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Genetic vs. Phenotypic correlations

• Within an individual, trait values can be
positively or negatively correlated,
– height and weight -- positively correlated

– Weight and lifespan  -- negatively correlated

• Such phenotypic correlations can be
directly measured,
– rP denotes the  phenotypic correlation

• Phenotypic correlations arise because
genetic and/or environmental values within
an individual are correlated.
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Genetic & Environmental Correlations

• rA = correlation in breeding values (the
genetic correlation) can arise from
– pleiotropic effects of loci on both traits

– linkage disequilibrium, which decays over time

• rE = correlation in environmental values

– includes non-additive genetic effects (e.g., D, I)

– arises from exposure of the two traits to the
same individual environment
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The relative contributions of genetic and environmental
correlations to the phenotypic correlation

If heritability values are high for both traits, then
the correlation in breeding values dominates the
phenotypic corrrelation

If heritability values in EITHER trait are low, then
the correlation in environmental values dominates the
phenotypic correlation

In practice, phenotypic and genetic correlations often 
have the same sign and are of  similar magnitude, but  
this is not always the case

√
rP = rA hX hY + rE (1− h2

x)(1 − h2
Y )
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Estimating Genetic Correlations
Recall that we estimated VA from the regression of
trait x in the parent on trait x in the offspring,

Trait x in parent

Trait x in
offspring

       Slope = 
(1/2) VA(x)/VP(x)

VA(x) = 2 *slope * VP(x)
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Estimating Genetic Correlations
Similarly, we can estimate VA(x,y), the covariance in the
breeding values for traits x and y, by the regression of
trait x in the parent and trait y in the offspring

Trait x in parent

Trait y in
offspring

       Slope = 
(1/2) VA(x,y)/VP(x)

VA(x,y) = 2 *slope * VP(x)
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Thus, one estimator of VA(x,y) is

VA(x,y)  =  by|x VP(x) + bx|y VP(y)

2 *by|x * VP(x) + 2 *bx|y * VP(y) 

2
VA(x,y) =

Put another way, 
            Cov(xO,yP) = Cov(yO,xP) = (1/2)Cov(Ax,Ay)

  Cov(xO,xP) = (1/2) VA (x) = (1/2)Cov(Ax, Ax)
  Cov(yO,yP) = (1/2) VA (y) = (1/2)Cov(Ay, Ay)

Likewise, for half-sibs,
Cov(xHS,yHS) = (1/4) Cov(Ax,Ay)
Cov(xHS,xHS) = (1/4) Cov(Ax,Ax) = (1/4) VA (x) 
Cov(yHS,yHS) = (1/4) Cov(Ay,Ay) = (1/4) VA (y) 

 

giving
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Correlated Response to Selection

Direct selection of a character can cause a within-
generation change in the mean of a phenotypically
correlated character.

Direct selection on
x also changes the
mean of y

*

+

Select All
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Y

SX
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Phenotypic correlations induce within-generation
changes 

For there to be a between-generation change, the
breeding values must be correlated.  Such a change
is called a correlated response to selection

Trait y

Trait x

Phenotypic values

Sy

Sx
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Trait y

Trait x

Phenotypic values

Rx

Ry = 0
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Trait y

Trait x

Breeding values

Rx

Ry = 0

Phenotypic values are misleading, what we want are the
breeding values for each of the selected individuals.  Each
arrow takes an individual’s phenotypic value into its actual
breeding value.
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Trait y

Trait x

Breeding values

Rx

Ry = 0
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Predicting the correlated response

bAy|Ax  =
Cov(Ax,Ay)

Var(Ax)
= rA

!(Ax)

!(Ay)

The change in character y  in response to selection
on x  is the regression of the breeding  value of y 
on the breeding value of x,

Ay = bAy|Ax Ax

where

 If Rx denotes the direct response to selection on x,
CRy denotes the correlated response in y, with

CRy = bAy|Ax Rx 
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We can rewrite CRy = bAy|Ax Rx as follows

First, note that Rx = h2
xSx = ixhx !A (x)

Recall that ix =
Sx/!P (x) is the

selection intensity
on x

Since bAy|Ax  = rA !A(x) / !A(y), 

We have CRy = bAy|Ax Rx = rA !A (y) hxix 

Substituting !A (y)= hy !P (y) gives our final result: 

CRy =  ix hx hy rA !P (y)
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CRy =  ix hx hy rA !P (y)

Noting that we can also express the direct response as
Rx = ixhx

2 !p (x)

shows that hx hy rA in the corrected response plays the
same role as hx

2 does in the direct response.  As a result,
hx hy rA  is often called the co-heritability
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Direct vs. Indirect Response
We can change the mean of x via a direct response Rx

or an indirect response CRx due to selection on y

Hence, indirect selection gives a large response when

• Character y  has a greater heritability than x, and the genetic
correlation between x  and y is high. This could occur if x is difficult to
measure with precison but y is not.

• The selection intensity is much greater for y  than x.  This would be true
 if y were measurable in both sexes but x  measurable in only one sex.

iY rA hY > iX hX

CRX

RX
=

iY rA σAXhY

iX hX σAX
=

iY rA hY

iX hX
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G x E
The same trait measured over two (or more) environments
can be considered as two (or more) correlated traits.

If the genetic correlation | "| = 1 across environments and
the genetic variance of the trait is the same in both
environments, then no G x E

However, if |"| < 1, and/or Var(A) of the trait varies
over environments, then G x E present

Hence, dealing with G x E is a multiple-trait problem
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Participatory breeding

iY rA hY > iX hX

The environment where a crop line is developed may
be different from where it is grown

An especially important example of this is participatory
breeding, wherein subsistence farmers are involved in
the field traits.

Here, the correlated response is the yield in subsistence
environment given selection at a regional center, while direct
response is yield when selection occurred in subsistence
environment.   Regional center selection works when
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The Multivariate Breeders’
Equation

Suppose we are interested in the vector R of responses
when selection occurs on n correlated traits

Let S be the vector of selection differentials.

In the univariate case, the relationship between R
and S was the Breeders’ Equation, R = h2S

What is the multivariate version of this?
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The multivariate breeders' equation

R = G P-1 S

R= h2S = (VA/VP) S
Natural parallels
with univariate

breeders equation

 P-1 S = # is called the selection gradient and measures the

amount of direct selection on a character

The gradient version of the breeders’ Equation is given by R = G #.

This is often called the Lande Equation (after Russ Lande)
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Sources of within-generation change in the mean

Since # = P-1 S, S  = P #,
giving the j-th element as Change in mean from

phenotypically
correlated characters
under direct selection Within-generation

change in trait j

Change in mean
from direct

selection on trait j

Sj = σ2(Pj)βj +
∑

i!=j

σ(Pj, Pi)βi
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Within-generation change in the mean

Response from direct
selection on trait j

Between-generation
change (response)

in trait j

Indirect response
from genetically

correlated
characters under
direct selection

Sj = σ2(Pj)βj +
∑

i!=j

σ(Pj, Pi)βi

Rj = σ2(Aj)βj +
∑

i!=j

σ(Aj, Ai)βi

Response in the mean

Direct response
Correlated response
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Example in R

Suppose you observed a within-generation change of
-10 for oil, 10  for protein, and 100 for yield.

What is R?  What is the nature of selection on each
trait?
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Enter G, P, and S

R = G P-1S

13.6  decrease in oil
12.3 increase in protein
65.1 increase in yield
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Sj = σ2(Pj)βj +
∑

i!=j

σ(Pj, Pi)βi

S versus # :  Observed change versus targets of
Selection, # = P-1 S, S  = P #,

 #: targets of selection S: observed within-generation
change

Observe a within-generation increase in protein, but the
actual selection was to decrease it.
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Constraints Imposed by
Genetic Correlations

While # is the directional optimally favored by
selection, the actual response is dragged off
this direction, with R = G #.

Example:  Suppose

S =
(

10
−10

)
, P =

(
20 −10
−10 40

)
, G =

(
20 5
5 10 

 
 )

What is the true nature of selection on the two traits?

β = P−1S = P =
(

20 −10
−10 40

)−1 (
10
−10

)
=

(
0.43

−0.14
 

 
)
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What does the actual response look like?

R = Gβ =
(

20 5
5 10

)(
0.43
−0.14

)
=

(
7.86
0.71

)

Direction favored
by selection

Direction of
response
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Matrices Describe Vector transformations

The action of multiplying a vector x by a matrix A
generates a new vector y = Ax, that has different
dimension from x unless A is square. 

Matrix multiplication results in a rotation and a scaling of
a vector

Thus A describes a transformation of the original
coordinate system of x into a new coordinate
system.

G =
(

4 −2
−2 2

)
β =

(
1
3

)
, R = Gβ =

−2
4() )

Example:  Consider the following G and #:
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The resulting angle between R and # is given by

cos $ = βTR
||R|| ||β|| = 1√

2

For an angle of $ = 45o
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Eigenvalues and Eigenvectors
The eigenvalues and their associated eigenvectors
fully describe the geometry of a matrix.

Eigenvalues describe how the original coordinate
axes are scaled in the new coordinate systems

Eigenvectors describe how the original coordinate
axes are rotated in the new coordinate systems

For a square matrix A, any vector y that satisfies
Ay = %y for some scaler % is said to be an eigenvector
of A and % its associated eigenvalue.
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Note that if  y is an eigenvector, then so is a*y
for any scaler a, as Ay = %y. 

Because of this, we typically take eigenvectors to
be scaled to have unit length (their norm = 1)

An eigenvalue % of A satisfies the equation
det(A - %I) = 0, where det = determinant

For an n-dimensional square matrix, this yields an
n-degree polynomial in % and hence up to n unique roots.

Two nice features:

det(A) = &i %i. The determinant is the product of the eigenvalues

trace(A) = 'i %i. The trace (sum of the diagonal elements) is

 is the sum of the eigenvalues
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Note that det(A) = 0 if any only if at least one
eigenvalue = 0

For symmetric matrices (such as covariance matrices)
the resulting n eigenvectors are mutually orthogonal,
and we can factor A into its spectral decomposition, 

A = λ1e1eT
1 +λ2e2eT

2 +· · ·+λneneT
n

Ax = λ1e1eT
1 x + λ2e2eT

2 x + · · · + λneneT
nx

= λ1Proj(x on e1) + λ2Proj(x one2) + · · · + λnProj(x on en)

Hence, we can write the product of any vector x and A as
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|G− λI| =
∣∣∣∣

(
4− λ −2
−2 2− λ

)∣∣∣∣

= (4− λ)(2− λ)− (−2)2 = λ2 6λ + 4 = 0-

)

Example:  Let’s reconsider a previous G matrix

The solutions are

λ1 = 3+
√

5 # 5.236 λ2 = 3−
√

5 # 0.764

e1 #
(
−0.851
0.526

)
e2 #

(
0.526
0.851

)

The corresponding eigenvectors become
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Even though # points in a direction very close of e2,
because most of the variation is accounted for by e1,
its projection is this dimension yields a much longer
vector.  The sum of these two projections yields the
selection response R.
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Realized Selection Gradients

Suppose we observe a difference in the vector of means
for two populations, R =  µ1 - µ2.

If we are willing to assume they both have a common
G matrix that has remained constant over time, then
we can estimate the nature and amount of selection
generating this difference by

# = G-1 R

Example:  You are looking at oil content (z1) and yield (z2) 
in two populations of soybeans. Population a
has µ1 = 20 and µ2 = 30, while for Pop 2, µ1 = 10 and
µ2 = 35. 
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G =
(

20 −10
−10 40

)

R =
(

20− 10
30− 35

)
=

(
10
−5

)Here

Suppose the variance-covariance matrix has been
stable and equal in both populations, with

The amount of selection on both traits to obtain this
response is

β =
(

20 −10
−10 40

)−1 (
10
−5

)
=

(
0.5
0

)


