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Association Pipeline



Phenotypic Outliers

 Outliers are “unusual” data points that 

substantially deviate from the mean and 

strongly influence parameter estimates

 Should ALWAYS check for outliers in 

your data sets

 Do NOT ignore outliers if detected



Phenotypic Outliers

Outliers can… 

1) increase error variance

2) reduce the power of statistical tests 

3) distort estimates

4) decrease normality if non-randomly 

distributed

“Not all outliers are illegitimate contaminants, 

and not all illegitimate scores show up as 

outliers.” (Barnett & Lewis, 1994)



Potential Causes of Outliers

 Human errors in data collection, 

recording, or entry

 Technical errors from faulty or 

non-calibrated phenotyping equipment 

 Intentional or motivated mis-reporting 

such as “speed” phenotyping in a hot field 

environment

Osborne, Jason W. & Amy Overbay (2004)



Phenotyping Tools

Barcoded tools, barcoded tags on plants, barcode 

scanners, radio-frequency identification (RFID) 

tags, smartphones, hand-held mobile computer…



More Potential Causes of Outliers

 Sampling error such as 

underrepresentation of a subpopulation

 Incorrect assumption about the 

distribution (e.g., temporal trend not 

accounted for in experimental design)

 Real biological outlier – 1% chance of 

getting an outlier that is 3 standard 

deviations from the mean  
Osborne, Jason W. & Amy Overbay (2004)



Evaluate Data for Outliers

 Histogram

 Box-plot (Box and Whisker plot)

 Quantile-Quantile plot – graphical 

method for comparing two probability 

distributions to assess goodness-of-fit

Get to know your data!



Histogram



Box-plot



Box-plot

Center line - median

Central plus sign - mean

25% data

25% data

50% data



Q-Q-plot (normal)

delta-tocotrienol content 
in maize grain – single rep



Statistical Identification of Outliers

 Cook’s distance – measures influence 

of a data point. Data points that 

substantially change effect estimates.

 Deleted studentized residuals –

measures leverage of a data point. Data 

points that affect least squares fit.

Two of several possible methods



Removal of Outliers

 Removing anomalous data points from 

data sets is controversial to some folks.

My two cents…If outliers are not 

removed, inferences made from the fitted 

model may not be representative of the 

population under study.

 If you remove outliers, then be sure to 

report it in the manuscript.



Q-Q-plot (normal)

delta-tocotrienol content 
in maize grain – single rep

Outliers removed based on 

deleted studentized residuals 



Non-Normal Trait Data

When fitting a mixed model, two very 

important assumptions are that the error 

terms follow a normal distribution and that 

there is a constant variance.

When data are non-normal, these two 

assumptions in particular could be 

violated.



Analysis of Non-Normal Trait Data

 Generalized linear mixed models can

be used to analyze non-normal data

 The Box-Cox procedure can be used to 

find the most appropriate transformation 

that corrects for non-normality of the error 

terms and unequal variances.



Box-Cox Transformation

Common Box-Cox Transformations

l Y’

-2 Y-2 = 1/Y2

-1 Y-1 = 1/Y1

-0.5 Y-0.5 = 1/(Sqrt(Y))

0 log(Y)

0.5 Y0.5 = Sqrt(Y)

1 Y1 = Y

2 Y2

http://www.isixsigma.com/tools-templates/normality/making-data-normal-using-box-
cox-power-transformation/
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Q-Q-plot (normal)

delta-tocotrienol content 
in maize grain – two reps

Outliers removed based on 

deleted studentized residuals;

Box-Cox Transformed BLUPs 



Association Pipeline



Population structure—allele frequency 

differences among individuals due to local 

adaptation or diversifying selection

Familial relatedness—allele frequency 

differences among individuals due to 

recent co-ancestry

If not properly controlled both can cause 

spurious associations in GWAS



Fitch-Margoliash tree for 260 maize inbred lines using the log-transformed proportion of 

shared alleles distance from  94 SSR markers 

Liu et al. 2003 Genetics 165:2117-2128

Maize Population Structure



Structured Association (Q)

 A set of random markers is used to 

estimate population structure

 Estimates are incorporated into a 

statistical analysis to control for genetic 

structure



STRUCTURE (Q)

 Model-based clustering method to 

detect the presence of distinct populations

 Assign individuals to populations  

 Study hybrid zones

 Identify migrants and admixed 

individuals

 Estimate population allele frequencies 

http://pritch.bsd.uchicago.edu/software.html



STRUCTURE (Q)

 Identify different subpopulations within 

a sample of individuals collected from a 

population of unknown structure

With a fixed number of subpopulations 

(k), STRUCTURE is used to assign 

individuals to clusters (i.e., subpopulation) 

with a probability of membership 



Estimated ln(probability of the data; blue) and Var[ln(probability of 

the data; pink)] for k from 2 to 5. Values are from STRUCTURE 

run three times at each value of k using 89 SSRs

STRUCTURE (Q)

Hamblin et al. 2007 PLoS ONE 2:e1367



Maize Population Assignment
Inbred Non Stiff Stalk Stiff Stalk Tropical Subpopulation

796 78.5% 18.9% 2.6% mixed

4226 91.7% 7.1% 1.2% nss

33-16 97.2% 1.4% 1.4% nss

38-11 99.3% 0.3% 0.4% nss

A188 98.2% 1.3% 0.6% nss

A214N 1.7% 76.2% 22.1% mixed

A239 96.3% 3.5% 0.2% nss

A272 12.2% 1.9% 85.9% ts

A441-5 53.1% 0.5% 46.4% mixed

A554 97.9% 1.9% 0.2% nss

A556 99.4% 0.4% 0.2% nss

A6 3.0% 0.3% 96.7% ts

A619 99.0% 0.9% 0.1% nss

Ab28A 77.6% 0.2% 22.2% mixed

B10 57.0% 42.9% 0.2% mixed

B164 75.6% 23.3% 1.1% mixed

B2 98.8% 0.7% 0.5% nss

B37 0.2% 99.7% 0.1% ss

B46 78.4% 21.4% 0.2% mixed

B52 98.5% 1.2% 0.3% nss

Flint-Garcia et al. 2005 The Plant Journal 44:1054-1064



STRUCTURE (Q)

Determination of the number of subpopulations k based on 

STRUCTURE and 359 SSR markers using the ad hoc 

criterion Δ K of Evanno et al. 2005 Mol. Ecol. 14:2611-2620

Van Inghelandt et al. 2010 Theoretical Applied Genetics 120:1289-1299



Principle Component Analysis

 Fast and effective approach to 

diagnose population structure 

 PCA summarizes variation observed 

across all markers into a smaller 

number of underlying component 

variables 



Principle Component Analysis

 PCs relate to separate, unobserved 

subpopulations from which genotyped 

individuals originated

 Loading of each individual on each 

PC describe population membership



Principle Component Analysis

 EINGENSTRAT software package is used 

to estimate PCs of the marker data



Principle Component Analysis

Scree plot –

shows the 

fraction of total 

variance in the 

data explained 

by each PC



A kinship coefficient (F) is the 

probability that two homologous genes are 

identical by descent

 Kinship from genetic markers is an 

estimate of relative kinship that is based 

on probabilities of identical by state

 Even with pedigrees, marker-based 

kinship has higher accuracy

Kinship Coefficient (K)



Marker-based Relative Kinship (K)

Fij = (Qij-Qm)/(1-Qm) ≅Ūij ,

where Qij is the probability of identity by state 

for random genes from i and j, and Qm is the 

average probability of identity by state for 

genes coming from random individuals in the 

population from which i and j where drawn. 



 SPAGeDi software package with 

Loiselle (Loiselle et al., 1995) kinship

coefficient can be used to generate the 

relative kinship matrix

 Negative values between individuals 

should be set to zero. These individuals 

are less related than random individuals 

(i.e., degree of genetic covariance caused 

by polygenic effects is defined to be 0)

Marker-based Relative Kinship (K)



 The original kinship matrix for mixed 

models is an additive numerator 

relationship matrix calculated from 

pedigree

 Diagonals have values between 1 and 2 

(1 plus inbreeding coefficient) and off 

diagonals have values between 0 and 1 

(kinship) 

Marker-based Relative Kinship (K)



 Therefore, A-matrix is twice the co-

ancestry matrix used in population 

genetics

Multiplication of K by 2 for inbred 

lines does not change BLUEs and 

BLUPs but affects the ratios of VC 

estimates

Marker-based Relative Kinship (K)



Number of Background Markers 

Needed for Estimating Relationships 

Yu et al. 2009 The Plant Genome 2:63-77

 Likelihood-based model fitting can be 

used to quantify robustness of genetic 

relatedness derived from markers

 Kinship is more sensitive than 

population structure to marker number



Number of Background Markers 

Needed for Estimating Relationships 

Yu et al. 2009 The Plant Genome 2:63-77

 Robustness of relationship estimate can 

be tested by fitting multiple phenotypic 

traits with different subsets of markers

 Number required for biallelic SNPs is 

higher than multiallelic SSRs (e.g., maize 

– 100 SSRs; 1000 SNPs)  



Model Fit with the Mixed Model

 Bayesian information criterion (BIC) 

can be used to determine the optimal 

number of principal components to 

include in the GWAS model

 The goodness-of-fit among GWAS 

models can be assessed with a likelihood-

ratio-based R2 statistic, denoted R2
LR

Sun et al. 2010 Heredity 105:333-340



Model Fit with the Mixed Model

 R2
LR considers the change of likelihood 

between models with different fixed and 

random effects 

 R2
LR  is easily computed and has a 

monotonic nondecreasing property 

Sun et al. 2010 Heredity 105:333-340



Computation with Mixed Models

 Large numbers of individuals is 

computationally intensive for mixed 

models

 Computing time for solving MLM 

increases with the cube of the number of 

individuals fit as a random effect

 Computing time is further increased 

because iteration is needed to estimate 

parameters such as variance components



Zhang et al. 2010 Nature Genetics 42:355-360

Efficient Computation

 Compression – reduce the size of the 

random genetic effect in the absence of 

pedigree information by clustering 

individuals into groups

 Population parameters previously 

determined (P3D) – eliminate iterations to 

re-estimate variance components for each 

marker  



Zhang et al. 2010 Nature Genetics 42:355-360

Compression and P3D

 The joint use of compression MLM and 

P3D greatly reduces computing time and 

maintains or increases statistical power

 no compression, no P3D – GWAS with 

1,315 individuals and 1 million markers 

takes 26 years

 compression with P3D – takes 2.7 days

for GWAS with the same data set  



Correcting for Multiple Testing

 Bonferroni correction – procedure to 

control the family-wise error rate (i.e., 

probability of making one or more type I 

errors)

 Simplest and most conservative method 

to control FWER

 Calculated as Ŭ/n, when n is number of 

hypotheses (i.e., SNPs tested)  



Correcting for Multiple Testing

 False Discovery Rate– procedure to 

control the expected proportion of false 

discoveries

 Less stringent than Bonferroni

q-value is the FDR analogue of p-value 

e.g., q=0.10 is 10 false discoveries/100 tests  

 Benjamini–Hochberg procedure is often 

used in GWAS



Candidate Genes

When controlling for the multiple testing 

problem in GWAS, typically only the 

strongest signals are identified

 To help detect SNPs with moderate 

effects that are not significant at the 

genome-wide level, could consider only 

SNPs within or at a fixed distance from 

candidate genes – candidate gene FDR



Test for Candidate Gene Enrichment 

with GWAS hits

PICARA – an analytical 

approach designed to search 

for and validate a priori 

candidates that are puportedly

involved in phenotypic 

variation and to integrate these 

candidates with information 

content taken from GWAS

Chen et al. (2012) PLoS ONE 7(11):e46596



Rare Variants in GWAS

 GWAS typically identify common 

variants but rare variants are important

Most NGS-GWAS are severely 

underpowered for testing rare variants

 SNPs with a very low MAF (<0.05) may 

not have Type I error rates at nominal levels

 Need very large sample sizes



Rare Variant GWAS Methods

 Power of single marker tests is poor, thus 

collapsing rare variants across a region 

creates a more common aggregate (Li and 

Leal, 2008). 

Weighting of alleles on criteria such as 

MAF or biological function (Madsen and 

Browning, 2009)

Ladouceur et al. (2012) The Empirical Power of Rare Variant Association Methods: 

Results from Sanger Sequencing in 1,998 Individuals. PLoS Genet 8: e1002496



Not Controlling for Population Structure and 

Relatedness



Controlling for Population Structure and 

Relatedness



Stepwise Regression with the Multi-Locus 

Mixed Model (MLMM) 

Segura et al. (2012) Nature Genetics 44: 825–830 

 To clarify complex association signals that 

involve a major effect locus

 The MLMM employs stepwise mixed-

model regression with forward inclusion and 

backward elimination, thus allowing for a 

more exhaustive search of a large model 

space

 The MLMM re-estimates the variance 

components of the model at each step 



Controlling for Population Structure and Relatedness  –

Three SNPs Identified by MLMM Included as Covariates



Software for Genome-Wide Association and 

Genomic Selection

http://www.maizegenetics.net/gapit

GAPIT - Genome Association and Prediction Integrated Tool

TASSEL - Trait Analysis by aSSociation, Evolution and Linkage

http://www.maizegenetics.net/bioinformatics


