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Estimation of Var(A) and Breeding Values in 

General Pedigrees

The classic designs (ANOVA, P-O regression)  for variance 

components are simple, involving  only a single type of relative 

comparison.  Further, they assume  balanced designs, with the 

number of offspring the same in each family.

In the real world, we often have a pedigree of relatives, with

a very unbalanced design.  Fortunately, the general mixed

model (so called because it includes both fixed and random 

effects), offers an ideal platform for both estimating genetic

variances as well a predicting the breeding values of individuals. 

Almost all animal breeding is based on such models, with REML

(restricted max likelihood) used to estimated variances and

BLUP (best linear unbiased predictors) used to predict BV
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BLUP in plant breeding
• BLUP has migrated from animal breeding

into plant breeding.

• Advantages:
– Handles unbalanced designs

– Uses information for all relatives measured to
improve estimates

• BLUP can be used to estimate a variety of
genetic values
– GCA, SCA, line values (i.e., genotypic values of

pure lines)

– One can also use BLUP machinery to estimate
environmental effects
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Y = X! + Zu + e

The general mixed model

Vector of

observations

(phenotypes)

Vector of fixed effects (to be estimated), 

e.g., year, location and treatment effects

Vector of

random effects,

such as individual

genetic values

(to be estimated)

Vector of residual errors

 (random effects)

Incidence

matrix for

fixed

effects

Incidence matrix for random effects
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Y = X! + Zu + e

The general mixed model

Vector of

observations

(phenotypes)

Vector of

random effects

Incidence

matrix for

fixed

effects

Vector of fixed effects  

Incidence matrix for random effects

Vector of residual errors

 

Observe y, X, Z.

Estimate fixed effects !

Estimate random effects u, e
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Example
Suppose we wish to estimate the breeding values of

three sires (fathers), each of which is mated to a random female (dam),

producing two offspring, some reared in environment one, others 

in environment two.  The data are

2314Y321

137Y311

126Y212

1211Y211

2112Y121

119Y111

environmentSireValueObservation
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y =





y1,1,1

y1,2,1

y2,1,1

y2,1,2

y3,1,1

y3,2,1




=





9
12
11
6
7
14





X =





1 0
0 1
1 0
1 0
1 0
0 1




, Z =





1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




, β =

(
β1

β2

)
, u =




u1

u2

u3





Here the basic model is

     Yijk = !j + ui + eijk

Effect of environment j
Breeding value of sire i

The mixed model vectors and 

matrices become
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Means:  E(u) = E(e) = 0,  E(y) = X!

Let R be the covariance matrix for the 

residuals.  We typically assume R = "2
e*I

Let G be the covariance matrix for the 

breeding values   (the vector u)

The covariance matrix for y becomes  

      V = ZGZT + R

Means & Variances for y = X! + Zu + e

Variances:
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û = GZT V−1
(
y−Xβ̂

)
 -

β̂ = XT V−1X
−1

XT V−1y 
 

 ( )

Estimating fixed Effects & Predicting 

Random Effects

For a mixed model, we observe y, X, and Z

!, u, R, and G are generally unknown

Two complementary estimation issues

(i)  Estimation of ! and u

Estimation of fixed effects

Prediction of random effects

BLUE = Best Linear Unbiased Estimator

BLUP = Best Linear Unbiased Predictor

Recall V = ZGZT + R
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Let’s return to our example

Assume residuals uncorrelated & homoscedastic,

 R = "2
e*I.  Hence, need "2

e  to solve BLUE/BLUP equations.

Suppose "2
e = 6, giving R = 6* I 

Now consider G, the covariance matrix for u (the vector

of the three sire breeding values).  Assume the sires

are unrelated, so G is diagonal with element "2
G = sire

variance, where "2
G = "2

A /4.

Suppose "2
A = 8, giving G G = 8/4*I
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V =
8
4





1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1








1 0 0
0 1 0
0 0 1








1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



+6





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





=





8 2 0 0 0 0
2 8 0 0 0 0
0 0 8 2 0 0
0 0 2 8 0 0
0 0 0 0 8 2
0 0 0 0 2 8




giving V−1 =

1
30

·





4 −1 0 0 0 0
−1 4 0 0 0 0

0 0 4 −1 0 0
0 0 −1 4 0 0
0 0 0 0 4 −1
0 0 0 0 −1 4




-

-

Solving, recalling that V = ZGZT + R

β̂ =
(

β̂1

β̂2

)
=

(
XTV−1X

)−1
XTV 1y =

1
18

(
148
235

)

û =




û1

û2

u3



 = GZTV−1
(
y−Xβ̂

)
=

1
18




−1

2
−1





- - -
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BLUP estimates of line values
Bernardo example (11.3.1):  yield in four (related) inbred lines of

Barley raised over two sets of environments

Model

Environment type

(fixed)

Line value

(random)

)
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 bi = µ + ti

Line values

Relationship values (from pedigree

data on how lines are related)

Observations differ in their residual

error due to sample size differences
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


XTR−1X XTR−1Z

ZTR−1X ZTR−1Z + G−1








β̂

û



 =




XTR−1y

ZTR−1y





Henderson’s Mixed Model Equations

β̂ = XT V−1X
−1

XT V−1y
 

( )

û = GZT V−1
(
y−Xβ̂

)
    

If X is n x p and Z is n x q

Inversion of an n x n matrix

p x p p x q

q x q

The whole matrix is (p+q) x (p+q)

y = X! + Zu + e,  u ~ (0,G), e ~ (0, R), cov(u,e) = 0, 

V = ZGZT + R

q x pq

Easier to numerically work

with than BLUP/BLUE

equations



15



16

Let’s redo our example on slide 6

using Henderson’s Equation

XTR−1X =
1
6

(
4 0
0 2

)
, XTR−1Z =

(
ZTR−1X

)T
=

1
6

(
1 2 1
1 0 1

)

G−1+ZTR−1Z =
5
6




1 0 0
0 1 0
0 0 1



 , XTR−1y =
1
6

(
33
26

)
, ZTR−1y =

1
6




21
17
21









4 0 1 2 1
0 2 1 0 1
1 1 5 0 0
2 0 0 5 0
1 1 0 0 5









β̂1

β̂2

û1

û2

û3




=





33
26
21
17
21





Taking the inverse gives





β̂1

β̂2

û1

û2

û3




=

1
18





148
235
−1

2
−1





As found above
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The Animal Model, yi = µ + ai + ei















X =


1
1
...
1

 , β = µ, u =


a1

a2
...

ak

 G = σ2
A A,

Here, the individual is the unit of analysis, with

yi the phenotypic value of the individual and ai its BV

Where the additive genetic relationship matrix A is given by

   Aij  = 2#ij, ,namely twice the coefficient of coancestry

Assume R = "2
e*I, so that R-1 = 1/("2

e)*I.

Likewise, G = "2
A*A, so that G-1 = 1/("2

A)*A-1.

The “animal” model estimates the breeding value for each

individual, even for a plant or tree!  Same approach also

works to estimate line (genotypic) values for inbreds.
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


XTX XTZ

ZTX ZTZ + λA−1








β̂

û



 =




XTy

ZTy








n 1T

1 I + λA−1








µ̂

û



 =





∑n
yi

y





Henderson’s mixed model equations

This reduces to

here  $ = "2
e / "2

A = (1-h2)/h2 

Returning to the animal model
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Example

1 2 3

4 5

Suppose our pedigree is

A =





1 0 0 1/2 0
0 1 0 1/2 1/2
0 0 1 0 1/2

1/2 1/2 0 1 1/4
0 1/2 1/2 1/4 1





I + λA−1 =





5/2 1/2 0 −1 0
1/2 3 1/2 −1 −1

0 1/2 5/2 0 −1
−1 −1 0 3 0

0 −1 −1 0 3





Suppose $ =1 (corresponds to h2 = 0.5).  In this case, 
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



5 1 1 1 1 1
1 5/2 1/2 0 −1 0
1 1/2 3 1/2 −1 −1
1 0 1/2 5/2 0 1
1 1 −1 0 3 0
1 0 −1 −1 0 3









µ̂
â1

â2

â3

â4

â5




=





41
7
9
10
6
9



-
-

̂µ̂ =
440
53

" 8.302,





â1

â2

â3

â4

a5



 =





−662/689
4/53

610/689
−732/689

381/689



 "





−0.961
0.076
0.885
−1.062

0.553





Suppose the vector of

observations is
y =





y1

y2

y3

y4

y5



 =





7
9
10
6
9





Here n = 5, % y = 41, and Henderson’s equation becomes

Solving gives
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More on the animal model
• Under the animal model

– y = X! + Za  + e

–  a ~ (0,"A
2A),  e ~ (0, "e

2I)

– BLUP(a) = "A
2AZTV-1(y- X!)

– Where V = ZGZT + R = "A
2ZAZT + "e

2I

• Consider the simplest case of a single observation
on one individual, where the only fixed effect is
the mean µ, which is assumed known

– Here  Z = A = I = (1),

–  V = "A
2 + "e

2

–  "A
2 AZTV-1 = "A

2 /("A
2 + "e

2) = h2

– BLUP(a) = h2(y-µ)
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• More generally, with single observations on
n unrelated individuals,
– A = Z = In x n

– V = "A
2ZAZT + "e

2I = ("A
2 + "e

2) I

–  "A
2 AZTV-1 =   h2 I

– BLUP(a) = "A
2AZTV-1(y- X!) = h2(y- µ)

• Hence, the predicted breeding value of individual i
is just BLUP(ai) = h2(yi-µ)

• When at least some individuals are related and/or
inbred (so that A = I) and/or missing or multiple
records (so that Z = I), then the estimates of the
BV differ from this simple form, but BLUP fully
accounts for this
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BLUP is a shrinkage estimator

• For a single observation on one individual,
BLUP(a) = h2(y-µ)
– The difference between the observed value (y)

and the mean (µ) is  shrunk by the factor h2 ---
shrinks the estimate back towards the mean
(zero in the case of BVs)

• More generally, BLUP(a) = GZTV-1(y- X!)

– First adjusts observations (y) for fixed effects
(X!) and then regresses this difference back
towards zero (the mean BV), as Cov*Var-1 is a
generalized regression coefficient
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The Relationship Matrix A

• Typically given from a pedigree, but

increasingly being estimated from marker

data

• The diagonal elements indicate the amount

of inbreeding

– Aii = 1 + Fi, where Fi is inbreeding coefficent for

individual i.

– For a fully-inbred, Aii = 2
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Marker-based relationship matrices
• There are two reasons for using a marker-

estimated relationship matrix
– Pedigree either unknown or poorly known

– With very dense markers, provides a better estimate
than a known pedigree.  Why?

• Consider two (non-inbred) full-sibs.  The expectation
under a pedigree is that they share exactly half their
genes.

• However, there is a sampling variance about this
expected value, so that some pair of sibs may share
more than 50%, while another may share less.  Using
markers to detect such pairs improves the estimated
values

• This is called G-BLUP (in animal breeding) and is a
form of genomic selection



26

Marker-based relationship matrix

Simplest case is to consider a very large number (L) of SNPs, and

treat alike in state as IBD, and then compute the probability

fxy that x and y share a randomly-drawn allele for each SNP marker.

Twice the average over all markers is the entry for x and y in the 

relationship matrix (as Axy = 2fxy)

10.5011

0.50.50.501

00.5100

110100

SNP genotype for x

S
N

P 
ge

no
ty

pe
 f

or
 y

Values for fxy given the SNP genotypes
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Estimation of R and G

A second estimation issue concerns the covariance 

matrix for residuals R and for breeding values G

As we have seen, both  matrices have the form  

"2*B, where the variance "2 is unknown, but 

B is  known

For example, for residuals, R = "2
e*I

For breeding values, G = "2
A*A, where A is given

from the pedigree 
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REML Variance Component Estimation

REML = Restricted Maximum Likelihood.  

REML maximizes that portion of the likelihood that 

does not depend on fixed effects

Standard ML variance estimation assumes fixed

factors are known without error.  Results in downward

bias in variance estimates

Basic idea:  Use a transformation to remove fixed 

effect, then perform ML on this transformed vector
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Simple variance estimate under ML vs. REML

ML =
1
n

n∑

i+1

(x− x)2, REML =
1

n− 1

n∑

i+1

(x− x)2   

REML adjusts for the

estimated fixed

effect,

in this case, the mean

With balanced design, ANOVA variance estimates are

 equivalent to REML variance estimates
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Multiple random effects

y = X! + Za + Wu + e

! is a q x 1 vector of fixed effects

a is a p x 1 vector of random effects

u is a m x 1 vector of random effects

X is n x q,  Z is n x p,  W is n x m

y is a n x 1 vector of observations

y, X, Z, W observed. !, a, u, e to be estimated
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Covariance structure

Defining the covariance structure key in any mixed-model

y = X! + Za + Wu + e

These covariances matrices are still not sufficient, as we 

have yet to give describe the relationship between e, a, 

and u.  If they are independent:

Suppose e ~ (0,"e
2 I), u ~ (0,"u

2 I), a ~ (0,"A
2 A), 

as with breeding values
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y = X! + Za + Wu + e

Note that if we ignored the second vector u of random

effects, and assumed y = X! + Za + e*, then e* =

Wu + e, with Var(e*) = "e
2 I + "u

2 WWT

Consequence of ignoring random effects is that these

are incorporated into the residuals, potentially 

compromising its covariance structure

Covariance matrix for the vector of observations y
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Mixed-model Equations
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The repeatability model

• Often, multiple measurements (aka “records”) are collected on
the same individual

• Such a record for individual k has three components

– Breeding value ak

– Common (permanent) environmental value pk

– Residual value for ith observation eki

• Resulting observation is thus

– zki = µ + ak + pk +eki

• The repeatability of a trait is r = ("A
2+"p

2)/"z
2

• Resulting variance of the residuals is "e
2  = (1-r) "z

2



35

Resulting mixed model

y = X! + Za + Zp + e

In class question:  Why can we obtain separate estimates

of a and p? 

Notice that we could also write this model as 

 y = X! + Z(a + p) + e = y = X! + Zv + e, v = a+p
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The incident matrix Z
Suppose we have a total of 7 observations/records, with

3 measures from individual 1, 2 from individual 2, and

2 from individual 3.  Then:

Why?  Matrix multiplication.  Consider y21.

y21 = µ + A2 + p2 + e21
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Consequences of ignoring p
• Suppose we ignored the permanent environment effects and

assumed the model y = X! + Za + e*

– Then e* = Zp + e,

– Var(e*) = "e
2 I + "p

2 ZZT

• Assuming that Var(e*) = "e
2 I gives an incorrect model

• We could either
– use y = X! + Za + e* with the correct error structure

(covariance) for e* = "e
2 I + "p

2 ZZT

– Or use y = X! + Za +Zp + e, where e = "e
2 I
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Generalizing BLUP
• Thus far, we have framed BLUP in the standard

animal breeding context which estimates a vector
of breeding values from the genetic relationship
matrix

• More generally, we can estimate any number of
vectors g of genetic parameters (such as CGA,
SCA, line values) given some matrix of genetic
relatedness

• Historically the relatedness matrix is obtained
from a pedigree, but now with dense markers it
can be estimated directly
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BLUP for GCA, SCA
Again, Example from Bernardo (11.5.1)

B73, B84, and H123 are in one maize heteroic group (Stiff Stalk),

Mo17 and N197 in another (Lancaster)

Note highly unbalanced

design --- not all crosses

in both environments
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Covariance matrix based on pedigree information (see Bernardo

for details)


