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Quick Review of the Major Points

The general linear model can be written as

 y = X! + e

• y = vector of observed dependent values

• X = Design matrix:  observations of the variables in the 

          assumed linear model

• ! = vector of unknown parameters to estimate

• e = vector of residuals (deviation from model fit),

      e = y-X !
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 y = X! + e
Solution to ! depends on the covariance structure

(= covariance matrix) of the vector e of residuals

•  OLS:  e ~ MVN(0, "2 I)

•  Residuals are homoscedastic and uncorrelated,

   so that we can write the cov matrix of e as Cov(e) = "2I

• the OLS estimate, OLS(!) = (XTX)-1 XTy    

Ordinary least squares (OLS)

•  GLS:  e ~ MVN(0,  V)

• Residuals are heteroscedastic and/or dependent,

•  GLS(!) = (XT V-1 X)-1 V-1 XTy 

Generalized least squares (GLS)
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BLUE

• Both the OLS and GLS solutions are also
called the Best Linear Unbiased Estimator
(or BLUE for short)

• Whether the OLS or GLS form is used
depends on the assumed covariance
structure for the residuals
– Special case of Var(e) = "e

2 I -- OLS

– All others, i.e., Var(e) = R -- GLS
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y = µ + β1x1 + β2x2 + · · · + βnxx + e

Linear Models
One tries to explain a dependent variable y as a linear

function of a number of independent (or predictor)

variables.

A multiple regression is a typical linear model,

Here e is the residual, or deviation between the true

value observed and the value predicted by the linear

model.

The (partial) regression coefficients are interpreted

as follows:  a unit change in xi while holding all

other variables constant results in a change of !i in y 
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Linear Models

As with a univariate regression (y = a + bx + e), the model

parameters are typically chosen by least squares,

wherein they are chosen to minimize the sum  of

squared residuals, # ei
2

This unweighted sum of squared residuals assumes 

an OLS error structure, so all residuals are equally

weighted (homoscedastic) and uncorrelated

If the residuals differ in variances and/or some are

correlated (GLS conditions), then we need to minimize 

the weighted sum eTV-1e, which removes correlations and

gives all residuals equal variance.
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Predictor and Indicator Variables

 yij = µ + si + eij

yij = trait value of offspring j from sire i

µ =  overall mean.  This term is included to give the si 

terms a mean value of zero, i.e., they are expressed 

as deviations from the mean

si = The effect for sire i (the mean of its offspring).  Recall

that variance in the si estimates Cov(half sibs) = VA/4

eij = The deviation of the jth offspring from the family

mean of sire i.  The variance of the e’s estimates the

within-family variance.

Suppose we measuring the offspring of p sires.  One 

linear model would be 
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Predictor and Indicator Variables
In a regression, the predictor variables are

typically continuous, although they need not be.

 yij = µ + si + eij

Note that the predictor variables here are the si, (the

value associated with sire i) something that we are trying 

to estimate

We can write this in linear model form, yij = µ + #k xiksi + eij ,

 by using indicator variables,

xik =
{

1 if sire k = i

0 otherwise
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Models consisting entirely of indicator variables

are typically called ANOVA, or analysis of variance

models

Models that contain no indicator variables (other than

for the mean), but rather consist of observed value of

continuous or discrete values are typically called

regression models

Both are special cases of the General Linear Model

(or GLM) 

 yijk = µ + si + dij + !xijk + eijk

Example:  Nested half sib/full sib design with an 

age correction ! on the trait
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 yijk = µ + si + dij + !xijk + eijk

ANOVA model

Regression model

Example:  Nested half sib/full sib design with an 

age correction ! on the trait

si = effect of sire i

dij = effect of dam j crossed to sire i

xijk = age of the kth offspring from i x j cross
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Linear Models in Matrix Form

Suppose we have 3 variables in a multiple regression,

with four (y,x) vectors of observations.

In matrix form, y = Xβ + e

y =




y1

y2

y3

y4


 β =




µ
β1

β2

β3


  e =





e1

e2

e3

e4



X =




1 x11 x12 x13

1 x21 x22 x23

1 x31 x32 x33

1 x41 x42 x43




The design matrix X.  Details of both the experimental

design and the observed values of the predictor variables

all reside solely in X
      

yi = µ + β1xi1 + β2xi2 + β3xi3 + ei
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In-class Exercise
Suppose you measure height and sprint speed for

five individuals, with heights (x) of 9, 10, 11, 12, 13

and associated sprint speeds (y) of 60, 138, 131, 170, 221

1) Write in matrix form (i.e,  the design matrix

X and vector ! of unknowns) the following models

• y = bx

• y = a + bx

• y = bx2

• y = a + bx + cx2

2) Using the X and y associated with these models,

compute the OLS BLUE,  ! = (XTX)-1XTy for each
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Rank of the design matrix
• With n observations and p unknowns, X is an n x p

matrix, so that XTX is p x p

• Thus, at most X can provide unique estimates for
up to p < n parameters

• The rank of X is the number of independent rows
of X.  If X is of full rank, then rank = p

• A parameter is said to be estimable if we can
provide a unique estimate of it.  If the rank of X
is k < p, then exactly k parameters are estimable
(some as linear combinations, e.g. !1-3!3 = 4)

• if det(XTX) = 0, then X is not of full rank

• Number of nonzero eigenvalues of XTX gives the
rank of X.
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Experimental design and X
• The structure of X determines not only which

parameters are estimable, but also the expected
sample variances, as Var(!) = k (XTX)-1

• Experimental design determines the structure of
X before an experiment (of course, missing data
almost always means the final X is different form
the proposed X)

• Different criteria used for an optimal design.  Let
V = (XTX)-1 .  The idea is to chose a design for X
given the constraints of the experiment  that:
– A-optimality:  minimizes tr(V)

– D-optimality:  minimizes det(V)

– E-optimality: minimizes leading eigenvalue of V
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Ordinary Least Squares (OLS)
When the covariance structure of the residuals has a

certain form, we solve for the vector ! using OLS

If the residuals are homoscedastic and uncorrelated,

"2(ei) = "e
2, "(ei,ej) = 0. Hence, each residual is equally

weighted, 

Sum of squared

residuals can

be written as

Predicted value of the y’s

If residuals follow a MVN distribution, OLS = ML solution

      

n∑

i=1

ê2
i = êT ê = (y−X!)T (y−X!)
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Ordinary Least Squares (OLS)

Taking (matrix) derivatives shows this is minimized by

This is the OLS estimate of the vector !

The variance-covariance estimate for the sample estimates

is

      

V! = (XTX)−1σ2
e

n∑

i=1

ê2
i = êT ê = (y−X!)T (y−X!)

! = (XT X)−1XT y

The ij-th element gives the covariance between the

estimates of !i and !j.
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Sample Variances/Covariances

σ̂2
e =

1
n− rank(X)

n∑

i=1

ê2
i

V! = (XTX)−1σ2
e

The residual variance can be estimated as

The estimated residual variance can be substituted into

To give an approximation for the sampling variance and 

covariances of our estimates.

Confidence intervals follow since the vector of estimates

 ~ MVN(!, V!)
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Example:  Regression Through the Origin

 yi = !xi  + ei 

Here X =




x1

x2
...

xn


 y =







y1

y2

...
yn





 β = (β )

XTX =
n∑

i=1

x2
i XT y =

n∑

i=1

xi yi

∑!=
(
XTX

)−1
XT y =

∑
xi yi

x2
i

∑
∑σ2(!) =

1
n −1

(yi− !xi)2

x2
i

σ

∑

2(b) =
(
XTX

)−1
σ2

e =
σ2

e∑
x2

i

σ2
e =

1
n 1 (yi !xi)2-

-
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Polynomial Regressions

GLM can easily handle any function of the observed

predictor variables, provided the parameters to estimate

are still linear, e.g.  Y = $ + !1f(x) + !2g(x) + … + e

Quadratic regression:

yi = α + β1 xi + β2 x2
i + ei

β =




α
β1
β2



 X =





1 x1 x2
1

1 x2 x2
2

...
...

...
1 xn x2

n




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Interaction Effects
Interaction terms (e.g. sex x age) are handled similarly

With x1 held constant, a unit change in x2 changes y

by !2 + !3x1 (i.e., the slope in x2 depends on the current

value of x1 )

Likewise, a unit change in x1 changes y by !1 + !3x2

yi = α +β1 xi1 + β2 xi2 + β3 xi1xi2 +ei

β =




α
β1

β2

β3


 X =





1 x11 x12 x11x12
1 x21 x22 x21x22
...

...
...

...
1 xn1 xn2 xn1xn2




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The GLM lets you build your

own model!
• Suppose you want a quadratic regression

forced through the origin where the slope
of the quadratic term can vary over the
sexes (pollen vs. seed parents)

• Yi = !1xi + !2xi
2 + !3sixi

2

• si is an indicator (0/1) variable for the sex
(0 = male, 1 = female).
– Male slope = !2,

– Female slope = !2 + !3



22

Generalized Least Squares (GLS)

Suppose the residuals no longer have the same

variance (i.e., display heteroscedasticity). Clearly

we do not wish to minimize the unweighted sum

of squared residuals, because those residuals with

smaller variance should receive more weight.

Likewise in the event the residuals are correlated,

we also wish to take this into account (i.e., perform

a suitable transformation to remove the correlations)

before minimizing the sum of squares.

Either of the above settings leads to a GLS solution

in place of an OLS solution.
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In the GLS setting, the covariance matrix for the

vector e of residuals is written as  R where 

Rij =   "(ei,ej)

The linear model becomes y = X! + e, cov(e) = R

The GLS solution for ! is 

The variance-covariance of the estimated model 

parameters is given by

     

( )
b = XT R−1X

−1

XTR−1y

-
( )Vb = XT

R
−1X

1
σ2

e
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Model diagnostics

• It’s all about the residuals

• Plot the residuals
– Quick and easy screen for outliers

• Test for normality among estimated
residuals
– Q-Q plot

– Wilk-Shapiro test

– If non-normal, try transformations, such as log
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OLS, GLS summary
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Fixed vs.  Random Effects
In linear models are are trying to accomplish two goals:

estimation the values of model parameters and estimate

any appropriate variances.  

For example, in the simplest regression model,

y = $ + !x + e, we estimate the values for $ and ! and

also the variance of e.  We, of course, can also

estimate the ei = yi - ($ + !xi )

Note that $/! are fixed constants are we trying to

estimate (fixed factors or fixed effects), while the

ei values are drawn from some probability distribution

(typically Normal with mean 0, variance "2
e).  The 

ei  are random effects. 
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“Mixed” models (MM) contain both fixed and random factors

This distinction between fixed and random effects is

extremely important in terms of how we analyzed a model.

If a parameter is a fixed constant we wish to estimate,

it is a fixed effect.  If a parameter is drawn from

some probability distribution and we are trying to make

inferences on either the distribution and/or specific 

realizations from this distribution, it is a random effect.

We generally speak of estimating fixed factors (BLUE) and

predicting random effects (BLUP -- best linear unbiased

Predictor)

 y = Xb + Zu + e,   u  ~MVN(0,R), e ~ MVN(0,"2
eI)

Key:  need to specify covariance structures for MM
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Random effects models

• It is often useful to treat certain effects
as random, as opposed to fixed
– Suppose we have k effects.  If we treat these

as fixed, we lose k degrees of freedom

– If we assume each of the k realizations are
drawn from a normal with mean zero and
unknown variance, only one degree of freedom
lost --- that for estimating the variance

• We can then predict the values of the k realizations
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Environmental effects
• Consider yield data measured over several years in

a series of plots.

• Standard to treat year-to-year variation at a
specific site as being random effects

• Often the plot effects (mean value over years)
are also treated as random.

• For example, consider plants group in growing
region i, location k within that region, and year
(season) k for that location-region effect
– E = Ri + Lik + eijk

– Typically R can be a fixed effect, while L and e
are random effects, Lik ~ N(0,"2

L) and eikj ~
N(0,"2

e)
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Identifiability

• Recall that a fixed effect is said to be
estimable if we can obtain a unique
estimate for it (either because X is of full
rank or when using a generalized inverse it
returns a unique estimate)
– Lack of estimable arises because the

experiment design confounds effects

• The analogous term for random models is
identifiability
– The variance components have unique estimates
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Y = X! + Zu + e

The general mixed model

Vector of

observations

(phenotypes)

Vector of fixed effects (to be estimated), 

e.g., year, sex and age effects

Vector of

random effects,

such as individual

Breeding values

(to be estimated)

Vector of residual errors

 (random effects)

Incidence

matrix for

fixed

effects

Incidence matrix for random effects
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Y = X! + Zu + e

The general mixed model

Vector of

observations

(phenotypes)

Vector of

random effects

Incidence

matrix for

fixed

effects

Vector of fixed effects  

Incidence matrix for random effects

Vector of residual errors

 

Observe y, X, Z.

Estimate fixed effects !

Estimate random effects u, e
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Means:  E(u) = E(e) = 0,  E(y) = X!

Let R be the covariance matrix for the 

residuals.  We typically assume R = "2
e*I

Let G be the covariance matrix for the vector

 u of random effects

The covariance matrix for y becomes  

      V = ZGZT + R

Means & Variances for y = X! + Zu + e

Variances:

Hence, y ~ MVN (X!, V)

Mean X! due to fixed effects

Variance V due to random effects



34

Different statistical models

• GLM = general linear model
– OLS ordinary least squares: e ~ MVN(0,cI)

– GLS generalized least squares: e ~ MVN(0,R)

• Mixed models
– Both fixed and random effects (beyond the residual)

• Mixture models
– A weighted mixture of distributions

• Generalized linear models
– Nonlinear functions, non-normality
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Mixture models
• Under a mixture model, an observation potentially

comes from one of several different distributions,
so that the density function is %1&1 + %2&2 + %3&3

– The mixture proportions %i sum to one

– The &i represent different distribution, e.g.,  normal with
mean µi and variance "2

• Mixture models come up in QTL mapping -- an
individual could have QTL genotype QQ, Qq, or qq
– See Lynch & Walsh Chapter 13

• They also come up in codon models of evolution, were
a site may be neutral, deleterious, or advantageous,
each with a different distribution of selection
coefficients
– See Walsh & Lynch (volume 2A website), Chapters 10,11
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Generalized linear models

Typically assume non-normal distribution for

residuals, e.g., Poisson, binomial, gamma, etc


