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Genetic vs. Phenotypic correlations

• Within an individual, trait values (observed
phenotypes) can be positively or negatively
correlated,
– height and weight -- positively correlated

– weight and lifespan  -- negatively correlated

• Such phenotypic correlations can be
directly measured,
– rP denotes the  phenotypic correlation

• Phenotypic correlations arise because
genetic and/or environmental values within
an individual are correlated.
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Genetic & Environmental Correlations

• rA = correlation in breeding values (the
genetic correlation) can arise from
– pleiotropic effects of loci on both traits

– linkage disequilibrium, which decays over time

• rE = correlation in environmental values
– This is really a residual, as opposed to

environment, value, as it includes everything
other than breeding values

– includes non-additive genetic effects (e.g., D, I)

– arises from exposure of the two traits to the
same individual environment
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The relative contributions of genetic and environmental
correlations to the phenotypic correlation

If heritability values are high for both traits, then
the correlation in breeding values dominates the
phenotypic correlation.

If heritability values in EITHER trait are low, then
the correlation in environmental values dominates the
phenotypic correlation.

In practice, phenotypic and genetic correlations often 
have the same sign and are of  similar magnitude, but  
this is not always the case.

rP = rA hX hY + rE

√
(1− h2

x)(1 − h2
Y )
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Estimating Genetic Correlations
Recall that we estimated VA from the regression of
trait x in the parent on trait x in the offspring,

Trait x in parent

Trait x in
offspring

       Slope = 
(1/2) VA(x)/VP(x)

VA(x) = 2 *slope * VP(x)
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Similarly, we can estimate VA(x,y), the covariance in the
breeding values for traits x and y, by the regression of
trait x in the parent and trait y in the offspring

Trait x in parent

Trait y in
offspring

       Slope = 
(1/2) VA(x,y)/VP(x)

VA(x,y) = 2 *slope * VP(x)
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Thus, one estimator of VA(x,y) is

VA(x,y)  =  by|x VP(x) + bx|y VP(y)

2 *by|x * VP(x) + 2 *bx|y * VP(y) 

2
VA(x,y) =VA(x,y)  =

Put another way, 
   Cov(xO,yP) = Cov(yO,xP) = (1/2)Cov(Ax,Ay)
   Cov(xO,xP) = (1/2) VA (x) = (1/2)Cov(Ax, Ax)
   Cov(yO,yP) = (1/2) VA (y) = (1/2)Cov(Ay, Ay)

Likewise, for half-sibs,
Cov(xHS,yHS) = (1/4) Cov(Ax,Ay)
Cov(xHS,xHS) = (1/4) Cov(Ax,Ax) = (1/4) VA (x) 
Cov(yHS,yHS) = (1/4) Cov(Ay,Ay) = (1/4) VA (y) 
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Correlated Response to Selection

Direct selection of a character can cause a within-
generation change in the mean of a phenotypically
correlated character.

Direct selection on
x also changes the
mean of y

*
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Phenotypic correlations induce within-generation
changes 

For there to be a between-generation change, the
breeding values must be correlated.  Such a change
is called a correlated response to selection

Trait y

Trait x

Phenotypic values

Sy

Sx
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Trait y

Trait x

Phenotypic values

Rx
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Trait y

Trait x

Breeding values

Rx

Potential correlations (or lack thereof) between breeding
values are not necessarily apparent from phenotypic
correlations
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Trait y

Trait x

Breeding values

Rx

Ry = 0

Hence, even though the phenotypic values are correlated,
the breeding values are not, resulting in selection in x
not giving a response in y
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Predicting the correlated response

bAy|Ax  =
Cov(Ax,Ay)

Var(Ax)
= rA

!(Ax)

!(Ay)

The change in character y  in response to selection
on x  is the regression of the breeding  value of y 
on the breeding value of x,

Ay = bAy|Ax Ax

Where (from the definition of a regression slope)

 If Rx denotes the direct response to selection on x,
CRy denotes the correlated response in y, with

CRy = bAy|Ax Rx 
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We can rewrite CRy = bAy|Ax Rx as follows

First, note that Rx = h2
xSx = ixhx !A (x)

Since bAy|Ax  = rA !A(y) / !A(x), 

We have CRy = bAy|Ax Rx = rA !A (y) hxix 

Substituting !A (y)= hy !P (y) gives our final result: 

CRy =  ix hx hy rA !P (y)

Noting that we can also express the direct response as
    Rx = ixhx

2 !p (x)

shows that hx hy rA in the corrected response plays the
same role as hx

2 does in the direct response.  As a result,
hx hy rA  is often called the co-heritability
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Estimating the Genetic Correlation
from Selection Response

Suppose we have two experiments:
Direct selection on x, record Rx, CRy

Direct selection on y, record Ry, CRx

Simple algebra shows that

rA
2 = 

CRx CRy

Rx Ry

This is the realized genetic correlation, akin to the 
realized heritability, h2 = R/S
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Direct vs. Indirect Response
We can change the mean of x via a direct response Rx

or an indirect response CRx due to selection on y

Hence, indirect selection gives a larger response when

• Character y  has a greater heritability than x, and the genetic
correlation between x  and y is high. This could occur if x is difficult 
To measure with precison but y is not.

• The selection intensity is much greater for y  than x.  This would be 
true if y were measurable in both sexes but x  measurable in only 
one sex.

iY rA hY > iX hX

CRX

RX
=

iY rA σAXhY

iX hX σAX
=

iY rA hY

iX hX
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The Multivariate Breeders’
Equation

Suppose we are interested in the vector R of responses
when selection occurs on n correlated traits.

Let S be the vector of selection differentials.

In the univariate case, the relationship between R
and S was the breeder’s equation, R = h2S

What is the multivariate version of this?

To obtain this, recall some facts from the MVN:
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x =
(

x 1

x 2

)

µ =




µ1

µ 2



 and V =




Vx 1x 1 Vx1x2

VT
x1x2

Vx2x2





µx1|x2 = µ1 + Vx1x2V
−1
x2x2 (x2 − µ2)

Vx1|x2 = Vx1x1 −Vx1x2V
−1
x2x2V

T
x1x2

Suppose the vector x follows a MVN distribution.

The conditional mean of the subvector x1 given x2 is

Which has associated covariance matrix 
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x1 = µ1 + Vx1x2V
−1
x2x2 (x2 − µ2) + e

e ∼MVNm

(
0,Vx1 |x2

)

The conditional distribution of x1 given x2

is also MVN

In particular, the regression of x1 on x2 is
given by

Where the vector of residual errors is MVN, with

Suppose z = g + e, where both g and e are MVN.
In this case, z is also MVN
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σ(g, z) = σ(g,g + e) = σ(g, g) = G

(
g
z

)
∼ MVN

((
µ
µ

)
,

(
G G
G P

))

g µ = GP−1(z −µ) + e-

The covariance matrix between g and z is

Hence, 

From the previous MVN results, the regression
of the vector of breeding values g on the vector
of phenotypic values z is

Turning to the covariance structure of the residuals,

Vx1|x2 = Vx1x1 −Vx1x2V
−1
x2x2V

T
x1x2

Vg|z = G - GP-1G
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" µ = E[GP−1(z µ) + e]
= GP−1E[(z −µ)] + E(e)
= GP−1S

-

Since the offspring mean equals the mean breeding
value of the parents, applying the above regression
averaged over the selected parents gives the response

g µ = GP−1(z −µ) + e-
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The multivariate breeder’s equation

R = G P-1 S

R= h2S = (VA/VP) S
Natural parallels
with univariate
breeder’s equation

 P-1 S = # is called the selection gradient

and measures the amount of direct selection
on a character

The gradient version of the breeder’s Equation is 
                     R = G # 
Often called the Lande Equation
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Sources of within-generation change in the mean

Since # = P-1 S, S  = P #,

Change in mean from 
phenotypically

correlated characters 
under direct selection

 Within-generation 
change in trait j

Change in mean 
from direct 

selection on trait j

Sj = σ2(Pj)βj +
∑

i"=j

σ(Pj, Pi)βi
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Response from direct 
selection on trait j

Between-generation 
change in trait j

Indirect response from 
genetically correlated characters 

under direct selection

Sj = σ2(Pj)βj +
∑

i"=j

σ(Pj, Pi)βi

Rj = σ2(Aj)βj +
∑

i"=j

σ(Aj, Ai)βi
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Realized Selection Gradients

Suppose we observe a difference in the vector of means
for two populations, R =  µ1 - µ2.

If we are willing to assume they both have a common
G matrix that has remained constant over time, then
we can estimate the nature and amount of selection
generating this difference by

# = G-1 R

Example:  You are looking at nose length (z1) and head 
size (z2) in two populations of mice. The mainland population
has µ1 = 20 and µ2 = 30, while on an island, µ1 = 10 and
µ2 = 35. 
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G =
(

20 −10
−10 40

)

R =
(

20− 10
30− 35

)
=

(
10
−5

)Here

Suppose the variance-covariance matrix has been
stable and equal in both populations, with

The amount of selection on both traits to obtain this
response is

β =
(

20 −10
−10 40

)−1 (
10
−5

)
=

(
0.5
0

)
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Evolutionary Constraints Imposed by
Genetic Correlations

While # is the direction optimally favored by
selection, the actual response is dragged off
this direction, with R = G #.

Example:  Suppose

S =
(

10
−10

)
, P =

(
20 −10
−10 40

)
, G =

(
20 5
5 10)

What is the true nature of selection on the two traits?

β = P−1S = P =
(

20 −10
−10 40

)−1 (
10
−10

)
=

(
0.43

−0.14)
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What does the actual response look like?

R = Gβ =
(

20 5
5 10

)(
0.43
−0.14

)
=

(
7.86
0.71

)

Direction favored
by selection

Direction of
response
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Time for a short diversion:
The Geometry of a matrix

A vector is a geometric object, leading from the
origin to a specific point in n-space.

We can thus change a vector by both rotation and scaling

Hence, a vector has a length and a direction.

The length (or norm) of a vector x is denoted by ||x||

||x|| =
√

x2
1 + x2

2 + · · · + x2
n =

√
xTx
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The (Euclidean) distance between two vectors x and y
(of the same dimension) is

||x−y||2 =
n∑

i=1

(xi−yi)2 = (x−y)T (x−y) = (y−x)T (y−x)

The angle $ between two vectors provides a measure
for how they differ.

If two vectors satisfy x = ay (for a constant a), then
they point in the same direction, i.e., $ = 0 (Note that 
a  < 0 simply reflects the vector about the origin)

Vectors at right angles to each other, $ = 90o or 270o

are said to be orthogonal.  If they have unit length as
well, they are further said to be orthonormal.
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The angle $ between two vectors is given by

cos($) =
xTy

||x|| ||y|| =
yTx

||x|| ||y||

Thus, the vectors x and y are orthogonal if and only if xTy = 0

The angle between two vectors ignores their lengths. A second
way to compare vectors is the projection of one vector onto
another
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This projection is given by

Proj(x ony) =
xTy
yTy

y =
xTy
||y||2 y =

(
cos($)

||x||
||y||

)
y

Projection in the same
direction as y

fraction of length of x
that projects onto y

Note if x and y are orthogonal, then the projection
is a vector of length zero.

At the other extreme, if x and y point in the same
direction, the projection of x on y recovers x.
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If we have a set y1, .., yn of mutually orthogonal n dimensional vectors 
(yi

Tyj = 0, yi
Tyi = 1), then any n dimensional vector x can be written as

x =
n∑

i=1

Proj(x onyi)

Example:  for
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Matrices Describe Vector transformations

The action of multiplying a vector x by a matrix A
generates a new vector ypx1 = Apxqxqx1, that has different
dimension from x unless A is square. 

Matrix multiplication results in a rotation and a scaling of
a vector

Thus A describes a transformation of the original
coordinate system of x into a new coordinate
system.

G =
(

4 −2
−2 2

)
β =

(
1
3

)
, R = Gβ =

−2
4() )

Example:  Consider the following G and #:
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The resulting angle between R and # is given by

cos $ = βTR
||R|| ||β|| = 1√

2

For an angle of $ = 45o
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Eigenvalues and Eigenvectors
The eigenvalues and their associated eigenvectors
fully describe the geometry of a matrix.

Eigenvalues describe how the original coordinate
axes are scaled in the new coordinate systems (change
in length).

Eigenvectors describe how the original coordinate
axes are rotated in the new coordinate systems (change
in direction).

For a square matrix A, any vector e that satisfies
Ae = %e for some scaler % is said to be an eigenvector
of A and % its associated eigenvalue.
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Note that if e is an eigenvector, then so is a* e
for any scalar a, as Ae = % e. 

Because of this, we typically take eigenvectors to
be scaled to have unit length (their norm eTe = 1)

An eigenvalue % of A satisfies the equation
det(A - %I) = 0, where det = determinant

For an n-dimensional square matrix, this yields an
n-degree polynomial in % and hence up to n unique roots.

Two nice features:

det(A) = &i %i. The determinant is the product of the eigenvalues

trace(A) = 'i %i. The trace (sum of the diagonal elements) is

 is the sum of the eigenvalues
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Note that det(A) = 0 if any only if at least one
eigenvalue = 0 (follows since det = prod of eigenvalues)

For symmetric matrices (such as covariance matrices)
the resulting n eigenvectors are mutually orthogonal,
and we can factor A into its spectral decomposition, 

A = λ1e1eT
1 +λ2e2eT

2 +· · ·+λneneT
n

Ax = λ1e1eT
1 x + λ2e2eT

2 x + · · · + λneneT
nx

= λ1Proj(x on e1) + λ2Proj(x one2) + · · · + λnProj(x on en)

Hence, we can write the product of any vector x and A as

The scaled projection on the eigenvectors.
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|G− λI| =
∣∣∣∣

(
4− λ −2
−2 2− λ

)∣∣∣∣

= (4− λ)(2− λ)− (−2)2 = λ2 6λ + 4 = 0-

)

Example:  Let’s reconsider a previous G matrix

The solutions are

λ1 = 3+
√

5 $ 5.236 λ2 = 3−
√

5 $ 0.764

e1 $
(
−0.851
0.526

)
e2 $

(
0.526
0.851

)

The corresponding eigenvectors become
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Consider the vector #  of selection gradients from
this example.

cos($|e1,β) $ 0.727√
10

$ 0.201 and cos($|e2,β) $ 3.079√
10

$ 0.974

Hence, # is 78.4o from e1 and 13.2o from e2.

The projection of # onto these two eigenvectors is

λ1Proj(β one1) $
(
−3.236

2

)
, λ2Proj(β on e2) $

(
1.236

2

)
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Even though # points in a direction very close of e2,
because most of the variation is accounted for by e1,
its projection is this dimension yields a much longer
vector.  The sum of these two projections yields the
selection response R = "µ.

 R = 
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Quantifying Multivariate Constraints to Response

Is there genetic variation in the direction of selection?

G =
(

10 20
20 40

)
, β =

(
2
−1

)

   

R = Gβ =
(

0
0

)

  

Consider the following G and #:

Taken one trait at a time, we might expect Ri = Gii#i

Giving R1 = 20, R2 = -40.

What is the actual response?
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Real world data:  Blows et al. (2004) cuticular 
hydrocarbons (CHC) in Drosophila serata

e1 =





0.232
0.132
0.255
0.536
0.449
0.363
0.430
0.239





, e2 =





0.319
0.182
0.213
−0.436
0.642
−0.362
−0.014
−0.293





, β =





−0.099
−0.055
0.133
−0.186
−0.133
0.779
0.306
−0.465





-

-

8 CHCs measured, with the first two eigenvectors of the 
resulting G matrix accounting for 78% of total variance

These two eigenvectors, along with #, are as follows:

The angle between e1 and # is

√ √cos($) =
eT
1 β

||e1|| ||β || =
eT
1 β

eT
1 e1 βT β

=
0.147496√

0.99896 · 0.999502
= 0.1476

or $ = 81.5 degrees.  The e2 - # angle is 99.65 degrees
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Schluter’s gmax, Genetic lines of least resistance

The notion of multivariate constraints to response
dates back to Dickerson (1955).

It surprisingly took over 40 years to describe the potential
geometry of these constraints.

Schluter (1996) defined his genetic line of least resistance,
gmax, as the first principal component (PC) of G (the 
eigenvector associated with the leading eigenvalue)

Schluter (in a small set of vertebrate morphological
data) looked at the angle $ between gmax, and the vector
of population divergence
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For this small (but diverse) data set,  Schluter
observed some consistent patterns.  

• The smallest values of $ occurred between the most
   recently diverged species 

• The greater the value  of $, the smaller the total
   amount of divergence. 

• The effect of gmax on the absolute amount of
   divergence showed no tendency to weaken with time
   (the maximal divergence in the data set was 4MY). 

Hence, it appears that populations tend to evolve
along the lines of least genetic resistance

Such lines may constrain selection.

However, such lines also have maximal drift variance
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McGuigan et al. (2005):  Support and counterexamples

Looked at two species of Australian rainbow fish.

Both species have pops. differentially adapted to
lake vs. stream hydrodynamic environments.

Divergence between species, as well as divergence
between replicate population of the same species
in the same hydrodynamic environments followed gmax. 
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However, the changes for same species populations from
different hydrodynamic environments were at directions 
quite removed from gmax, as well as the other major
eigenvectors of G. 

Hence, between-species and within species divergence
in the same hydrodynamic environments consistent with
drift. 

Within-species adaptation to different hydrodynamic 
environments occurred against a gradient of little variation 
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Blow’s Matrix Subspace Projection Approach

Schluter’s approach only considers the leading
eigenvector. How do we treat the case where a few
eigenvectors account for most of the variation in G?

Recall that %k / 'i %i = %k/trace(G) is the fraction of

variation accounted for by the k-th eigenvector

A common problem when G contains a number of traits
is that it is ill-conditioned, with %max >> %min. In such
cases estimates of the smallest eigenvalues are nearly
zero, or even negative do to sampling error.

Nearly zero or even negative eigenvalues suggest that
there is very little variation in certain dimensions.
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A = ( e1, e2, · · · , ek ) 

p = Projβ = A
(
AT A

)−1
AT β(   

Proj = A
(
AT A

)−1
AT   

Indeed, it is often the case that just a few eigenvalues
of G account for the vast majority of variation

Blows et al. (2004) have suggested a matrix subspace
projection to consider case where just a few eigenvectors 
of G explain most of the variation.  Consider the first k
eigenvalues, and use these to define a matrix A

The projection matrix for this space is defined by

In particular, the projection vector p of the selection
gradient onto this subspace of G is given by
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A = ( e1, e2 ) =





0.232 0.319
0.132 0.182
0.255 0.213
0.536 −0.436
0.449 0.642
0.363 −0.362
0.430 −0.014
0.239 −0.293





p = Projβ =





−0.0192
−0.0110
0.0019
0.1522
−0.0413
0.1142
0.0658
0.0844





$ = cos−1



 pTβ
√

pTp
√

βTβ



 = cos−1 (0.223) = 77.1o

Example:  Reconsider Blow’s CHC data

First two eigenvectors account for 78% of the total variation in G.
The A matrix and resulting projection of # onto this space are

The angle $ between # and its projection onto this subspace is just


