymorphisms (Pa too large
relative to Da and Ps/Ds) or though an excess of replacement substitutions (Da too large
relative to Pa and Ps/Ds). The neutrality index of Rand and Kann (1996) indicates which of
these two scenarios has happened, with

NI =
Pa/Da

Ps/Ds
(9.6)

An index value greater than one indicates more polymorphic replacement sites than ex-
pected, while a value less than one indicates an excess of replacement substitutions. Values
less than one suggest some of the substitutions are adaptive, while values greater than one
are suggestive of weakly deleterious alleles over-inflating the effectively neutral mutation
rate estimate based on polymorphic sites.

Example 9.7. Consider LeCore et al.’s data on the FRI gene (Example 9.5). For exon one, the
neutrality index is

NI =
16/38
2/30

= 6.42,

showing that the significant result is due to an excess of segregating replacement sites. Con-
versely, for Exons two and three

NI =
5/30
5/29

= 0.97,
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suggesting a good fit to the neutral model, with neither an excess of polymorphic nor fixed
replacement sites.

Example 9.8. Bustamante et al. (2005) sequenced 39 humans for roughly 11,600 genes, con-
trasting the results with human-chimp divergence at these same genes. Summing over all
sites, the resulting DPRS table (where SNPs denotes polymorphic sites) is

Divergence SNPs
Silent 34,099 15,750
Replacement 20,467 14,311

Note that this is a slightly different analysis than a standard MK test, as the values for a large
number of loci are aggregated into a single table. The resulting p value is highly significant
(p < 10−16), so that the neutral model is rejected. What is the source of the discrepancy? The
neutrality index is

NI =
14, 311/20, 467
15, 750/34, 099

= 1.514

showing that the lack-of-fit to the neutral model is driven by an excess of replacement poly-
morphisms (SNPs). The authors suggest that these polymorphisms are mainly deleterious, a
view echoed by Hughes et al. (2003). Consistent with this, an analysis of 47,576 replacement
SNPs in a sample of 35 humans by Boyko et al. (2008) estimated that 27-29% of these SNPs were
effectively neutral, 30-42% moderately deleterious, and nearly all of the rest highly deleterious.
This large fraction of segregating deleterious alleles significantly lowers the power of the MK
tests and related approaches. Indeed, Charlesworth and Eyre-Walker (2008) note that because
of excessive replacement polymorphisms, MK tests in humans are very underpowered.

The McDonald-Kreitman Test: Caveats

One of initial criticisms against the McDonald-Kreitman test was that estimates of the num-
ber of segregating sites were rather sensitive to sampling, especially when the number of
samples is small (Graur and Li 1991, Whittam and Nei 1991). McDonald and Kreitman
(1991b) countered that this is not a serious issue, as these effects would influence estimates
of number of polymorphic sites in both silent and replacement sites equally. While largely
correct, this is not strictly true, as there are generally two-fold more potential replacement
sites than silent sites, giving them a slightly smaller sampling error. Still, this issue has more
to do with power, and is unlikely to give false positives. The serious concerns with this test
are more subtle, and as such, took longer to be fully appreciated.

As mentioned, the MK test does not require constant population size nor that mutation-
drift equilibrium has been reached, and hence is rather robust to many demographic concerns
that plague other tests. Balancing this strength are two subtle caveats, both relating to the
distribution of fitness effects in observed variants (polymorphisms and substitutions). First,
the MK framework assumes that deleterious mutations are strongly deleterious and make
essentially no contribution to either the number of segregating or fixed sites. However, if
present, weakly deleterious mutations (i.e., −10 < 4Nes < −1) can contribution to segre-
gating polymorphisms (especially since MK uses number of polymorphic sites, not their
frequencies) but are highly unlikely to become fixed. Such mutations are over-represented
in polymorphic sites relative to fixed sites, reducing the power of the MK test to detect an
excess of replacement substitutions (and hence a signature of positive selection). Since we as-
sume most mutations at silent sites (our neutral proxy) are either neutral or under very weak
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deleterious selection, this (generally) has little impact on silent sites, but a significant impact
on replacement sites. One proposed correction for this is to drop “rare” polymorphisms, but
this is rather subjective. Dropping singletons (Templeton 1996) as we did in Example 9.5 pro-
vides one simple correction, while other authors (e.g., Fay et al. 2002, Smith and Eyre-Walker
2002, Gojobori et al. 2007) have suggested only including “common” polymorphisms in the
analysis, such as those with minor allele frequencies above ten percent.

Figure 9.1 The estimated constraint 1 − f on replacement sites as a function of effective
population size. AsNe increases, more deleterious mutations move from the effectively neutral
class into the strongly deleterious class, reducing the effectively neutral mutation rate and
increasing the amount of constraint on a gene. After Wright and Andolfatto (2008).

The other concern is much more problematic. At the heart of the test is Equation 9.5 —
the ratio of polymorphic sites and the ratio of substitutions both estimate the same quantity,
the ratio of neutral mutation rates for the two categories. The caveat is that the effectively
neutral mutation rate changes withNe. Recall that any mutation for which 4Ne|s| ¿ 1 behaves
as if it is effectively neutral (Chapter 6). Under the equilibrium neutral model, the ratio of
Da/Ds has expected value f , the reduction in the neutral mutation rate at replacement sites.
Figure 9.1 shows that f decreases as effective population size increases, as the amount of
constraint 1 − f increases with Ne. For the same distribution of selection coefficients, one
can raise, or lower, the effectively neutral mutation rate by decreasing, or increasing, the
effective population size. If the effective population size was significantly different during
the divergence phase (where substitutions where fixed) than it is at the current phase (which
generated the observed number of polymorphisms), then these two phases can have different
effectively neutral mutation rates.

McDonald and Kreitman (1991a) were aware than an increase in the effective population
size when slightly deleterious alleles are present could create a situation where these were
fixed during divergence under the smaller population size, but do not even contribute to
within-species polymorphisms if Ne significantly increases. This would given an inflated
Da/Pa ratio, and hence a false signal of positive selection. Eyre-Walker (2002) shows that even
a modest increase in Ne can generate such false signals, and that the problem is exacerbated
by culling rare polymorphisms, which is a common practice. In the words of Hughes (2007),
this feature implies that the MK test
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“cannot distinguish between positive Darwinian selection and any factor that causes purifying
selection to become relaxed or to become less efficient”

Phrased in terms of the neutrality index, a value greater than one can be generated by either
segregating deleterious alleles or a relaxation in the functional constraints. The later could
occur by a change in the environment (Example 9.9) or by a change in Ne. Conversely,
an index value less than one (which is normally taken as support for adaptive evolution)
could similarly be generated by relaxation of functional constraint during the divergence
phase, so that more mutations (relative to those currently segregating in the population)
were effectively neutral, and hence fixed. This effect can also occur between populations
of the same species. For example, Lohmueller et al. (2008) observed a higher fraction of
segregating deleterious mutations in human populations from European than from Africa,
which they attribute to the bottleneck in the founding European population (and hence a
reduction in Ne) during their migration of out Africa.

Example 9.9. An example of some of the potential difficulties in interpreting the results
of a McDonald-Kreitman test is seen in Harding et al. (2000), who examined the human
Melanocortin 1 receptor (MC1R), a key regulatory gene in pigmentation. Comparing the
canonical MC1R haplotype in humans with a sequence from Chimp found 10 nonsynony-
mous (replacement) and 6 synonymous (silent) substitutions. An African population sample
found zero nonsynonymous and 4 synonymous polymorphisms, giving

Fixed (Human-Chimp) Polymorphic (African)
Silent 6 4
Replacement 10 0

Fisher’s exact test gives a p value of 0.087, close to significance. Taken on face value, one might
assume that this data implies that the majority of the replacement substitutions between hu-
man and chimp were selectively-driven. However, the authors also had data from populations
in Europe and East Asia, which showed ten nonsynonymous and three synonymous poly-
morphisms, giving the DPRS table as

Fixed (Human-Chimp) Polymorphic (Europe/East Asia)
Silent 6 3
Replacement 10 10

with a corresponding p value of 0.453. The authors suggest that the correct interpretation
of these data is very stringent purifying selection due to increased functional constraints in
African populations, with a release of constraints in Europe and East Asian. Asians in Papua
New Guinea and India also showed very strong functional constraints, again consistent with
a model of selection for protection against high levels of UV.

The key point is that the population chosen as the reference standard for the polymorphism
ratio is critical. The two tests above both had the same divergence data, but the significance
(or lack thereof) of the MK test critically depended on whether the population sample was
African or European/East Asia.

Example 9.10. The effect of slightly deleterious alleles on the expected value of the neutrality
index was examined by Welch et al. (2008), who assumed that new mutations have their
fitness values drawn from some probability distribution. Assuming that s values are drawn
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from a gamma distribution (Appendix 2) over −∞ < s < 0 with shape parameter β >
0 (the coefficient of variation for s is given by 1/

√
β, with β = 1 corresponding to the

exponential distribution), Welch et al. showed that the expected value of the neutrality index
is approximately

NI ≈ 1 + βK

where K > 0 is a function of the sample sizes. Thus, the presence of deleterious mutations
inflates the neutrality index above one. Conversely, a neutrality index less than one implies
an excess of replacement substitutions and hence support for positive selection. Welch et al.
caution that this need not be the case. Assume the same model as above, with new mutations
only being deleterious, but now suppose that the population size has changed over time. In
particular, suppose that the population had a constant sizeNe for some fraction q of the total
divergence time, after which is increases by a factor δ > 1 to δNe > Ne. In this case, the
expected value of the neutrality index becomes

NI ≈ 1 + βK

1 + q(δβ − 1)

Welch et al. note that if the population expansion is recent and/or substantial (q near one
and/or δ large), NI can easily be less than one, giving a false signature of selection. This
expression quantifies our concern that a smaller population size during divergence results in
a higher effectively neutral mutation rate, and hence more substitutions, than expected given
the number of segregating replacement sites in the current population with a much larger size
and hence smaller effectively neutral mutation rate.

Finally, silent sites may be a rather poor proxy for neutral sites, especially in species
with large effective population sizes. The phenomenon of codon usage bias is well known,
wherein some synonymous codons are preferentially used over others, with the discrepancy
simply not being a function of nucleotide frequencies. Selection is thought to the weak on
such sites, but can still have an impact (Hartl et al. 1994, Akashi 1995). For example, DuMont
et al. (2004) found that preferred synonymous codons are substituted significantly faster than
unpreferred synonymous changes at the Notch locus in D. simulans, while melanogaster has
a significantly higher substitution rate for unpreferred changes. The consensus on codon
bias is that the strength of selection is weak, and so synonymous changes are effectively
neutral in small populations, but subjected to both purifying and positive selection in larger
populations where s, while still being quite small, is no longer effectively neutral. However,
there may be a bit of silver lining to selection on the neutral proxy sites. As mentioned, one
concern for false positives under an MK test is an increase in the effective population size.
Eyre-Walker (2002) shows that selection on the neutral proxy sites (synonymous codons),
restricts the conditions under which a false positive signal can arise via a change in Ne.
Presumably this occurs because changes in Ne now influences both the test and neutral
proxy sites, creating a bit of an internal control.

Dominance and the MK Test

One might be concerned that dominance might alter the polymorphism to divergence ratio
at replacement sites, as both the frequency spectrum and the probability of fixation for a
selected site is influenced by dominance. While Weinreich and Rand (2000) and Williamson
et al. (2004) show that most types of dominance have little impact on this ratio, an important
exception is weak to moderate overdominance. Williamson et al. (2004) show that such
overdominance can increases the substitution rate relative to that predicted from the amount
of polymorphism, giving a signal of positive direction selection in an MK test (a neutrality
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index less than one). The reason for this behavior follows from Robertson’s (1962) classic
result examined in Chapter 6, wherein overdominance can increase rather than retard the rate
of fixation when the equilibrium values are extreme (minor allele equilibrium frequency 0.2
or less). The idea is that selection rapidly moves allele frequencies to these equilibrium
values, at which point drift can cause alleles to become substituted if selection is relatively
weak.

Recombinational Bias in Extended MK Tests

The standard MK test, contrasting silent and replacement sites within a single gene, is
very robust to recombination. As succinctly stated by Andolfatto (2008), this occurs because
the comparison sites are fully interdigitated. Denoting the classes by a and b, within-gene
comparisons are of the form abababab. Adjacent sites thus share the same coalescent structure
and recombination (or lack thereof) has little effect. Conversely, extensions of the MK test
may compare sites that are not interdigitated (but still closely linked), such as contrasting the
silent sites in a gene with 3’ or 5’ UTR sites adjacent to that gene. This comparison has the
form aaaabbbb. Even more extreme, one may compare silent sites in one region with other
sites in different regions. In both these settings, Andolfatto (2008) found that recombination
can indeed bias the MK test, generating an increased number of false-positives. The bias is
most severe when the ratio of recombination to mutation rates is around one. For very small
values (no recombination), there is little bias, and likewise for very large values (unlinked
sites), there is little bias as well. Heterogeneity in recombination and/or mutation rates
among less that fully interdigitated comparisons can also generate false-positives.

ESTIMATING PARAMETERS OF ADAPTIVE EVOLUTION

As shown in Example 9.1, DPRS tables lead to a simple prediction about the expected number
of replacement substitutions given the ratio of silent to replacement polymorphisms. This
allows us to directly ask how many (if any) excess substitutions at replacement sites have
occurred within our target gene. While straightforward, one issue is power: at any particular
gene the true excess has to be fairly substantial in order for the MK test to be significant.
However, when we sum up such excesses over a number of genes, we have the power to
detect even a small increase. This ability to look at the cumulative evidence over a large
number of genes to detect small inidividual effects is one of the advantages of genome-wide
studies. A second approach to estimating the number of adaptive substitutions places this
idea into a more formal statistical framework, called the Poisson random field model, which
allows us to estimate the average selection coefficients of sites under positive selection. We
consider these two approaches in turn.

Estimating the Fraction α of Substitutions that are Adaptive

It was realized fairly quickly that DPRS tables offer much more than simply an opportunity
to test selection (Sawyer and Hartl 1992; Charlesworth 1994; Fay et al 2001, 2002; Smith and
Eyre-Walker 2002). A neutrality index less than one indicates that the observed number of
replacement substitutions is greater than expected from the ratio of the number of silent
to replacement polymorphic sites. Assuming that this ratio does indeed reflect the ratio of
effectively neutral mutation rates at these two classes of sites, then (when coupled with
the observed number of silent substitutions) it predicts the expected number of effectively
neutral replacement substitutions. Any statistically-significant excess over this predicted
value are either sites fixed under positive selection or the result of changes in the effectively
neutral mutation rate between the populations that generated the observed polymorphism
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and divergence data. As mentioned, the later can happen if the effective population size was
much smaller during the divergence phase, allowing more slightly deleterious mutations to
escape selection and become fixed.

As above, let µ and fµ denote the per-site mutation rate for silent and replacement sites,
so that µa = fµna and µs = µns are the total mutation rates for the replacement and silent
sites in our sample. Under neutrality, the expected number of substititions for each class is
Ds = 2µst and Da,n = 2µat. Now suppose there are a additional replacement substitution
that were fixed by positive selection, giving the total number of replacement substitutions
as DA = Da,n + a = 2µat + a. Ideally, we would like to estimate both the number a and
the fraction α = a/Da of replacement substitutions that are adaptive. To estimate a, note
that the expected number of segregating sites are given by θian, or Ps = 4µsNean, and
Pa = 4µaNean, where the later assumes that the vast bulk of segregating sites are neutral
(adaptive mutations are assumed to be both rare and also fixed quickly, and hence make
little contribution to Pa). First note that

Ds
Pa
Ps

= 2µst
µa
µs

= 2µat (9.7a)

From above, this last expression is just the expected number of neutral replacement substi-
titons, so that Da,n = Ds(Pa/Ps). Since a = Da −Da,n, our estimate becomes

â = Da −Ds
Pa
Ps

(9.7b)

as obtained by Charlesworth (1994), Fay et al. (2001, 2002), and Smith and Eyer-Walker
(2002). This directly suggests an estimator for the fraction α of replacement substitutions
that are adaptive,

α̂ =
â

Da
= 1− DsPa

DaPs
= 1−NI (9.7c)

Note that a positive estimate of α requires a neutrality index of less than one. For the values
in Example 9.6, for non-coding regions on the X in D. melanogaster, α̂ = 1 − 0.906 = 0.094
(using all polymorphic sites) and α̂ = 1−0.764 = 0.236 (singletons ignored). Hence, between
roughly 10 and 25 percent of all substitution in these non-coding regions might be adaptive.

Finally, note that we can estimate the fraction f of replacement mutations that are
effective neutral by noting that

Pa
Ps

=
4µaNean
4µsNean

=
µa
µs

=
fµna
µns

= f
na
ns
, (9.7d)

giving an estimate of

f̂ =
Pa
Ps

ns
na

=
Pa/na
Ps/ns

(9.7e)

This is just the ratio of the fraction of replacement sites that are polymorphic divided by the
fraction of silent sites that are polymorphic. Recall that 1−f is a measure of the amount of con-
straint relative to a silent site. For Drosophila, estimated 1− f values are 0.94 for replacement
sites, 0.81 for UTRs, 0.61 for intergenic regions, and 0.56 for intron sequences (summarized by
Sella et al. 2009). Further, Halligan and Keightley (2006) showed that synonymous sites are
not the fastest evolving sequences in Drosophila. In comparison with these FEI sites (fastest
evolving intronic sites), the constraint in synonymous sites is 0.09, suggesting that nine
percent of new silent mutations are deleterious.

While Equations 9.7b/c can be applied to single genes, individual-gene estimates ofαare
expected to have large sampling variance and low power. If the actual number a of adaptive
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substitutions is modest to small, this may not sufficiently inflate Da for estimates of α to
be significantly different from zero for most single genes. For example, if five substitutions
are expected given the silent/replacement polymorphism ratio, an observed value of eight
is unlikely to be significantly different. However, if 3/8 were indeed driven to fixation by
positive selection then α = 0.375, which is quite substantial. Despite lower power for any
single gene, considerable power can be obtained by estimatingα over a number of genes, using
the accumulation of any small deviations to detect even small values of α. The question is
how best to do so. Fay et al. (2001, 2002) suggested the estimator

α̂Fay = 1− Ds

Da

(
Pa

Ps

)
(9.8a)

In here (and what follows), a bar over a quantity denotes its average for observed values or
its expected value for parameters over the sample of genes considered. The estimator given
by Equation 9.8a has two potential sources of bias (Smith and Eyre-Walker 2002, Welch 2006),
both of which lead to overestimation of α. Letting µ and fµ denote the effectively neutral
per-site mutation rates for silent and replacement sites within a gene, where f is allowed to
vary over genes. Following Welch (2006), one can show that

E

(
Ds

Da

)
=
ns
na

1
f

(
1

1− α

) −1

' ns
na

1
f

[
1− α− σ2(α)

]
(9.8b)

When there is between-locus variation in α (so that σ2(α) > 0), α is over-estimated by
Equation 9.8a. A more subtle bias occurs if f and 4Neµ are negatively-correlated over genes
(Smith and Eyre-Walker 2002, Welch 2006), as

E

(
P a

P s

)
=
na
ns

(
f +

σ(4Neµ, f)
4Neµ

)
(9.8c)

Equation 9.7e underestimates f and therefore results in an overestimation of α if 4Neu and f
are negatively correlated over genes (and underestimates α if they are positively correlated).
Smith and Eyre-Walker (2002) note that a negative correlation is biologically reasonable, as
the effective population size can vary over the genome (Chapter 6), and regions with smaller
Ne likely have higher f values, as more mutations become effectively neutral.

To remove any bias in estimate of f from correlations between f and Ne, Smith and
Eyre-Walker (2002) suggest the estimator

α̂SEW = 1− Ds

Da

(
Pa

Ps + 1

)
(9.9a)

Provided that the number of polymorphic silent sites in the sample is modest (five or greater),
this adjusted polymorphism ratio is unbiased by correlations between f and Ne (Smith and
Eyre-Walker 2002, Welch 2006), giving

E
(
α̂SEW

)
' α+ σ2(α) (9.9b)

While this correction removes concern over correlations between f and Ne, it still results in
an overestimation of α when between-locus variation in α is present. Confidence intervals
for α can be obtained using a standard bootstrap approach. Here, one generates a sample
of genes by drawing with replacement from the original list of all genes and estimates α for
this sample. This process is repeated a large number of times to generate a distribution for
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the estimate under resampling. Taking the lower 2.5% and upper 97.5% in this distribution
gives the 95% bootstrap confidence interval. Collectively, we will refer to estimators (such
as Equations 9.7-9.9) that use departures from the expectation under neutrality in a DPRS
table as MK estimators.

Example 9.11. A simple model provides some insight into the amount of bias possible when
using Equation 9.9b. Imagine there are just two types of genes: a fraction q have α∗ > 0,
while the rest have only neutral substitutions. Under this model α = qα∗, while

σ2(α) = E[α2]− α 2 = qα2
∗ − q2α2

∗ = qα2
∗(1− q)

Suppose that α∗ = 0.2 and q = 0.5, so that α = 0.1. The expected value from the Smith-
Eyre-Walker estimate is

α+ σ2(α) = 0.1 + 0.5 · 0.22(1− 0.5) = 0.11

or a ten percent overestimation. Conversely, consider the extreme case where at ten percent
of the genes, all substitutions are adaptive, so that α∗ = 1 and q = 0.1. Again, α = 0.1 while
the expected value from the Smith-Eyre-Walker estimate is 0.1 + 0.1 · 12(1− 0.1) = 0.19, so
that even in this extreme case α is only a two-fold overestimate.

While the above sources of bias are generally modest and in a predictable direction
(overestimation ofα ), the presence of mildly deleterious alleles provides a major bias, which
can be either positive or negative (Eyre-Walker 2002, Bieren and Eyre-Walker 2004, Welch
2006, Charlesworth and Eyre-Waker 2008, Eyre-Walker and Keightley 2009, Halligan et al.
2010). Estimates are downwardly biased by the presence of low-frequency deleterious alleles
that contribute to Pa but notDa, inflating the polymorphism ratio relative to the divergence
ratio (Eyre-Walker 2006, Eyre-Walker and Keightley 2009). As with MK tests, one approach is
to count only “common” polymorphisms for Pa and Ps. However, Charlesworth and Eyre-
Walker (2008) note that while this approach is “better than doing nothing”, estimates ofα still
tend to be downwardly biased even after this correction unless the trueα is fairly substantial.
Further, the bias is a function of the complex distribution of fitness effects (Charlesworth
and Eyre-Walker 2008, Welch et al. 2008, Eyre-Walker and Keightley 2009).

The presence of mildly deleterious alleles also biases estimates of α if the population
size differed during the divergence and polymorphism phases. If the population has recently
undergone an expansion, this can upwardly bias estimates of α. In such cases, slightly
deleterious alleles may become fixed contributing to divergence, but are quickly removed
in the new larger population, not contributing to Pa. Conversely, if the population has
recently undergone a contraction, this inflates Pa as more deleterious alleles are segregating,
downwardly biasing estimates of α. Eyre-Walker and Keightley (2009) and Halligan et al.
(2010) obtained a simple expression for the bias in α when the current population size
NP generating the polymorphism data differs from the ancestral size ND generating the
divergence data. Assuming beneficial mutations are sufficient strong that α is invariant
under the two population sizes, while deleterious new mutations have their fitness effects
drawn from a gamma distribution with shape parameter β > 0, then the connection between
the expected value αest of an estimated α and its true value is

αtrue = 1 + (αest − 1)
(
NP
ND

)β
(9.10)
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A contraction in Ne (NP < ND) leads to an underestimation of α, while an increase in
Ne results in an overestimation. The same approach leading to Equation 9.10 was used in
Example 9.10 to examine the behavior of the neutrality index (which is closely related to α,
see Equation 9.7c) under changes in Ne.

Maximum-likelihood estimators of α have been proposed in an attempt to account for
segregating deleterious mutations (Bierne and Eyre-Walker 2004, Welch 2006, Boyko et al.
2008, Eyre-Walker and Keightley 2009). This is done by assuming a standard form (such as a
gamma) for the distribution of deleterious fitness effects, and then using the site frequency
spectrum data to estimate the parameter(s) of this distribution. We sketch the basic outline
of this approach in the next section. Corrections for the effects from changes in Ne have
also been suggested (Eyre-Walker and Keightley 2009). While elegant and powerful when
the model assumptions are correct, the concern is that all of these approaches are highly-
dependent on the assumed functional form (e.g., gamma, normal, or other) of the unknown
distribution of fitness effects for the slightly deleterious mutations.

Given these competing sources of bias (overestimation of α when σ2(α) > 0 and un-
derestimation of α when deleterious alleles are segregating), is Equation 9.9b more likely
to over- or under-estimate the true α ? As Example 9.11 highlights, the overestimation of
α when α varies over genes, while not trivial, is often modest, especially if α is modest
to large. Conversely, segregating deleterious alleles inflate the polymorphism ratio Pa/Ps,
underestimating the actual excess number of substitutions. This effect can be quite dramatic.
In particular, if deleterious alleles are not uncommon, a neutrality index value greater than
one can occur, which results in a negative estimate of α (Equation 9.7c). Putting these two
sources of bias together, α is generally likely to be underestimated unless the population has
undergone a recent size expansion.

How Common are Adaptive Substitutions?

There has been an explosion of estimates of α (Eyre-Walker 2006) that will likely continue, as
the required data (divergence between a set of genes in two species, polymorphism data for
the same genes from one, or both, species) is becoming increasingly easy to obtain. Table 9.1
summarizes some of these studies, and Figure 9.2 shows a recent analysis from ten species
pairs in plants. The quest for α values is very reminiscent of the mad “find em and grind
em” dash in the 1970’s to estimate levels of protein variation for just about any species one
could get their hands on (e.g., Lewontin 1974).

The general observation for Drosophila is that estimates ofα for amino acid substitutions
are high, close to 50%, with estimates of the fraction of adaptive changes in noncoding regions
approaching 30% in some cases. High α values for replacement sites are also seem for the
mouse, bacteria, and three plants (Populus, Helianthus, and Capsella), while very low levels
are seen in other plants (Table 9.1 and Figure 9.2). Low levels on Arabidopsis thaliana were
originally attributed to the high levels of selfing in this species (Bustamante et al. 2002), but
an outcrossing close relative (A. lyrata) showed similar very low levels of α (Foxe et al. 2008).
The case receiving the most interest is humans, where an initially rather high estimate of
0.35 by Fay et al (2001) for a small set of genes was followed by several studies showing
much lower values. One trend that has been suggested is that α increases with effective
population size. While intriguing, there are also apparent counter-examples. For example,
Bachtrog (2008) found that D. miranda, thought to have a low effective population size, has
a similar value of α to Drosophila species thought to have significantly larger sizes.
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Figure 9.2 Estimated α values for ten plant species. Boxes and whiskers indicate the 50%
and 95% confidence interval for the estimates, which were obtained using Eyre-Walker and
Keightley’s (2009) ML method. This allows for a distribution of deleterious fitness effects and
potentially different effective population sizes in the divergence and polymorphism phases,
in an attempt to account for these potential sources of bias. Only the comparison involving
sunflowers (polymorphism data from Helianthus petiolaris, divergence between petiolaris and
annuus) had an estimated average α significantly different from zero. Surprisingly, the com-
parison using polymorphism data from H. annuus and the same divergence (petiolaris versus
annuus) gave a negative estimate of averageα (but not significantly different from zero). After
Gossmann et al. (2010).

Table 9.1. Partial list of estimates of the fraction α of replacement substitutions that are adaptive.
The organism listed is the species that provided the polymorphism data. MK refers to a MacDonald-
Kreitman estimator (Equations 9.8 or 9.9), ML to maximum-likelihood extensions of MK estimators
(Bierne and Eyre-Walker 2004, Welch 2006, Eyre-Walker and Keightley 2009), and PRF to Poisson
Random Field estimators (examined in detail in the next section). Estimates of zero under ML indicate
a neutrality index score exceeding one (and hence a negative estimate of α).

Organism α Method Reference

Mouse (Mus musculus castaneus) 0.57 ML Halligan et al. 2010
Chicken (Gallus gallus) 0.20 MK Axelsson and Ellegren 2009
Drosophila simulans 0.45 MK Smith and Eyre-Walker 2002

0.43 ML Bierne and Eyre-Walker 2004
0.41 ML Welch 2006

D. melanogaster 0.44 ML Bierne and Eyre-Walker 2004
0.95 PRF Sawyer et al. 2007

D. miranda 0.48 ML Bachtrog 2008
Escherichia coli 0.56 MK Charlesworth and Eyre-Walker 2006
Arabidopsis thaliana 0 PRF Bustamante et al. 2002
A. lyrata 0 PRF Foxe et al. 2008
Capsella grandiflora (crucifer) 0.40 ML Slotte et al. 2010
Populus tremula (Aspen) 0.30 ML Ingvarsson 2010
Helianthus annuus (sunflower) 0.75 MK Strasburg et al. 2009
Humans 0.35 MK Fay et al. 2001

0 MK Zhang and Li 2005
0.06 PRF Bustamante et al. 2005
0.12 MK Gojobori et al. 2007

Drawing a clear conclusion for these initial data is problematic for several reasons. First,
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even in the same species, different genes may be used and/or different populations chosen
as the polymorphism benchmark. The effect of the later is especially prominent in Figure
9.2, with the same divergence data between sunflower species (Helianthus annuus versus H.
petiolaris) showing either a significantly positive estimate of mean α when using Helianthus
petiolaris as the polymorphism reference population but a negative (but not significant) es-
timate when using H. annuus as the reference population. Clearly, differences in the current
Ne values between the two species being considered can inflate, or deflate, estimates of
α (Equation 9.10). Second, different studies used different methods, ranging from simple
MK-type estimators (Equations 9.8, 9.9) to much more sophisticated ML-based estimators
that attempt to account for both changes in Ne and the presence of segregating deleterious
alleles (Bierne and Eyre-Walker 2004, Welch 2006, Eyre-Walker and Keightley 2009). While
certainly more powerful when the modeling assumptions are correct, the robustness of these
approaches to model misspecification is unclear.

Despite these potential misgivings, the pattern of estimates of α over species, and even
within genomes, is of fundamental importance to evolutionary biologists. If indeed some
species have very low α values, does this automatically imply that they have lower rates of
adaptation? One surprisingly group that showed a very low estimated α was the Hawaiian
silverswords Schiedea (family Caryophyllaceae), a plant group with rapid (and dramatic)
morphological evolution over a very recent time window (Gossmann et al. 2010). One pos-
sible resolution is that most current studies have focused on estimation of α in coding se-
quences, whereas perhaps most adaptation (especially over short time scales) occurs at the
level of gene regulation. Based upon the estimated α values in noncoding regions, Andol-
fatto (2005, Wright and Andolfatto 2008) suggests that the number of adaptive substitutions
in noncoding regions in Drosophila could easily outpace the number of adaptive replacement
substitutions. Given that Drosphila has a relative compact genome relative to humans and
many other species, the bulk of adaptive variation may not be where current scans of α have
looked.

Estimating the Rate λ of Adaptive Substitutions

A quantity that prominently appearde in expressions in Chapter 7 on the effects of periodic
sweeps wasλ, the per generation rate at which adaptive substitutions are fixed. While it might
seem that estimates of λwould be very difficult to obtain, fortunately this is not the case, and
they follow almost directly from estimates of α (Smith and Eyre-Walker 2002, Andolfatto
2007).λ is simply the number of adaptive substitutions divided by the total time of divergence
2t (as each of the two branches of length t can fix adaptive mutations). If da = Da/na
denotes the per site number of replacement substitutions between two species, then an
upper bound is simply λ ≤ da/(2t). (The use of Da to compute da makes the assumption
that all substitutions have been observed, so that no corrections for multiple substitutions
at the same site are needed. This is not unreasonable when comparing two closely-related
species.) With an estimate of α, the number of adaptive replacement substitutions is just
αDa, giving Andolfatto’s (2007) estimator,

λ̂ =
αda
2t

(9.11a)

for the per-site, per-generation rate of adaptive substitutions. Noting that Ka, the per-site
rate of replacement substitutions, is just Ka = da/(2t), we can also write Equation 9.11 as
λ = αKa. If an estimate of t is not available, an estimator (scaled as τ = t/[2Ne]) can be
obtained from the ratio of Ds/Ps. From Equations 9.12a/b,

E[Ds]
E[Ps]

=
1

am + an

(
τ +

1
m

+
1
n

)
(9.11b)
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wherem and n are the sample sizes for the two populations and ax are functions of the same
size (Equation 7.xx). Substituting the observed values ofDs and Ps for their expected values
and rearranging provides a simple method-of-moments estimator for τ ,

τ̂ = (am + an)
Ds

Ps

(
1
m

+
1
n

)
(9.11c)

Example 9.12. The preliminary estimate of the percent amino acid divergence between
human and chimp proteins is 0.8, giving da = 0.008 (Chimpanzee Sequencing and Analysis
Consortium 2005), with a divergence time of roughly 7 million years. If we takeα = 0.10 (ten
percent of replacement substitutions are adaptive), then our estimate of the rate of adaptive
replacement substitutions per site per generation is

λ =
0.10 · 0.008
14× 106

= 5.7× 10−11 per site per year

Assuming a generation time of 25 years, this corresponds to a rate of 2.3 ×10−12 per site
per generation. As a point of comparison, Andolfatto (2007) contrasted X chromosome genes
in Drosophila melanogaster (for polymorphism data) and D. simulans (as the outgroup for di-
vergence). The estimated α was 0.5, while da = 0.028 (roughly three percent amino acid
divergence), and t = 107 generations, giving

λ =
0.50 · 0.028

2× 107
= 7.0× 10−10 per site per generation

The Sawyer-Hartl Poisson Random Field Model: Basics

A second approach for extracting information from DPRS tables on the nature and amount of
selection is the Poisson random field model (PRF) of Sawyer and Hartl (1992). Their initial
version of this model assumes that all sites within a region evolve independently and that the
strength of selection on all replacement sites is the same. Strongly deleterious mutations are
allowed to occur, but the assumption is that these do not contributed to either polymorphism
(observed segregating sites) or divergence, and are accounted for by simply reducing the
mutation rate to exclude such mutations. Under this model, the observed counts (Ps,Ds, Pa,
and Da) in a DPRS table follow independent Poisson distributions, whose expected values
are functions of four parameters (θa, θs, τ, γ). With four observations (the DPRS entries) and
four unknowns, we can estimate the model parameters, but cannot assess how well the
model fits the data. Two of the parameters are the scaled total mutation rates θa = 4Neµa
and θs = 4Neµs, while the third parameter is the scaled divergence time τ = t/(2Ne). Of
most interest is the fourth parameter, the scaled strength of selection γ = 2Nes. Sawyer and
Hartl assumed additive fitness, so that a new mutation has fitness 1 + s as a heterozygote
and 1 + 2s as a homozygote. In contrast to MK approaches, the PRF model does not estimate
the fraction α of adaptive substitutions directly, but knowledge of γ can allow one to do so
indirectly (Example 9.13).

The unique feature of the PRF model is that each site evolves independently and hence
there are no effects from selection at linked sites. Selection can only influence a site by directly
acting on it. To obtain the expected values for entries in a DPRS table, Sawyer and Hartl used
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diffusion theory (Appendix 1) to obtained the expected equilibrium distributions (under
mutation-selection-drift balance) for polymorphisms at neutral and selected sites as well as
the expected divergence between sites. The PRF model is an infinite sites model, with each
new mutation being unique and at a different site than previous ones. For a sample ofm and
n sequences from the two species, these expected values are given by

E[Ds] = θs

(
τ +

1
m

+
1
n

)
(9.12a)

E[Ps] = θs

m−1∑
j=1

1
j

+
n−1∑
j=1

1
j

 = θs (am + an) (9.12b)

E[Da] = θa

(
2γ

1− exp(−2γ)

)(
τ +G(m, γ) +G(n, γ)

)
(9.12c)

E[Pa] = θa

(
2γ

1− exp(−2γ)

)(
F (m, γ) + F (n, γ)

)
(9.12b)

where

F (n, γ) =
∫ 1

0

(
1− xn − (1− x)n

1− x

)(
1− exp−2γx

2γx

)
dx (9.13a)

G(n, γ) =
∫ 1

0

(1− x)n−1

(
1− exp−2γx

2γx

)
dx (9.13b)

The full derivation is given by Sawyer and Hartly, but a brief sketch of the underlying ideas
is as follows. First, a classic result (Wright 1938) is that the amount of time a new mutation
(with selection coefficient s) spends in the interval (x, x+ dx) is

φ(x |Ne, s) =
1− exp−2γ(1−x)

1− exp−2γ

1
x(1− x)

dx (9.14a)

In the limit as γ → 0, this reduces to dx/x, recovering Watterson’s expression for the site
frequency spectrum for neutral alleles (Equation 8.26a). Equation 9.14a is the expected equi-
librium frequency spectrum for sites under selection, and is valid for both positive and
negative values of s.

As a brief aside, we mentioned above that certain maximum likelihood versions of the
basic MK test use a distribution of fitness effects (often denoted by DFE in the literature),
ϕ(s |∆), where∆ are the distribution parameters (Bierne and Eyre-Walker 2004, Welch 2006,
Eyre-Walker et al. 2006, Boyko et al. 2008, Eyre-Walker and Keightley 2009). The expected
site frequency spectrum becomes

φ(x |Ne,∆) =
∫
φ(x |Ne, s)ϕ(s |∆) ds (9.14b)

which is then used to obtain a maximum likelihood estimate of the distribution parameters
∆, with the resulting DFE used to adjust for the effects of segregating deleterious alleles.

Returning to the PRF model, we do not use the site frequency spectrum, but rather
just the four cell counts in the DPRS table. If x is the frequency of a segregating allele, the
probability we score it as a polymorphic site in a sample of size n is 1−xn− (1−x)n, where
the last two terms account for either all n draws being the derived allele or all n draws being
the ancestral allele. Hence, the probability we score a truly segregating site as polymorphic
becomes ∫ 1

0

(1− xn − (1− x)n) φ(x |Ne, s) (9.14c)
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Using this expression, the functionF (n, γ) given by Equation 9.13a follows upon substitution
of Equation 9.14a and some simplification (recall that a similar approach was used in Chapter
8, see Equation 8.27). The Sawyer-Hartl model also correctly accounts for the possibility that
segregating mutations are scored as substitutions because the sample size was insufficient
to contain both alleles. If the derived allele frequency is x, the probability that we score a
polymorphic site as a substitution event (for the derived allele) is xn, giving the additional
increment to the probability of an observed substitution as

∫ 1

0

xn φ(x |Ne, s) (9.14d)

This term is added to the probability of a true substitution to give a full accounting of the
number of sites in the sample scored as substitutions, and G(n, γ) follows from Equation
9.14d by a change of variables.

The basic similarities, and fundamental differences, between MK estimators (e.g., Equa-
tions 9.7-9.9) and the PRF approach can be easily obscured by the impressive nature of the
PRF equations. The similarity is that both approaches use the same the data, the four values
in a DPRS table. However, the two approaches estimate different quantities and have differ-
ent underlying model assumptions. MK estimators make no assumption about the nature
or strength of selection on replacement sites, but instead estimate f , the reduction in the
effectively neutral mutation rate at replacement sites and α, the fraction of replacement sub-
stitutions at a gene that are adaptive. The effects of purifying selection enters only through
f , while the effects of positive selection only thorough α. In contrast, the PRF equations
estimate θa and θs, the scaled total mutation rates over all sites of that category within the
gene. The ratio of θa/θs (suitably corrected for number of sites within each category, see
Equation 9.7e) is not an estimate of f , as the PRF model does allow for slightly deleteri-
ous alleles to be segregating. It also allows for advantageous alleles to be present, where
γ is (very roughly) the scaled average selection coefficient over all replacement mutations.
Thus, it does not estimate α directly, but given estimates of γ we can compute the expected
fraction of substitutions fixed by positive selection (Example 9.13, Equation 9.16). The orig-
inal Sawyer-Hartl model is very restrictive, with only a single fitness class for replacement
sites (which is approximately treated as an average selection coefficients over mutations).
Extensions discussed shortly remove this restriction, allowing for neutral, deleterious, and
advantageous classes, with separate estimates of γ for each class.

The original Sawyer-Hartl analysis equated the observed entries in a DPRS table with
their corresponding expected values (Equation 9.12) and then solved for the unknowns of
interest (the ratio θa/θs, the scaled average strength of selection γ, and the scaled time of
divergence τ ). A value of γ significantly different from zero implies selection on replacement
sites, withγ > 0 implying positive selection andγ < 0 negative selection. This original model
only assumed a single selective class, with silent sites being neutral. This base model can be
placed in a Likelihood framework by recalling that each observed entry is an independent
Poisson random variable. The resulting probability that the count in a specific category is k
given its expected value κ is

Prob(X = k |κ) = κk exp(−κ)/k!, where κ = E(X)

The likelihood of the data in the DPRS table for gene i is thus given by

Li =
4∏
j=1

(
κ
xi,j
i,j exp(−κi,j)

(xi,j)!

)
(9.15)
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where xij denotes the observed values for category i in gene j, with

xi,1 = Ps,i, xi,2 = Pa,i, xi,3 = Ds,i, xi,4 = Ds,i

and κi are the corresponding gene-specific expected values,

κi,1 = E[Ps,i], κi,2 = E[Pa,i], κi,3 = E[Ds,i], κi,4 = E[Da,i]

Note from Equation 9.12 that these are functions of the unknown parameters (θa,i, θS,i, γi, τ ),
so a numerical search over these to maximize Equation 9.15 given the data obtains the
likelihood solutions. Under the assumption of independence across genes, the combined
likelihood over k genes becomes

L =
k∏
i=1

Li

where θa, θS , γ can potentially vary over the genes, while the divergence time τ is shared by
all.

As might be expected, this basic model has been expanded by considering more real-
istic fitness models. Nielsen et al. (2005) allowed three fitness classes for replacement sites:
neutral, deleterious, and advantageous. While fitness is assumed to be the same within each
class, this is a significant improvement over the basic Sawyer-Hartl model. The resulting
likelihood now has four parameters for selection (as opposed to one, γ). These are pa, p0, pd,
the frequencies of advantageous, neutral, and deleterious mutations (where pa = 1−p0−pd),
and γa and γd, the scaled selection coefficients for the favored and deleterious alleles. These
values were assumed to be the same over all genes. Nielsen et al. applied their method to
a set of 50 human genes that presented other evidence for possible positive selection. The
resulting ML estimates were pd = 0.748, p0 = 0.172, and pa = 0.080 as the fraction of delete-
rious, neutral, and advantageous mutations, and γd = −34.96 and γa = 267.11 as the scaled
strenght of selection of deleterious and advantageous mutations. Note that even in this case
were genes were ascertained as likely to be under positive selection, most mutations are still
deleterious.

While the PRF model does not directly estimate α, we can obtain it from the estimates
of γ and the fraction pa of advantageous mutations. The expected rate of effectively neutral
substitutions is just µp0, the neutral mutation rate. The expected rate of adaptive substi-
tutions, λ (which can also be expressed as a function of α, see Equation 9.11), is obtained
as follows. The expected number of favorable mutations arising each generation is 2Nµpa,
where µpa is the favorable mutation rate. For large γ, each of these have fixation probability
2sNe/N , for an expected per generation substitution rate of favorable alleles of

λ ' (2Nµpa)(2sNe/N) = µpa(2γ) (9.16a)

The fraction of adaptive substitutions is just the rate of adaptive substitutions divided by
the total rate of (adaptive plus neutral) substitutions,

α =
λ

λ+ µp0
(9.16b)

Substituting Equation 9.16a gives

α =
2γµpa

2γµpa + µp0
=

2γpa
2γpa + p0

(9.16c)
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Equation 9.16c relates the selection estimates pa and γ from a PRF model with the selection
estimate α from an MK approach. One final result emerges from Equation 9.16a. Since µpa
is the rate of benefical mutations, which (in keeping with our notation from Chapter 7) we
denote by µb, giving

λ = 2γµb (9.16d)

which immediately suggests the estimator of Bachtrog (2008),

µb =
λ

2γ
(9.16e)

Example 9.13: What is the estimate of α for the subset of genes considered by Nielsen et al.
(2005)? Here pa = 0.08, p0 = 0.172 and γa = 267.11. While only eight percent of all new
replacement mutations were advantageous, α is considerably larger that 0.08, as

α =
2 · 267.11 · 0.08

2 · 267.11 · 0.08 + 0.172
= 0.996

One reason for this high value is that the estimated advantageous mutation rate (0.008µ)
is slightly below half of the estimate neutral rate (0.172µ), while the fixation probabilities
for advantageous mutations are over five hundred times greater. If we lumped the neutral
and deleterious mutations rates together and assumed these were all effectively neutral (i.e.,
replaced 0.172 by 0.920), our estimate ofα is still very high, 0.980. However, it is also important
to recall that this was a highly ascertained set of genes, chosen to be enriched for positive
selection.

The robustness of estimates from the PRF when the model assumptions are relaxed have
been examined by several authors. While the model assumes additive selection, estimates of
γ are relatively insensitive to dominance (Williamson et al. 2004). Wakeley (2003) examined
the effects of population structure (assuming an island model, Chapter 2). While estimates of
the divergence time τ where significantly affected, estimates of γ were only weakly affected,
and tend to be conservative (closer to neutrality). Desai and Plotkin (2008) note that the
infinite sites assumption (mutations never reoccur at the same site) breaks down under high
mutation rates (θ > 0.05), as might be found for viruses and microbes. They found that
reoccurring mutations at the same site can result in genes under weak negative selection
giving a signal of strong positive selection.

One critical difference between PFR and MK analyses is the contribution of information
from silent sites (e.g., Ps, Ds), a point stressed by Li et al. (2008). Estimates of selection
under an MK analysis are in the form of estimates of α, which are critically dependent
upon Ps and Ds (e.g., Equations 9.8a, 9.9a), in addition to Da and Pa. Conversely, under
the PRF model, positive selection is estimated only through γ. Examination of Equations
9.12c and d shows that estimates of γ depend only on Da and Pa, and that information
from silent sites (Ps and Ds) does not really enter. As a consequence, the control on Pa
usually offered by Ps for demographic effects does not enter, and over- or under-inflated
estimates of Pa from population structure can significantly bias estimates of γ. Further,
Equation 9.14a (from which the PRF equations follow) is an equilibrium model, namely that
the population size has been stable for sufficient time to reach the mutation/selection/drift
equilibrium. Chapter 8 was littered with the bodies of tests that critically depend on this same
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assumption. In contrast, since MK estimates involve the ratio of Pa/Ps, recent demographic
effects influencing polymorphism levels are accounted for, and there is no assumption about
the population being at an equilibrium value for the current amount of genetic variation.
Thus, while both MK and PRF approaches face bias from differences in population size
between the divergence and polymorphism phases, PRF approaches has an addition burden
from any nonequilibrium patterns in the polymorphism data. As noted by Li et al. (2008) tests
of selection using PRF theory (γ significantly greater than zero) are closer to an HKA than
a MK test, as the former compares the P/D ratio over different genes, lacking the internal
control of comparing polymorphism levels from two different classes within the same gene.

Finally, while we have framed the PRF approach in terms of analysis of simple DPRS
data, it can also be modified to directly estimate γ from the site frequency spectrum from a
single population (Hartl et al. 1994, Bustamante et al. 2001, Williamson et al. 2004, Huerta-
Sanchez et al. 2008). DPRS data is very granular, collapsing all of the polymorphism and
divergence information into just four data points. In contrast, the site frequency spectrum
(Chapter 8) is a very rich source of additional information on the structure of the polymor-
phism data. Using the PRF model to estimate γ directly from the frequency spectrum is
done in analogous fashion to estimating sweep parameters using the frequency spectrum
discussed in Chapter 8. In particular, Equation 9.14a is substituted into Equation 8.27c to
form the likelihood, from which a MLE for γ can be obtained by standard approaches (LW
Appendix 4). While very elegant, this approach is not generally recommended due to the
very delicate dependence of the frequency spectrum on demographic structure, which is
not accounted for by the current models. Likewise, Equation 9.14a assumes additive fit-
nesses, whereas even small amounts of dominance can bias the the site frequency spectrum
(Williamson et al. 2004).

The Sawyer-Hartl Poisson Random Field Model: Bayesian Extensions

More fined-grain variation in fitness was allowed by Bustamante et al. (2002) and Sawyer et al.
(2003) in the form of Bayesian models (an approached discussed more fully in Chapter 17 and
especially in Appendices 2 and 3). Instead of returning a point estimate θ̂ for an unknown
parameter θ (or vector of parameters Θ), a Bayesian analysis return the full distribution
(the posterior) ϕ(θ |x) for that parameter given any previous information (a prior) and the
likelihood given the data x. An especially powerful feature of a Bayesian analysis is the
notion of a marginal posterior. Partition the vector of parameters as Θ = (Θi,Θn), where
the vector Θi contains parameters that are of interest to use (for example γ), while Θn is a
vector of nuisance parameters, quantities that we need to specify the model, but are often of
no interest to us (for example, θa, θs, τ ). The marginal posterior forΘi is given by integrating
the full posterior over the nuisance parameters,

ϕ(Θi |x) =
∫
Θn

ϕ(Θi,Θn |x) dΘn

This can be done directly through the use of MCMC sampling (Appendix 3). The impor-
tance of marginal posteriors is that they capture how the uncertainty in estimating all of the
parameters in a model influences the uncertainty in those particular parameter(s) of interest
(such as γ).

Bustamante et al. (2002) assumed a constant value γi for gene i, but allowed these
gene-specific values to vary. This was done by assuming γi is a random variable drawn
from a normal distribution with mean µγ and variance σ2

γ , which are estimated for the data.
This model allows selection to vary over loci, but as a function of two common parameters
(µγ , σ2

γ) over all loci. Since τ is a common factor over all genes, this allows information to be
borrowed across loci, improving power. Figure 9.3 shows an example of the output from such
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an analysis. Because the analysis in done over each set of genes, only loci which sufficient
information, namely Pa +Da ≥ 4, are likely to be informative.

Figure 9.3 Bustamante et al. (2002) examined 12 genes from Arabidopsis thaliana (using a single
allele from A. lyrta to compute divergence) and 34 genes from D. melanogaster (with a single
allele for D. simulans). This figure plots the resulting posterior distribution for γ for each gene.
The circle represents the mean, and the vertical lines denote the 95% creditable intervals (the
span of the posterior containing 95% of the probability). These are plotted by rank order within
the two species, with Arabidopsis plotted first as open circles and melanogaster second as filled
circles. If the vertical line is entirely below zero, selection on this locus is significantly negative.
For lines entirely above zero, selection on that gene is significantly positive. Half (6 of 12) of the
Arabidopsis genes are significantly negative, while none are significantly positive. Conversely,
no melanogaster genes are significantly negative, while 9/34 are significantly positive.

Sawyer et al. (2003) extended the Bustamante et al. approach by allowing each new
mutation at gene i to have different fitness, which are drawn from a normal distribution,

γ ∼ N(µγ,i, σ2
w) (9.17)

The mean (scaled) selection coefficient µγ,i was itself allowed to vary over loci, but the
variance about this mean σ2

w was assumed common over all loci (allowing us to again share
information over genes). As in the Bustamante et al. model, the gene-specific mean µγ,i is
drawn from a normal with mean µγ and variance σ2

γ . Thus, there are only three basic fitness
parameters in this model, µγ , σ2

γ , and σ2
w.

Example 9.14: Sawyer et al. (2007) applied their 2003 model to a sample of 91 genes from
an African population of D. melanogaster, using a simulans sequence to assess divergence.
Ignoring very strong deleterious mutations that are unlikely to contribute to polymorphisms,
they found that approximately 95% of all new replacement mutations are deleterious, with
70% of all replacement polymorphisms observed in a sample being deleterious. Conversely,
they estimated that over 95% of the fixed differences at replacement sites are due to positive
selection, albeit fairly weak. Approximately 46% of replacement substitutions are estimated
to have Nes < 2, 85% less than four, and 99% less than seven.

While Bayesian models allowing fitness to vary over new mutations are powerful and
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potentially offer a solution to the problem segregating deleterious mutations that plagued
MK tests and estimates of α, just how robust they are remains unclear. Current versions all
assume normal distributions of fitness effects, but this is clearly not a realistic model (Eyre-
Walker et al. 2006, Eyre-Walker and Keightley 2007, Welch et al. 2008, Boyko et al. 2008).
While it is conceptually straightforward (but computationally much more demanding) to
replace a normal by other candidate distributions, a very reasonable concern is just how
robust the results are to alternative distributions. The normal has symmetry about the mean,
while asymmetric or more heavy-tailed distributions might be a better reflection of biology.

A second concern was noted by Li et al. (2008), who found a very strong effect of the
prior. Specifically, the number of genes with γ values declared to be significantly different
from zero increased with the assumed variance σ2

γ in the prior for fitness effects. This makse
intuitive sense, in that restricting this variance to be small constrains most realized values of
γ to be close to the mean value, while increasing it allows estimates to deviate substantially
from the mean (and hence have their credible intervals avoid overlapping zero). Strong
dependency of the posterior on the prior is always problematic in a Bayesian analysis, and
good practice is to run the model over several rather different sets of prior hyperparameters
(such as σ2

γ) to assess the stability of the posterior under these different models. Li et al.
(2008) noted that a plot of number of positively selected sites (genes with γ values whose
credible intervals are all greater than zero) increases with the assumed variance in γ, but
appeared to show signs of approaching an asymptote in humans and Drosophila simulans
over the values for σ2

γ used in the analysis. However, the same curve for yeast (Saccharomyces
cerevisiae) showed no signs of approaching an asymptote over this range.

PHYLOGENY-BASED DIVERGENCE TESTS

Finally, we briefly consider phylogeny-based divergence tests that examine the pattern of
substitutions over a known phylogeny. These tests are designed to detect a rather different
pattern of selection than was assumed in Chapter 8 (single events) or earlier in this chap-
ter (multiple substitutions across a gene between two populations/species). While multiple
substitutions events are also required for a signal in phylogeny-based divergence tests, these
must at the same site (typically a codon) within a gene over the phylogeny. Single substitu-
tions at even a large number of different codons across a gene leaves very little signal for these
tests. As such, phylogenic tests are biased for detecting sites that undergo repeated evolution
(Hughes 2007), and are likely to miss many, indeed perhaps most, adaptive substitutions.

The required data for phylogeny-based tests is a set of aligned sequences and a pre-
determined phylogenetic tree for the sampled species. The assumption is that all sequence
differences are the result of fixation events. If a site is segregating in one (or more) of the taxa
from which a single sequence is drawn, one may incorrectly infer it as a substitution event.
The taxa must also have the right amount of divergence, as too little, or too much, results
in very low power. With too little divergence, there are not many changes, and hence low
power to detect small percent differences in silent versus replacement changes at particular
sites. Further, if little true divergence has occurred, even a few segregating sites incorrectly
called as substitutions can significantly inflate the divergence. With too much divergence,
multiple substitutions can easily swamp out signals of selection, and adjustments for such
multiple hits can introduce substantial bias if the statistical model used to account for these
is incorrect.

A few comments are in order on the phylogeny for the sampled taxa, as this determines
the covariance structure of the data. We not only require the topology (the pattern of common
ancestry), but also the branch lengths, the distances (time) between the taxa. Errors in either
obviously compromise phylogeny-based tests. For example, one route for repeated selection
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is the independent evolution of the same key amino acid at a particular critical site (e.g.,
Example 9.15). The topology of a phylogeny can inform us as to whether a cluster of taxa
sharing this key amino acid are all descendants from a single fixation event or comprise a
collection of independent events. Likewise, if some of the branch lengths are taken to be too
short (or long) relative to the rest of the phylogeny, this can also bias rate estimates.

There is a very rich literature on molecular evolution, and our purpose here is to only
provide a brief overview of divergence-based tests at the phylogenetic level. Readers seek-
ing a fuller treatment of many of the important side issues (such as tree construction) not
addressed here should consist any number of excellent texts on the subject (Kimura 1983,
Page and Holmes 1998, Hughes 1999, Graur and Li 2000, Nei and Kumar 2000, Felsenstein
2004, Yang 2006, Li 2006).

The Ka to Ks ratio, ω

The basis for divergence-based tests is ω = Ka/Ks, the ratio of nonsynonymous to synony-
mous substitution rates, which Miyata and Yasunaga (1980) refer to as the acceptance rate.
For sites under the standard neutral model (deleterious mutations can arise, but are quickly
removed), the expected value of ω at a site (or gene) is ω = µf/µ = f < 1, where f is the
ratio of the effectively neutral mutation rates. Thus, in the absence of positive selection, we
expect ω < 1. Moreover, if adaptive mutations are absent (or very rare), then 1−ω is a direct
measure of the amount of constraint (1−f ) on a site. Conversely, ω > 1 is usually taken as an
unmistakable signature of selection (Kimura 1983). Even if a demographic change results in
a lowering of the effective population size (increasing the effectively neutral mutation rate
at replacement sites), such a change only brings Ka closer to, but still smaller than, Ks.

However, there are cases where ω > 1 is not a signal for positive selection. Ratnakumar
et al. (2010) note that resolution of heteroduplex DNA during gene conversion events often
results in a bias to G and C bases (also see Webster and Smith 2004). Given that nonsynony-
mous codon positions often have lower GC content than synonymous sites, biased GC-gene
conversion can inflate the Ka/Ks ratio even in the absence of selection. Ratnakumar et al.
analyzed a dataset of roughly 18,000 human genes compared against their orthologues in at
least two other mammalian genomes. They found genes giving divergence-based signals of
selection had a significant tendency to also display genomic signals of GC conversion bias.
They estimated that over twenty percent of elevated ω values in this data set could be the
result of biased gene conversion.

A second factor that can upwardly bias estimates of ω is the presence of strong selection
constraints on silent sites. Chamary et al. (2006) review some of the evidence that silent sites
may still be subjected to constraints (beyond any weak ones from codon usage bias, Chapter
7) because they affect mRNA stability, splicing, or microRNA binding. A cautionary tale
is offered by Hurst and Pál (2001), who examined constraints on the breast cancer BRCA1
gene. A sliding window of roughly 300 nucleotides scanned across this gene in two pairs
of comparisons: human-dog and mouse-rat (the use of a window allowed for an average
regional estimate of Ka and Ks based on comparing the two species). The window around
position 200-300 showed a relatively normal level ofKa (relative to the rest of the gene), while
Ks plummeted dramatically, especially in the human-dog comparison. The result was an ω
value significantly greater than one, not due to an elevation in the replacement substitution
rate, but rather a decrease in the silent substitution rate. Pond and Muse (2005) note that if
variation in Ks occurs over the gene, failure to include this heterogeneity in the model can
easily result in false positives (estimated ω > 1 for particular codons). Thus, while ω > 1 is
usually taken as a gold standard for positive selection, a little more humility in its use may
be in order.

While conceptually straightforward, the operational problem in using ω is that while
one or a few sites may be under repeated strong directional selection (ω > 1 at these residues),
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most sites in a protein are expected to be under some selective constraints (ω < 1), so that
the average over all sites gives ω < 1. Indeed, a meta-analysis by Endo et al. (1996) found
that only 17 out of 3595 proteins showed ω > 1. There were, however, a few early success
stories. Example 9.2 discussed Hughes and Nei (1988), who used the 3-D protein structure
of the major histocompatibility complex to suggest potential sites to examine (those amino
acids on the surface in critical positions). Within this set of residues, ω > 1, while ω was
less than one when averaged over the entire gene. Unfortunately, most proteins lack this
amount of biological detail to draw upon. Because amino acid residues in close proximity
on the three-dimensional structure of a protein can be scattered all over the primary (i.e.,
linear) sequence, grouping sites for analysis by their position in the primary sequence is
very ineffective. The key is to base tests of ω values on a codon-by-codon basis, so that codons,
rather than genes, become the unit of analysis.

Two general approaches have been suggested to estimateω. Both need a phylogeny, and
issues such as the correct multiple sequence alignment as well as errors in the assumed tree
potentially loom in the background. Parsimony-based approaches reconstruct the sequence
at each node in the tree, and then use these to count up the number of synonymous and
nonsynonymous substitutions for each codon. Likelihood approaches (LW Appendix 4)
are on a more firm statistical footing, but are computationally intense and can be rather
model-specific. Both approaches allow for tests of whether a protein is under selection and
(more excitingly) tests for selection at specific sites in that protein. More recently, tests are
being built around Bayesian approaches (Appendix 2), which allow for the management of
uncertainly in very complex statistical models.

Parsimony-Based Ancestral Reconstruction Tests

Fitch et al. (1997) and Suzuki and Gojobori (1999) proposed similar parsimony-based ap-
proaches for detecting selection on single sites. Both start with a phylogeny and then use
parsimony (choose the solution requiring the fewest number of changes) to reconstruct the
ancestral sequences at all of the nodes in the tree. With these estimated sequences in hand,
one can them simply count the number of synonymous and nonsynonymous substitutions
on the tree. Fitch et al. compute an average ω rate for the entire gene and then look for
excessive variations at particular codons, while Suzuki and Gojobori perform the analysis
considering each codon separately. The false-positive rate of these methods is generally small
(Suzuki and Gojobori 1999, Suzuki and Nei 2002), but they suffer from low power (Wong et
al. 2004). Further, they have to address several rather delicate issues of sequence evolution
that, if not correctly accounted for, can provide rather significant artifacts. First, it is well
known that transitions (A↔ G, C↔ T) can occur at different rates than transversions (e.g.,
A↔ T, etc.), and (at third base positions) transitions are more likely to given synonymous
changes. Failure to incorporate these rate differences can result in an overestimation of the
number of nonsynoymous substitutions (Yang and Nielsen 2002). Second, any codon usage
bias (Chapter 7) must be accommodated. Third, when divergence times are modest to large,
one must correct for the possibility of multiple substitutions at a site, otherwise one under-
counts the number, and nature, of the actual substitution events. All of these issues can have
a highly significant effect on estimates of ω (Yang and Bielawski 2000). Finally, given that the
ancestral states are likely estimated with error, parsimony analysis has no formal procedure
to take this uncertainty into account. Bayesian posterior distributions can account for these
errors, but this requires moving from a parsimony to a likelihood framework. For all of these
reasons, most analysis now turn to likelihood-based approaches (and their Bayesian counter-
parts), wherein one explicitly allows the model to account for transitions vs. transversions,
codon usage bias, and multiple substitutions.

Maximum-Likelihood-Based Codon Tests
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Maximum-likelihood (ML) methods following the evolution of a codon over a phylogenetic
tree were introduced by Goldman and Yang (1994) and Muse and Gaut (1994). While con-
ceptually straightforward, they involve a fair bit of bookkeeping. They assume that each site
is evolving independently, which can be compromised by two rather different factors. First,
a substitution at one site can change the nature of selection at other sites. Second, high levels
of recombination can lead to false signals of selection (Anisimova et al. 2003). This can be
especially problematic with viral sequences, which rapidly evolve over a short time span.

Figure 9.4. The various transmission probabilities under the codon evolution model (Equation
9.18) for the nine new codons that are within a single nucleotide change from the target codon
(Here AAC). Asterisks denote a replacement change, where the rate is a function of selection
and hence ω. Transitions (t) the rate correction κ, while transversions (v) require no such
correction. All changes are a function of πj , the equilibrium frequency of codon j. Performing
these same calculations over all 60 other non-stop codons generates the full transition matrix.

ML methods require a specific probablity model for the transition between codon types
over a tree. They start with a vector representing the 61 different codons (stop codons are
excluded). At any point in time, a codon can mutate to one of nine other codons following a
single base change (Figure 9.4). The base model given by Goldman and Yang (1994) defines
the following transition probabilities between codons i and j,

Qij =



0 If i and j differ at more than one position
πj for a synonymous transversion
κπj for a synonymous transition
ωπj for a nonsynonymous transversion
ωκπj for a nonsynonymous transition

for 1 ≤ i, j ≤ 61 (9.18)

The 61 × 61 Q matrix is specified by Equation 9.18. The πj are the equilibrium frequencies
of codon j (often calculated from the nucleotide frequencies at the three codon positions),
while κ and ω are estimated parameters to account for biases in codon changes. Potential
differences in transition versus transversion rates are accounted for by κ. One takes the
current observed codons over the phylogeny, and then runs the model by considering all
possible ancestral codons at each of the internal nodes (ancestors) in the tree. The model
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thus corrects for multiple hits. The key parameter of interest is ω, the strength of selection on
replacement substitutions. In the initial models, ω was a fixed constant over all genes, but
subsequent models (nicely paralleling the development of extensions of the Poisson random
field model to allow γ to vary over genes/alleles) increasingly allowed ω to vary over sites,
a point we expand on shortly. Figure 9.4 shows the basic structure of these transitions for a
particular codon.

Tests for directional selection on a gene are accomplished by using this codon model
superimposed on the phylogenetic tree, running likelihood calculation (over all codons) to
find the ML solutions for Q matrix parameters. This allows for a direct test that ω > 1 using
the Likelihood Ratio approach (LW Appendix 4). The key to these likelihood calculations is
that P(t), the codon transition matrix at time t, is related to the instantaneous rate matrix Q
by

P(t) = exp(Qt) (9.19)

Here,
Pij(t) = Pr(codon = i at time t | codon is j at time t = 0) (9.20)

Diagonalize the matrix Q as Q = UΛUT where Λ is a diagonal matrix, with ith diagonal
elements λi, the eigenvalues of Q (Appendix 4). Then

exp(Qt) = U exp(tΛ)UT

where

exp(tΛ) = diag(etλ1 , etλ2 , · · · , etλn) =


etλ1 0 · · · 0

0 etλ2 · · · 0
...

. . .
...

0 · · · · · · etλn

 (9.21)

A variety of likelihood models based on Equation 9.21 are tested (much in the same way
that one tests subsets of complex segregation analysis models, see LW Chapter 13), adding
more factors (i.e., nonzero κ, etc.) if they improved model fit (i.e., give a significant likelihood
ratio). Evidence for selection on a gene is indicated if the likelihood ratio test for ω > 1 is
significant.

The base model (Equation 9.18) assumes all codons have the same ω value, which is not
only unreasonable but also destroys most of the power of this approach, as our assumption
is that ω < 1 for most codons, which would mask those codons where ω > 1. Nielsen and
Yang (1998) and Yang et al. (2000) modify the base model by assuming a mixture-model, with
the codons in a sequence being drawn from one of several categories, each with different ω
values. For codons from class k, Equation 9.18 becomes

Q
(k)
ij =



0 If i and j differ at more than one position
πj for a synonymous transversion
κπj for a synonymous transition
ω(k)πj for a nonsynonymous transversion
ω(k)κπj for a nonsynonymous transition

(9.22a)

The simplest version has three classes, with codons either being neutral (with probability
p0), deleterious (with probability pd) or advantageous (with probability pa = 1 − pn − pd),
with

ω(k) =


0 deleterious class
1 neutral class
ω > 1 positively-selected class

(9.22b)
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The parameters p0, pd, and ω are estimated from the data by maximum likelihood (LW
Chapter 13 examines ML on mixtures models). The idea is that one fits a base model (allowing
only neutral and deleterious classes), and then fits the full model (Equation 9.22b or other
extensions), using a likelihood-ratio test to see if the fit is significantly improved. If so, this
is taken as support for a history of repeated positive selection on a subset of codons in the
gene of interest.

While Equation 9.22 is clearly an improvement, assigning all codons in the deleterious
class an ω = 0 (i.e., no substitutions) is clearly restrictive, as is assigning all codons in the
advantageous class the same ω value. Nielsen and Yang (1998) and Yang et al. (2000) further
expand Equation 9.22b by

ω(k) =


0 < ω < 1 deleterious class
1 neutral class
1 < ω <∞ positively-selected class

(9.23)

where now the fitness values ω for any particular codon are random draws from some dis-
tribution whose parameters are again estimated by maximum-likelihood. This is exactly the
approach used previously to allow γ to vary over genes in the PRF model (e.g., Equation
9.17). A wide number of candidate distributions for ω are possible, depending on whether
we wish to restrict values to between (0,1) or to (1, ∞), for codons in the deleterious and
positively-selected classes (respectively). For example, the authors use either a Beta or trun-
cated Gamma distribution (restricted to returning values of 0 < ω < 1) for the deleterious
class and a truncated Gamma (restricted to returning values of ω > 1) for the positively-
selected class (Appendix 2 reviews the Beta and Gamma distributions). Again, a model-
fitting approach is used where one first fits a lower-order model, and then adds in the next
set of complications to see if the fit is significantly better. One unfortunate aspect of having
so many potential models is nomenclature, with specific names (or model numbers) often
being assigned to a particular model, making the literature a bit daunting to the uninitiated.

The power of the basic ML approach has been examined by Anisimova et al. (2001,
2002, 2003) and Wong et al. (2004), and is a function of two different sample sizes: the
number of codons in the sequence and the number of actual sequences. The more codons in
a gene, the better, although 100 seems to give reasonable power. Power is more efficiently
increased by adding more sequences, as opposed to looking at more codons. For moderately
long sequences with a modest phylogeny (10-20 species), power can be quite reasonable, at
least under the parameters simulated (typically 5-10% adaptive codons, each with ω around
5). They also found that using the χ2 test to compute significance of likelihood ratios was
conservative, and hence can be safely used, albeit suffering some reduction in power.

As might be expected, this basic framework can be modified in a number of additional
ways, for example by letting some branches be under selection and others not (Yang and
Nielsen 2002, Zhang et al. 2005). Branch models assume the same value ofω over all sites, but
allow it to vary over branches, site models (our main focus here) allow ω to vary over sites,
but not branches, while branch-site models allow ω to vary over both (e.g., Kosakovsky
Pond and Frost 2004, Kosakovsky Pond et al. 2011). Anisimova and Yang (2007) discuss
multiple-test corrections issues with branch-site models.

These methods are not fool-proof, and their robustness to the underlying distributional
assumptions is unclear. For example, Zhang (2004) found 20-70% false positives in a branch-
site model by Yang and Nielsen (2002) that allowed selection to operate on some branches,
but not others. Relaxation of purifying selection on otherwise neutral branches can generate
these spurious results. Zhang et al. (2005) simply replaced the assumption of ω = 0 for the
deleterious class with ω being an unknown to be estimated that lies within the interval (0,1),
and obtained much better behavior (also see Yang and dos Reis 2011).
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Finally, while our discussion of phylogeny-based divergence tests has focused exclu-
sively on coding sequences, this need not be the case. Wong and Nielsen (2004) extend the
logic of codon-based models to noncoding regions. Here the test is the substitution rate in
noncoding regions versus the rate at nearby silent sites. Using this approach, Wong and
Nielsen found little signal of selection on noncoding regions of the sequences from 13 viral
data sets, but strong signals of positive selection in protein-coding regions in five of these
data sets. The major complication with using noncoding sequences is alignment, as homol-
ogous positions need to be compared over a phylogeny. Given that insertions and deletions
are common, the time window for unambiguous alignments tends to be rather short.

Bayesian Estimators of Sites Under Positive Selection

Provided that one has the correct model, likelihood can be used to infer which actual sites have
likely been under repeated positive selection. This powerful idea, due to Nielsen and Yang
(1998), first tests the data to see if a model allowing for a subset of codons to be positively
selection significantly improves the fit. If so, this provides evidence of positive selection
somewhere in the gene of interest, but does not specify which particular codons are the
actual targets. To find these, Nielsen and Yang used Bayes’ theorem (Equation A2.2), which
is done as follows. Equations 9.18, 9.22, and 9.23 can be used to generate the conditional
probability Pr(data |ωi) of the data (the pattern of observed states at a particular codon over
the sampled tree of taxa), given that the codon came for fitness class i (typically three classes:
neutral, deleterious, and advantageous). However, what we would really like is to “flip”
this condition, and obtain Pr(ωi |data), i.e., Pr( in class i |data), and in particular obtain
the posterior probability of a codon being in the advantageous class given the observed
data. Bayes’ theorem allows us to this. Suppose there are k classes, with each class having a
different associated ω. The posterior probability that a specific codon is in fitness class i is

Pr(class i |D) =
Pr(D |ωi) Pr(class i)

Pr(D)
=

Pr(D |ωi) Pr(class i)∑k
i=1 Pr(D |ωi) Pr(class i)

(9.24)

whereD is the pattern of codons for that site in the tree and the prior, Pr(class i), is estimated
by maximum likelihood (i.e., the p0, pa, pd). The case of interest is whether the codon belongs
to the class of advantageous sites, Pr(ω > 1 |D). This approach allows us to directly assign
probabilities of selection to any particular site. Anisimova et al. (2002) examine its power,
finding that large ω values and a modest to large number of sequences are required.

Example 9.15. Bishop et al. (2000) examined the class I chitinase genes from 13 species of
mainly North American Arabis, a crucifer closely related to Arabidopsis. Chitinase genes are
thought to be involved in pathogen defense, as they destroy the chitin in cell walls of fungi.
Many fungi have evolved resistance to certain chitinases, so these genes are excellent targets
for repeated cycles of selection. Codon evolution models estimated that between 64 and 77
percent of replacement substitutions were deleterious, with 5-14% advantageous (analysis
using phylogenies estimated by different methods all yielded similar results). These favored
sites had an estimated value of ω = 6.8. Using the criteria of a posterior probability of
membership in the advantageous class in excess of 0.95 (i.e. Pr(selective class |D) > 0.95),
15 putative sites were located (using Equation 9.24). Seven of these sites involved only one
alternative substitution, which evolved multiple times over the phylogeny. The authors had
access to the three dimensional structure of chitinase, which shows a distinctive cleft, thought
to be the active site. Mapping putative sites of positive selection onto this structure showed a
significant excess of sites cluster at the cleft, as opposed to the rest of the protein (28% of cleft
sites versus 19% elsewhere). This example shows the power of combining codon models with
solid biochemical data.
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A technical comment is in order here. There are several different approaches based on
Equation 9.24 that assign the posterior probability that a particular site is in a particular
fitness class. Let ηi = Pr(class = i) denote the probability that a random site is in fitness class
i (with ω = ωi). This is the prior, and when applying Bayes’ theorem, the assumption is that
both ηi and ωi are fully known without error. However, when applying Equation 9.24 this
is not the case, as the ηi and ωi values are estimated from the data, an approach referred to
as Empirical Bayes (parameters of the prior estimated from the data). Further, Nielsen and
Yang used the point estimates (the MLEs) for ηi and ωi associated with each class, which
does not incorporate any measure of the uncertainty of these estimates. Such an approach
is often called Naive Empirical Bayes. A more powerful approach, Bayes Empirical Bayes,
instead computes Equation 9.24 by integrating it over the posterior of the joint distribution
of the ηi, ωi. Such approaches have been developed by Huelsenbeck and Dyer (2004), Yang et
al. (2005), Scheffler and Seoighe (2005), and Aris-Brosou (2006), see Anisimova and Liberles
(2007) for a recent review.

Finally, control of false positives is a critical issue in scans for codons under positive
selection. A typical gene has several hundred codons, and hence several hundred tests. With
a false positive rate of five percent at any particular site, we expect 10 and 20 false positives for
genes with 200 and 400 codons. While standard or sequential Bonferroni methods (Appendix
6) could be used to control the gene-wide error rate, these result in very stringent tests and
hence additional loss of power in a setting that may already have power issues. Use of the
false discovery rate (FDR, Appendix 6) provides one solution. A false discovery rate of five
percent means that among the tests declared to be significant, only five percent are false
positives. Guindon et al. (2006) proposed two different approaches to implement the FDR
in codon models. Their direct probability approach (following from Newton et al. 2004)
constructs a list L containing all codons being declared as being significant. Using Equation
9.24 to assign a posterior probability of being in the selected class (ω > 1), codon j is added
to the list when βj = 1− Pr(ω > 1 |D) ≤ δ, where δ is some predefined threshold (note the
small δ implies high posterior probability). Under this criteria, the expected number of false
discoveries is just

FD(δ) =
∑
βj≤δ

βj (9.25a)

This follows since βj is the expected number of false positives at site j and we sum over all
sites to get the total number. A false discover rate of q is obtained by finding the largest value
δ such that

FD(δ)
Ln

≤ q (9.25b)

where Ln > 0 is the number of members in the list.

Example 9.16. Suppose Equation 9.24 is applied over a large number of codons within a
gene, and we rank the values of Pr(ω > 1 |D) from largest to smallest. In descending order,
the 15 largest values are 0.97, 0.97, 0.97, 0.96, 0.96, 0.96, 0.95, 0.95, 0.94, 0.94, 0.93, 0.93, 0.92,
0.915, and 0.91, for corresponding β values (in ascending order of) 0.03, 0.03, 0.03, 0.04, 0.04,
0.04, 0.05, 0.05, 0.06, 0.06, 0.07, 0.07, 0.08, 0.085, and 0.09. If we take our threshold as δ = 0.06,
what is the FDR? This list has Ln = 10 members, and the sum of their δ values is FD(0.06) =
0.43, giving the FDR as α = 0.43/10 = 0.043, so that just slightly over four percent of the
codons on this list are expected to be false-positives. If we use δ = 0.08 as our threshold for
list inclusion, Ln = 13, FD(0.08) = 0.65, giving the FDR as 0.65/13 = 0.05.
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The second approach considered by Guindon et al. is a parametric bootstrap, which uses
the estimated model parameters (the ωi and probabilities of class membership) to generate
a large number of simulated data sets D∗, where sites truly under selection are known.
Using these simulated data, Equation 9.24 is used to compute Pr(ω > 1 |D). Again, some
threshold value is chosen, and codons declared to be included when they exceed this value.
Since the sites truly under selection are known for the simulated data, the number of false
discoveries for this threshold level is easily obtained. As above, the threshold value is varied
until the FDR value reaches its desired level. Guindon et al. examined the performance
of both approaches for controlling the false positive rate (PB for parametric bootstrapping
and DP, direct probabilty, for Equation 9.25) as well as the two approaches for computing
Equation 9.24 (Naive empirical Bayes, with Equation 9.24 using point estimates for model
parameters; and BEB, Bayes empirical Bayes, integrating Equation 9.24 over the full posterior
distribution of model parameters). They found that the combination of DP with BEB works
best with weak selection (ω between 1.5 and 2 at positively sited sites), while PB works best
under strong selection (selected sites have ω > 4).

Connecting the Parameters of Adaptive Evolution

As summarized in Table 9.2, a number of different parameters of adaptive evolution have
been introduced in this chapter, along with various machinery to estimate them. We have also
examined the connections between most these parameters (e.g., Equation 9.16). However, we
have yet to develop a connection between the two key parameters in the different approaches
to using divergence data. Under the Poisson random field model, we estimated the scaled
strength of selection γ at a site, while codon models estimated ω = Ka/Ks over a phylogeny.

Table 9.2. Key parameters of adaptive evolution discussed in this chapter.

α The fraction of substitutions that are adaptive
γ The scaled strength of selection, 2Nes
µb The adaptive mutation rate
pa The fraction of new mutations at a site that are advantageous
λ The rate of adaptive fixations, λ = 2γµb
f The fraction of neutral mutations (relative to some standard, typically silent sites)
1− f The amount of constraint on a site (relative to some standard, typically silent sites)
ω The ratio of the replacement to silent substitution rates

We can connect these as follows. Assume that synonymous sites are taken as the neutral
benchmark, so that (as a first approximation) the per-site mutation rate µs is also the neutral
mutation rate, giving the silent substitution rate as µs. Two types of mutations contribute
to the rate of replacement substitutions: a fraction f that are effectively neutral and a much
smaller (perhaps zero) fraction pa that are favored. Effectively neutral substitutions accrue
at a rate of fµs, while from Equation 9.16d advantageous substitutions accrue at rate λ =
2γµb = 2γpaµs. Hence

ω =
Ka

Ks
=
fµs + 2γpaµs

µs
= f + 2γpa, (9.26a)

so that very strong selection (γ pa >> 1) is required for ω > 1. Likewise,

γ =
ω − f
2pa

(9.26b)
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If f = 0.5 and pa = 0.01, so that half of the mutations are effectively neutral and one percent
are favored, γ = 25 is required for ω = 1, while ω = 3 requires γ = 125. If pa is now 0.001, a
value of γ = 400 only gives ω = 1.3, which is a sufficiently small deviation to avoid detection
in many cases.

CLOSING COMMENTS

Detecting selection using molecular data is a major growth industry and will continue to
accelerate as whole-genome sequencing becomes increasingly faster and cheaper. As the
last three chapters indicate, there is an enormous amount of statistical machinery proposed
to carry out this task, but every method has major limitations. Ecologists and evolutionary
biologists search for selection using complementary trait-based approaches, which require
specifying potential traits under selection, and measuring the association between these
and individual fitness (Chapters 26 and 27). While such trait-based approaches allow us
to consider particular characters of interest, molecular data can have several advantages.
Two are fairly obvious in that traits need not be specified, and measurement of individual
fitness is not needed. Their greatest advantage, however, is that molecular data are a time
machine. We cannot go back in the past to measure traits and fitness, but past selection may
leave a number of different signals in the genome. Very recent events may leave sweep-like
signatures (Chapter 7), and Chapter 8 reviews the myriad of tests for detecting these. If
polygenic adaptation is the rule, major changes in trait values can occur through only minor
changes in a number of loci, each of small effect. In this case, very little molecular signal is ex-
pected, but ongoing selection can easily be detected using trait-based methods (if one knows
the correct traits!). Over a longer time scale, repeated selection events may leave molecular
patterns. Population-based divergence tests (HKA, MK) can detect patterns of repeated pos-
itive selection over an entire gene during the divergence of two populations/species, while
phylogeny-based divergence tests (codon models) can detect repeated positive selection at
the same codon over a phylogeny.

Caution is in Order When Declaring Positive Selection!

Since just about every test can give a false-positive for reasons other than positive selection,
any detected region should always be viewed as no more that a candidate to be followed
up by the hard work of accessing whether it has any functional impact and, if so, what
the nature of selection might be. In particular, investigators should be extremely careful of
“just-so”stories, wherein once a region is detected, some clever story is proposed as to the
cause of selection in this region. One must resist the notion that functional differences can
automatically be equated to adaptive changes (Gould and Lewontin 1979). In the words of
Nielsen (2009), “evidence of selection, and knowledge of the function of a gene, does not
constitute evidence for adaptation”, as the following cautionary tale illustrates.

Example 9.17. Humans show dramatic expansion of brain size with respect to most mam-
mals, with this increase in (relative) size usually assumed to be corrected with increased
cognitive abilities. Primary microcephaly is a condition in humans resulting in small heads,
but other normal features. Nonfunctional alleles at the genes microcephalin and ASPM (abnor-
mal spindle-like microcephaly associated) both display the microcephaly phenotypes, with a
typical individual having a brain size of around 400 cm3 (versus the normal 1400 cm3) com-
parable to that in early hominids. Not surprising, several studies have looked for selection on
these genes within the primate lineage. Zhang (2003) inferred aKa/Ks ratio of 1.03 for ASPM
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on the branch from the human-chimp common ancestor to humans, but a ratio of 0.66 on the
branch from this ancestor to chimps. Values of 0.43 to 0.29 were found along other branches in
mammals, suggested positive selection along the human lineage. Evans et al. (2004a) also ex-
amined ASPM over a larger phylogeny ranging from new world monkeys through humans.
Accelerated (Ka/Ks > 1) rates of evolution were seen between gibbons and the ancestor
the great apes, and a large acceleration (Ka/Ks = 1.44) was seen on the linkage from the
human/chimp ancestor to humans. Evans et al. also performed a McDonald-Kreitman test,
comparing the polymorphisms within humans to the divergence since the human-chimp
common ancestor, finding

Fixed Polymorphic
Synonymous 7 10
Replacement 19 6

Fisher’s exact test gives apvalue of 0.01, with an excess of around 15 replacement substitutions
over what is expected from the replacement/synonymous ratio seen in the polymorphism
data.

Similar results were seen for microcephalin . Evans et al. (2004b) found Ka/Ks = 1.05 in the
simian lineages leading to humans, and ratios of 0.4 to 0.6 along other mammalian lineages.
A further breakdown showed that most of the excess in Ka/Ks occurred from prosimians
to the branching of the great apes, with values less than one within the great apes. They also
found a significant McDonald-Kreitman result, with an estimated 45 adaptive (replacement)
substitutions occurring between prosimians and humans. Thus, microcephalin seems associated
with expansion of brain size leading to the great apes, while ASPM is further associated with
the increase in brain size specifically along the lineage leading to humans.

Building on these strong observations of selection leading to the human lineage, Mekel-Bobrov
et al. (2005) and Evans et al. (2005) searched for ongoing selection in these two genes, and found
strong signals in each. Evans et al (2005) found that the microcephalin gene had one haplotype
(associated with a replacement substitution) at much higher frequencies than the others, with
extended linkage disequilibrium and small intra-allelic variation. Indeed, using intra-allelic
variation, the age of this haplotype was estimated at 37 thousand years (with a range of 14 to
60 thousand). Young alleles at high frequencies are hallmark indicators of positive selection
(Chapter 8). Extensive coalescent simulations using a variety of population structures all gave
high levels of significance to these results. The exact pattern, perhaps even more striking, was
seen by Mekel-Bobrov et al. (2005) with ASPM: a common haplotype with long LD and a very
recent estimated origin (5,800 years). Again, coalescent simulations of neutral drift under a
variety of proposed models of human population growth and expansion showed these results
to be highly significant. Together, these studies strongly suggested on-going selection in these
two genes. They gathered a significant amount of attention, not the least of which was do to
the finding that the putative adaptive haplotypes were in higher frequencies in Europe and
Asia relative to Africa, and the connection that is often drawn between cognition and brain
size.

Although Evans et al. (2005) cautioned that “it remains formally possible that an unrecognized
function of microcephalin outside the brain is actually the substrate of selection”, many inter-
preted the above data as an adaptive response in intelligence. After all, two functional genes
that both influence brain size, a presumed correlate of intelligence, coupled with a history of
past, and ongoing, selection does indeed suggest a case for selection on intelligence. This view,
however, was quickly dispelled. Timpson et al (2007) and Mekel-Bobrov et al. (2007) showed
in large sample sizes (900 and 2400, respectively) that there was no correlation between the
putative adaptive halplotypes and increased intelligence. Any on-going selection on these
genes does not appear to correlate with any selection for increased cognition. Currant et al.
(2006) further noted that spatial models of population growth were not considered, and here it
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is possible to see the above patterns for mutations that arise along the leading lead of a recent
population expansion (through allelic surfing, see Chapter 8).

Curbing Enthusiasm

We started this set of chapters with a plea for caution and will do so again to end them. Just like
the great electrophoresis hunt in the 1970’s (grinding up every species/population in sight to
measure population variation) and the great QTL hunt in the 1990’s (trying to find QTLs for
just about every trait in your favorite organism), we are now entering the great selection hunt
phase of evolutionary genetics. The obvious excitement of detecting either ongoing selection
or targets with a history of repeated past selection must also be tempered with caution.
There are a huge variety of different tests, but no one best test even for a particular situation
(much less over all settings). Simple methods may lack power, but very sophisticated highly
parametric tests may not be very robust to modeling assumptions. As mentioned multiple
times, issues of demography (changes in population size) and population structure can
cripple many tests. More sophisticated versions developed to circumvent some of these
issues are not yet fully vetted, so must be used with caution. Finally, there is the Beavis effect
(LW Chapter 15), also know as the winner’s curse, in which a parameter declared significant
is often overestimated. This problem especially acute when the power for detection is low.
When a selection signal is detected (likely out of a sea of candidates, with each test having
moderate to low power), the actual effect is likely overestimated, and potentially by a large
amount. These comments are not meant to discourage the use of these powerful methods,
but rather to ensure that the enthusiasm with which they are applied is somewhat tempered
by the cold reality of their limitations.

Finally, as stressed throughout the last few chapters, even when successful, these tests
give us an insight into just a tiny fraction of all selective substitutions. How representative
this subsample is of adaptive selection in general is unclear, but it is certainly biased, so
significant caution is in order in interpolating these results to general statements about
adaptation. However, it is also clear that multiple selection events (be they recurrent sweeps
or background selection) clearly leave an impact on linked neutral sites, and most genomes
show ample signals that this a very common phenomena (Chapter 7).
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