Lecture 1
Introduction to Modern Plant Breeding

Bruce Walsh lecture notes
Tucson Winter Institute
7 - 9 Jan 2013
Importance of Plant breeding

- Plant breeding is the most important technology developed by man. It allowed civilization to form and its continual success is critical to maintaining our way of life.

- Problem: Feeding 9 billion (+) people with the same (or fewer) inputs
 - Same or less acreage
 - Same or less fertilizer, pesticides, water
 - Adapting to climate and environmental change
Goals of Plant breeding

• Increase the frequency of favorable alleles within a line
 - Additive effects

• Increase the frequency of favorable genotypes within a line
 - Dominance and interaction effects

• Better adapt crops to specific environments
 - Region-specific cultivars (high location G x E)
 - Stability across years within a region (low year-to-year G x E)
Objectives

• Development of pure (i.e. highly inbred) lines with high per se performance
• Development of pure lines with high hybrid performance (either with each other or with a testcross)
• Less emphasis on developing outbred (random-mating) populations with improved performance
• Development of lines with high regional G x E, low year G x E
Animal and tree breeding

• Similar goals, but since mostly outcrossing, the goal is to create high-performing populations, not inbred lines

• Generally speaking, inbreeding is bad in animals and many trees

• Focus on finding those parents with the best transmitting abilities (highest breeding values)

• Less of a G x E focus with animals, less of a focus on line and hybrid breeding
Special features exploited by plant breeders

- Selfing allows for the capture of specific genotypes, and hence the capture of interactions between alleles and loci (dominance and epistasis)
 - Homozygous for selfed lines
 - Heterozygous for crossed lines
- Often high reproductive output (relative to animal breeding)
- Seeds allow for multigeneration progeny testing, wherein individuals are chosen on the performance of their progeny, or of their sibs
 - Allows for better control over G x E by testing over multiple sites/years
Historical plant breeding

• Early origins
 - Creation of new lines through species crosses (allopolyploids)
 - Visual selection
 - Early domestication (selection for specific traits for ease of harvesting)

• Biometrical school
 - Using crosses to predict average performance under inbreeding or crossing or response to selection
 - Better management of $G \times E$
Modern tools

• Molecular markers
 - Initially low density for QTL mapping, introgression of major genes into elite germplasm
 - With high-density markers, association mapping and MAS/genomic selection

• New statistical tools
 - Mixed model methods
 - Bayesian approaches to handle high-dimensional data sets
 - New methods to deal with G x E

• Other technologies
 - Better standardization of field sites (laser-tilled fields, GPS, better micro- and macro-environmental measurements)
 - High throughput phenotypic scoring
 - DH lines
Current Challenges

• Universities and NGOs playing a less important role in the development of new cultivars
 - Hence, more of an emphasis on short-term gains
 - Less movement of elite germplasm
 - Partition of diversity into lines from different companies

• Rapid movement by Universities and companies into molecular breeding at the cost of less strength in most classical approaches
 - Perhaps this is why you are here!
Diversity

• Plant breeders face the conundrum of using inbred lines to concentrate elite genotypes, but requiring a very large collection of such lines to store variation for further selection

• Landraces or local cultivars may be highly adapted to specific environments, but otherwise not elite

• Issue with keeping germplasm elite while introgressing genes/regions of interest.
Integrated Approaches

• How do we best combine the rich history of quantitative genetics and classical plant breeding with the new tools from genomics and other advances?

• Key: Quantitative genetics has all of the machinery needed to fully incorporate these new sources of information.

• The goal of this and our next module is to show how this is done.