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Problem

QUANTITATIVE TRAIT: 
Phenotypic traits of poligenic effect (coded by many genes with
usually “small” effect each one) and with environmental influence. 

How To Select For Quantitative Traits?
1. Traditional Breeding
2. Marker Assisted Selection
3. Genomic Selection

Identification of chromosome regions that affects quantitative traits

Chromosome

Molecular Markers

Gen evidence
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Information needed

1. Molecular marker scores

2. Genetic map

3. Phenotypes

High throughput panels, controlled 
conditions, repeatable, cheap, 
automatic scoring.

More standard methods, small 
population sizes, consensus maps? 
Need some more development.

Crucial part, poor phenotypes means 
poor QTL mapping.

. 3



Outline

1. Linkage

2. Types of Populations

3. Map construction using linkage (overview)

4. QTL mapping using linkage

o QTL mapping: 1. Singel Marker Analysis

o QTL mapping: 2. Interval Mapping

o QTL mapping: 3. Composite Interval Mapping

5. Other issues:

o Multiple Testing

o Missing Data

o Epistasis

o QTLxE

o Polyploids

6. QTL estimation
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Linkage and Mendel’s Laws

LAW OF SEGREGATION (MENDEL’S FIRST LAW ):

o Every individual carries two copies of a gene (alleles)

o Each parent passes only one of its copies to an offspring

o Parents A1A1 or A2A2 only produces ‘A1’ or ‘A2’ gametes 
respectively, heterozygous produces ‘A1’ and ‘A2’ in 50/50.

LAW OF INDEPENDENT ASSORTMENT (SECOND LAW):

o Different genes segregate independently

o True in the absence of linkage 

Wu, Ma, and Casella, 2010
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Linkage and Recombination
Molecular marker: short DNA segment (or a 

single base in the case of SNPs)
Locus: point on a chromosome (loci in plural). 

i.e: markers 1 and 2
Allele: gene variant. Yellow = maternal. Red = 

paternal

Marker 1 (A)

Marker 2 (B)

x

A1A1B1B1

Selfing the F1 produces two types of gametes: 
- Parental: same combination as in original 

lines (A1B1 or A2B2) 
- Recombinant: one allele from each parent 

(A1B2 or A2B1)

PR R

Marker 1

Marker 2

P

Define r as the recombination frequency: r = # 
recombinants / total

If there is linkage there are more parental than 
recombinant gametes
– r closer to 0 = strong linkage
– r closer to 0.5 = independence

2
1 r-

2
1 r-

2
r

2
r

Wu, Ma, and Casella, 2010

A2A2B2B2

A1A2B1B2
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Linkage and Recombination
• The higher the recombination between 
two loci, the higher the genetic distance 
between them.

• If independent all four gametes are 
equally frequent with 0.25 each one 
(maximum recombination = 0.5).

• Mapping function:

• Therefore recombination ratios (under 
certain circumstances) can be used to 
determine genetic distances (among loci,  
markers or between markers and QTLs). 

Wu, Ma, and Casella, 2010

Marker 1 (A)

Marker 2 (B)

x

A1A1B1B1

PR R

Marker 1

Marker 2

P

2
1 r-

2
1 r-

2
r

2
r

A2A2B2B2

A1A2B1B2

. 7



QTL Mapping

KEY IDEA:

If a molecular marker is “associated” to the 
phenotype (i.e. the mean trait value for 
individuals with marker state MM is different 
from the mean trait value of individuals with 
marker state mm), then the marker is linked to 
a QTL.
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Populations

We need genetically diverse populations!

There are two options:
1. Design a population with known recombination even ts .

o Types of populations: RIL, DH, F2, BC, etc.
o Linkage mapping (also known as: “Traditional QTL Mapping”, 

“Bi-parental QTL Mapping”, “Balanced population QTL 
Mapping”, “ QTL Mapping”, etc.).

2. Use existing diverse populations. 
o LD related to distance + OTHER causes.
o Need to account for other causes of LD.
o Association Mapping (also known as: “Linkage 

Disequilibrium Mapping”, “LD Mapping”, “GPD Mapping”, 
“GWAS”, etc.).
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Designed Populations – F 2

F2 population
A2

The F1 is selfed one time.
All 3 possible genotypes are present: A1A1, A1A2, and A2A2.
Short ‘history’ of recombination.
Allows to distinguish additivity from dominance.

A1

P1 P2
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Designed Populations – BC

Back-cross population (BC)

The F1 is “back” crossed to one of the parents.
The BC lines carries

o a full chromosome from the recurrent parent
o a chromosome with mosaic of the two parents

Possible genotypes A1A1 or A1A2 (the A2A2 is not present)
Short ‘history’ of recombination.

A2A1

P1 P2

P1
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Designed Populations - DH

Doubled-Haploid Population (DH): xA1 A2

F1

F1 -
gametes

DH

F1 gametes are duplicated.
Complete homozygous individuals (only A1A1 and A2A2 genotypes 
possible).
One generation of recombination.

P1 P2
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Designed Populations - RIL

Recombinant Inbred Lines (RIL):

F2 are selfed for several generations.
Heterozygosity decreases ½ each generation.
More generations means more recombination. 

A2A1

P1 P2
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Designed Populations – MP

Multiparent or 4-way Cross Population (MP):
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Map construction

M
a
r
k
e
r
s

STUDY LINKAGE AMONG MARKERS
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Map construction

M
a
r
k
e
r
s

recombination

Markers 1, 5 and 10 are linked.

Markers 1 and 5 are more closely linked than 10.

10
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Map construction

M
a
r
k
e
r
s

recombination

Markers 2 and 7 are also linked
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Map construction
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Mapping Traits (Qualitative):

R R RR R RS S SS SSS S S SSS S

Wu, Ma, and Casella, 2010

Two-point analysis
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Mapping Traits (Quantitative):

1

2

3
4
5
6
7
8
9

125112 118 118 129 115122 12299 101 108 92 100 124105 95 117 103123

How to test for an association?
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Mapping Traits (Quantiative )

n=500
a=8
d=0
mu=50
sd=2
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Phenotypic distribution is a 
mixture distribution.

A1A1
A1A2
A2A2

A1A1
A1A2
A2A2

F2 Population
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Mapping Traits (Quantitative )

n=500
a=8
d=0
mu=50
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F
re

qu
en

cy

35 40 45 50 55 60 65

0
10

20
30

40
50

AA
AB
BB

44
46

48
50

52
54

56

n=500
a=0
d=0
mu=50
sd=2

F
re

qu
en

cy

35 40 45 50 55 60 65

0
10

20
30

40
50

AA
AB
BB

-1.0 -0.5 0.0 0.5 1.0

35
40

45
50

55
60

65

-1.0 -0.5 0.0 0.5 1.0

35
40

45
50

55
60

65

How do we test for an 
association?
• Linear models:      

t-test, ANOVA (F-
test), regression, 

• Maximum 
Likelihood: LRT.

A1A1
A1A2
A2A2

A1A1
A1A2
A2A2
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MMQQ

Mapping Traits (Quantitative )

Assume:
• a co-dominant marker (M)
• a QTL (Q)
• r linkage between M and Q

Genotypic values:
• .
• .
• .

QQfor  a  P+
Qqfor  d  P+

qqfor  a - P

mmqq

MmQq

Marker         . Conditional frequency      .

Genotype Frequency QQ Qq qq

MM ¼ (1-r)2 2r(1-r) r2

Mm ½ r(1-r) 1-2r+2r2 r(1-r)

mm ¼ r2 2r(1-r) (1-r) 2

Value of F2 individuals

F1 Gametes: 
Pr(MQ) = ½ (1-r) = Pr(mq)
Pr(Mq) = ½ r = Pr(mQ)

a  P+ d  P+ a  P-

F2 Population

BUT QTL IS NOT ON TOP OF OBSERVED MARKER
So we use conditional probabilities of QTL genotypes

)Pr(M

)MPr(Q
)M|Pr(Q

j

jk
jk =

F2 Individuals: 
( ) ( ) ( )2

4
1

2
1

2
1

1
1*1

Pr(MM)
Pr(QQMM)

MM)|Pr(QQ r
rr

-=
--

==

Bernardo, 2010
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Mapping Traits (Quantitative )

Marker         . Conditional frequency      .

Genotype Frequency QQ Qq qq

MM ¼ (1-r)2 2r(1-r) r2

Mm ½ r(1-r) 1-2r+2r2 r(1-r)

mm ¼ r2 2r(1-r) (1-r) 2

Value of F2 individuals

F2 Population

r)d-2r(1  2r)-a(1  P  )(Fmm

)2r 2r  - d(1  P  )m(FM

r)d-2r(1  2r)-a(1  P  )(FMM

2

2
2

2

++=

++=

++=

Mean of individuals:

( ) 2r)-2a(1  mm - MM
2F =

2

F

2r)-d(1
2

mm  MM
 - mM

2

=��
�

�
��
�

� +

Differences:

ASPECTS TO NOTE:
1. QTL effect and position are 

confounded (i.e. the same mean 
difference could be achieved with a 
tightly linked QTL of small effect than 
with a  loosely linked QTL of large 
effect).

2. In F2 it is possible to estimate 
additive and dominance effects.

3. Both a* and d* are underestimated 
due to the unknown fraction of r.

a  P+ d  P+ a  P-

Bernardo, 2010
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Mapping Traits (Quantitative )
F2 POPULATION

r)d-2r(1  2r)-a(1  P  )(Fmm

)2r 2r  - d(1  P  )m(FM

r)d-2r(1  2r)-a(1  P  )(FMM

2

2
2

2

++=

++=

++=

Mean of individuals:

( ) 2r)-2a(1  mm - MM
2F =

2

F

2r)-d(1
2

mm  MM
 - mM

2

=��
�

�
��
�

� +

Differences:

F1 Gametes: 
Pr(MQ) = ½ (1-r) = Pr(mq)
Pr(Mq) = ½ r = Pr(mQ)

F2 Individuals: 
MMQQ, MMQq, MMqq
MmQQ, MmQq, Mmqq
mmQQ, mmQq, mmqq

BC POPULATION

r)-a(1 dr   P  (BC)mm

ar - r) - d(1  P  m(BC)M

++=

+=

Mean of individuals:

( ) 2r)-d)(1(a  mm - MM BC +=

Differences:

BC Individuals: 
MmQq, Mmqq
mmQq, mmqq

F1 Gametes: 
Pr(MQ) = ½ (1-r) = Pr(mq)
Pr(Mq) = ½ r = Pr(mQ)

P2 Gametes:
Pr(mq)=1

( ) ( )r
r

-=
-

== 1
1*1

Pr(Mm)
Pr(QqMm)

Mm)|Pr(Qq
2

1

2
1

Bernardo, 2010
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Mapping Traits (Quantitative )

DH POPULATION

2r)-a(1  P  (DH)mm

 2r)-a(1  P  (DH)MM

-=

+=
Mean of individuals:

( ) 2r)-2a(1  mm - MM DH =

Differences:

2R)-a(1  P  (RIL)mm

 2R)-a(1  P  (RIL)MM

-=

+=

( )

mating-sib from RILfor  
6r1

4r
R

selfing from RILfor  
2r1

2r
R

2R)-2a(1  mm - MM RIL

+
=

+
=

=

RIL POPULATION

Mean of individuals:

Differences:

F1 Gametes: 
Pr(MQ) = ½ (1-r) = Pr(mq)
Pr(Mq) = ½ r = Pr(mQ)

DH Individuals: 
Pr(MMQQ) = ½ (1-r) = Pr(mmqq)
Pr(MMqq) = ½ r = Pr(mmQQ)

( ) ( )r
r

-=
-

== 1
1

Pr(MM)
Pr(QQMM)

MM)|Pr(QQ
2

1

2
1

Bernardo, 2010
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How to map QTL?

Steps for mapping QTL through LINKAGE:

1. Create a designed population.

2. Collect genotypic information on parents and offspring in the form of 
molecular markers scores.

3. Look for linkage between marker loci.

4. Construct a genetic map.

5. Detect quantitative trait loci (testing for association between a 
phenotypic trait and a marker).

o Qualitative trait: two-point linkage test.

o Quantitative trait: linear models (t-test, ANOVA, marker-
regression) or maximum likelihood tests (LRT). Use single 
marker analysis, interval mapping or composite interval 
mapping.
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QTL mapping: 1. Single Marker Analysis

SINGLE MARKER ANALYSIS (SMA), MARKER REGRESSION (MR):

IDEA: If there is a significant association between a molecular marker
and a quantitative trait, then, it is possible that a QTL exists close to
that marker. A marker at a time is tested through a linear model (i.e. t-
test, ANOVA or regression), or using the full density function for the
mixture distribution.

WHEN TO USE IT? To look at the data roughly and to study missing
data patterns. OK if you are not interested in estimating position nor
QTL effects.

iii xy ebb ++= 10

( ) ( )Õ �=
i j jiij ypL 2,;, smfsm

Linear Model:

Maximum Likelihood:
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Broman and Sen, 2009
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QTL mapping: 1. Single Marker Analysis
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QTL mapping: 1. Single Marker Analysis
LINEAR MODELS Use the difference in mean trait value for different
marker genotypes to detect QTL and to estimate its effects.

One way ANOVA

Regression

p-values are used for profile plots

ijiijy eam ++=

Value of the trait in the 
j-th individual with 
marker genotype i

Effect of marker genotype 
i on trait value

ijiij xy ebb ++= 10

Value of the trait in the 
j-th individual with 
marker genotype i

marker genotype i

Effect of marker genotype  
o trait value
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QTL mapping: 1. Single Marker Analysis
MAXIMUM LIKELIHOOD METHODS Use the entire distribution of
the data. It is more powerful as linear models but not as flexible.

ML Function

Test

LOD scores are used for profile plots

( ) ( ) ( )jk

N

i
Qkj MQzMz |Pr,,|

1

2�
=

= smj�

Trait value given the 
marker genotype

Density function for a 
normal distribution of the 
trait value given the QTL 
genotype with mean (µ Qk).

Conditional 
probability of QTL 
genotype given 
marker genotype.

��
�

�
��
�

�
=

(z)max 
r(z)max 

-2lnLR
�
�

61.4
)(

(z)max 
r(z)max 

-logLOD(c) 10

cLR
@��

�

�
��
�

�
=

�
�

Max. Likelihood under no-QTL

Max. Likelihood under full model
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QTL mapping: 1. Single Marker Analysis
LOD score or 
–log(p-value)
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Single Marker Analysis (+): 

• Simple

• No specific software requirement

• No chromosome position requirement

• No estimation of QTL position

Single Marker Analysis (-): 

• Single QTL model  

• Confounding of QTL estimation and 
position

• Loss of power due to residual variance 
caused by other QTL

• n tests

QTL mapping: 1. Single Marker Analysis
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Issue 1: Multiple Testing
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Issue 1: Multiple Testing
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Issue 1: Multiple Testing

A common practice is to use P<0.05 to decide about significance of a 
test. But with large number of tests the chance of having a false positive 
is almost 1...

OTHER OPTIONS
1. Bonferroni multiple-testing protection:

1. P = 0.05 / number of tests (this is very conservative)
2. P = 0.05 / effective number of tests, with the effective number 

of tests estimated from the marker data (Li and Ji, 2005).

2. Permutations (Broman and Sen, 2009) 

3. False Discovery Rate (Benjamini and Hochberg, 1995)
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Issue 2: Missing data problem

Can we say something about unobserved positions?

Yes, we can use information from neighbouring markers if we know the 
recombination history of the population we can calculate Conditional 
probabilities of QTL genotypes

?

FILLING INFORMATION

o We only have information at specific positions (marker positions). We 
might be interested to make in-between marker inference.

o Marker information can be incomplete (missing values) or partially 
informative (dominant markers).

)Pr(M

)MPr(Q
)M|Pr(Q

j

jk
jk =

Broman and Sen, 2009
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Issue 2: Missing data problem (F 2)

Wu, Ma, and Casella, 2010
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Issue 2: Missing data problem (F 2)

Wu, Ma, and Casella, 2010
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Additive genetic predictors: xadd

Dominant genetic predictors: xdom

Issue 2: Missing data problem (F 2)
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Issue 2: Missing data problem

1. QTL genotype probabilities can be computed at any point on the 
genome using observed markers (Markov chain methods, Jiang 
and Zeng, 1997).

2. Missing values in markers can be imputed (so no need to exclude 
genotypes with missing marker data).

3. The conditional QTL probabilities are at the core of QTL mapping 
methods (but that is taken care for by the software).
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QTL mapping: 2. Interval Mapping

SIMPLE INTERVAL MAPPING (SIM):

IDEA: information on adjacent markers can be used to improve
estimations. You may either use the genotypic predictors (pseudo-
marker) or the conditional probabilities directly to scan for significant
associations one marker (or pseudo-marker) at a time or to use the full
likelihood function for the interval.

WHEN TO USE IT? To fill n missing data information or to enrich
marker data information. OK if background QTL are not important.

iii xy ebb ++= 10

( ) ( )Õ �=
i j jiij ypL 2,;, smfsm

Linear Model:

Maximum Likelihood:
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Uses contiguous marker information to 
improve the estimation of marker effects: 

Marker 1 QTL Marker 2
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QTL mapping: 2. Interval Mapping

Broman and Sen, 2009

L function

Maximum Likelihood Methods:
Uses the likelihood function and the 
conditional probabilities inside the interval 
defined by two markers to determine the 
most likely position of the QTL inside the 
interval.
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Uses contiguous marker information to 
improve the estimation of marker effects: 

Marker 1 QTL Marker 2
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QTL mapping: 2. Interval Mapping
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Broman and Sen, 2009

Haley-Knott Regression:
Uses the conditional probabilities calculated 
inside the interval defined by two markers 
directly as pseudo-markers and performs a 
regression on each point.
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Simple Interval Mapping (+): 

• Evaluation at and between markers

• Estimation of QTL position

• No specialized software (only for 
conditional distribution calculations)

Simple Interval Mapping (-):

• Single QTL model  

• Loss of power due to residual variance 
caused by other QTL

• n-1* tests

With high marker density it is very similar to marker regression 

QTL mapping: 2. Interval Mapping
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We have fitted individual (virtual) markers to phenotypic responses: 
single QTL models (Single Marker Analysis and Simple Interval 
mapping). However, we expect a particular phenotypic trait to be caused 
by a number of QTLs simultaneously. 

When testing for individual markers, tests for QTLs will have diminished 
power because of QTLs segregating at other positions than the 
evaluation position.

What strategy to follow to arrive at multi-QTL mode ls?

Use markers earlier identified as close to or coinciding with significant 
QTLs/ genes as covariables (co-factors) in a subsequent genome wide 
scans. 

QTL mapping
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QTL mapping: 3. Composite Interval

COMPOSITE INTERVAL MAPPING (CIM):

IDEA: On top of using contiguous marker information, use background
loci to get a better estimation of QTL effects. MR and SIM provides
biased estimation when multiple QTL are close to a marker and have
less power in general. The problem is how to select the cofactors.

WHEN TO USE IT?: It is the preferred method because it has more
power and decreases bias due to contiguous QTL.
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c.120

QTL mapping : 3. Composite Interval

Uses markers as cofactors to improve the 
estimation of genetic background 
interactions.

No cofactor is allowed within windows of 
specific size to avoid over fitting. 

Conditional probabilities in-between 
markers are still used to improve 
estimations.

1

2
iii CCMy em ++++= 21

iii CMy em +++= 2

iii CMy em +++= 1

Outside both windows: 

Inside window 1: 

Inside window 2:
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Broman and Sen, 2009
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Cofactors excluded when 50 cM or less apart Cofactors excluded when ONLY 5 cM or less apart 

Careful with interpretation. Sharp peaks are caused by the window 
size, not a higher precision for QTL location.

QTL mapping : 3. Composite Interval
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Composite Interval Mapping (+): 

• Evaluation at and between markers

• Estimation of QTL position

• Control of genetic background 
interactions

• Multiple QTL screened 

Composite Interval Mapping (-): 

• How to select marker-cofactors? 

QTL mapping : 3. Composite Interval
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Power and Repeatability: 
1. Underestimation of the number of QTL
2. Over-estimation of effects

Beavis effect

Bernardo 2010
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QTL LOCATION (point estimate).
o After having identified the significant genetic predictors, QTLs 
are typically located at the positions of the maximum value for the 
test statistic in a chromosome region where all genetic predictors 
exceeded the threshold for significance.
o This final identification of QTLs using LOD, t, F, Wald, 
deviance or –log10(p) values is not trivial due to the irregularity of 
many test statistic profiles.

QTL EFFECTS (point and interval estimates)
o Given that QTLs and their locations were identified, point and 
interval estimates for QTL effects can be obtained from fitting a 
linear (mixed) model with all identified QTLs. 
o Some clean up procedure maybe necessary after genome 
scans to arrive at a final acceptable multi-QTL model.
o 95%CI (F2 and BC) = 530/(nr of individuals*fraction explained 
phenotypic variance) (Darvasi and Soller, 1997).

QTL estimation
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EXPLAINED PHENOTYPIC VARIATION BY QTLS
o Extra sums of squares/ partial r2.
o Comparing (residual) genetic variances between models. 
o From expressions in quantitative genetics and standard mixed 
model applications. 

QTL estimation
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Issue 3: Epistasis
Epistasis might be important for some traits. There are several 
options for detecting Epistasis: 

Linear models. Include an interaction term to be tested in any of 
the linear models discussed earlier and test for significance. The 
problem is the large number of potential interaction terms leads to 
supersaturated models (i.e. there are more parameters (p) to 
estimate than there are independent samples (n)). One possibility is 
to use a forward selection approach adding interaction terms one at 
a time and compare the models.

Bayesian approaches. You may fit a model including all possible 
terms in the model assuming that parameters are either close to 
zero, or have a large value.
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Issue 4: Polyploids
TYPE OF POLYPLOIDS

o Allopolyploids (i.e. chromosome sets derived from different 
species like in wheat) with meiosis pairing of ancestral genotypes 
can be mapped as diploid species.

o Autopolyploids (i.e. chromosome sets derived from the same 
ancestral species) may have bivalent (i.e. two chromosome pairing) 
or multivalent pairing during meiosis. Identifying alleles, number of 
allele copies, and linkage phase is a challenge.

o Bivalent only two chromosomes pair during meiosis, segregating 
one chromosome to each set of gamete.

o Multivalent multiple chromosomes pair during meiosis, resulting in 
gametes with different combinations of the chromosomes.
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Issue 4: Polyploids
MAPPING ALTERNATIVES

o Diploid relatives . Use diploid species that are related to polyploids of 
interest. However polyploidization is highly dynamic, not all polyploids
of interest have diploid relatives and breeding polyploid species is 
usually managed at the polyploid level.

o Single dose restriction fragments (Ritter et al., 1990). Use simplex 
parents (Mmmm) to produce gametes that segregates in a 1:1 ratio (Wu 
et al., 1992). Could be used with dominant or co-dominant markers.  

o Multiple dose markers (Ripol et al., 1999). 

o Doerge and Craig (2000) assumed complete preferential pairing (ok 
for Allopolyploids).

o Hacket et al. (2001) assumed random chromosome pairing (ok for 
extreme Autopolyploids). 

o Ma et al. (2002) and Wu et al. (2004) incorporated a preferential 
pairing factor that depends on chromosome similarity.  

o Cao et al. (2005) extended it to any even ploidy level.
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Issue 5: GxE Interaction

Genotype1 Genotype 2 Genotype 1 Genotype 2

ENV 1 ENV 2

E1 E2

G2

G1

R

Why QTLxE? 

o Use appropriate residuals to test effects

o To identify main-effect QTL and environment-specific QTL

. 57


