Lecture 16:

Models with multiple random effects:

Repeated measures and maternal
effects

Bruce Walsh lecture notes
Synbreed course

version 5 July 2013



Often there are several
vectors of random effects

* Repeatability models
- Multiple measures

+ Common family effects
- Cleaning up residual covariance structure

+ Maternal effects models

- Maternal effect has a genetic (i.e.,
breeding value) component



Multiple random effects
y = XB +Za+Wu+e

y isan x 1 vector of observations

B is aq x 1vector of fixed effects
ais ap x 1 vector of random effects

uisamx1vector of random effects

Xisnxqg, Zisnxp, Wisnxm

y, X, Z, W observed. B, a, u, e to be estimated
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Covariance structure
y=Xp +Za+Wu+e
Defining the covariance structure key in any mixed-model

Suppose e ~ (0,0,°I),u~ (0,02 I),a~ (0,04% A),
as with breeding values

These covariances matrices are not sufficient to fully
describe the model, as we have yet to give describe the
relationship between e, a, and u. If they are independent:

a 0 df-A 0 0
ul|~|(0]. 0 il | 0
e 0 0 0 o021



a 0 o4 A 0 0
y:Xﬁq-Zaq-Wuq-e u ~ 0 . 0 (TiI 0
e 0 0 0 o°-1

Covariance matrix for the vector of observations y
Var(y) = V= ZAZ 02 + WW752 + 102

Note that if we ignored the second vector u of random
effects, and assumedy = Xp + Za + e*, then e* =
Wu + e, with Var(e*) =0, I + 5,2 WWT

Consequence of ignoring random effects is that these
are incorporated info the residuals, potentially
compromising its covariance structure 5



Mixed-model Equations

(XX X'z XTW O\ (B) X7y
X ZTZ A Jy A YARY al|l=| Z"
\W"’X wiz WIwW + /\ul/ \ i/ KW’I'Y)
where _
Ap = ﬁ—: and A, = U—:
0a T



The repeatability model

+ Often, multiple measurements (aka "records”) are

collected on the same individual

* Such a record for individual k has three components

» Resulting variance of the residuals is 6,° = (1-r) 0,2

- Breeding value g,
- Common (permanent) environmental value p,
- Residual value for ith observation e,

- Resulting observation is thus
T Zy = Wt Qg t Py ey

* The repeatability of a trait isr = (0,°+0,%)/0,°
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Resulting mixed model
y=Xp+Za+2Zp+e

a 0 c5-A 0 0
p|l~1|0]. 0 rrﬁ -1 0
e 0 0 0 g 1

Notice that we could also write this model as
y=Xp+Zla+p)+e=Xp+2Zv+e, v=a+p

In class question: Why can we obtain separate estimates
of a and p?



The careful reader might notice that the two vectors of random effects, the breeding val ues
a and permanent environment effects p, enter the model as Za and Zp, respectively. Why
then do we simply not combine these, e.g,, Zu where u = a + p? The reasonwe cannot do
this (and indeed the reasonwe can estimate a and p separately!) is that a and p have different
covarian ce structires, f‘r‘z4 A versus rrg I. Thus, we assume that permanent environment effects
are uncorrel ated across ind ividual s and are homosced astic. On the other hand, breeding val ues
generate covariances in relatives. Again, the critical importance of the covariance matrix to a
mixed model analysis is apparent.



The incident matrix Z

Suppose we have a total of 7 observations/records, with
3 measures from individual 1, 2 from individual 2, and

2 from individual 3. Then:

/!m\

Y12
Y12
Y= ¥y
a2

s/
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()
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0
0

0
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0
0
0
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0
0

()\
0
0

0
0

I

1/

Why? Matrix multiplication. Consider y,,.

Yor =W+ Ay +py+ ey
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Consequences of ignoring p

- Suppose we ignhored the permanent environment
effects and assumed the modely = Xp + Za + e*
- Thene* = Zp + e,

- Var(e*) = 0,2 I + 0,2 ZZT

» Assuming that Var(e*) = 0,° I gives an incorrect
model

- We could either

- usey = Xp + Za + e* with the correct error
structure (covariance) for e* = 6,2 I + 0,2 ZZT

- Orusey = Xp + Za +Zp + e, where e=0,°1I
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The repeatability model was used by Estany et al. (1989) to examined the selection response
for litter size in rabbits. Their model assumed two groups of fixed effects, d; the year-season
(environmental) effect which had 22 levels in this experiment and the reproductive state /;
of the doe (/ has three levels: /| for primiparious does, /5 for lactating does, and /2 for non-
primiparious and non-lactating does). Since only two of these [, factors are estimable, /)
was assigned a value zero. Their model had three random effects, ;. and p;. for the additive
genetic and permanent environmental effect of the Ath doe, and the residual ¢, giving the
overall model as

Yerei = b+ i + di + ag + pr + Cpe;

where lj;;.¢; denotes thelitter size for the /thlitter of doek in reprod uctivestate i in season-year
I

In matr< form, the mixed-model becomes
y=X0G3+Za+Zp+e

where a and p are nt X | vectors corresponding to the n does, Var(a) = 0% A, Var(p) =
a2 I and Var(e) = a2 ’1. X and Z are incid ent matrices, and the vector ofhxed effects is

11
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where

Resulting mixed-model equations

(XTX X7z XTZ \ (5\ (XT.V\

7 A, < Al s Y /A / a Z'y

\ 27X 7277 777 +21) \3) \ZTy/
2 q_y 2 g
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Common family effects

Sibs in the same family also share a common
environment

- Cov(full sibs) = 6,2/2 + 62/4 + 0_,%
Hence, if the model assumesy, = u +a; + e;, with a
~0,04%A,c~0,0,4°I. Iftherearerecords for

different sibs from the same family, Var(e) is no
longer of the form ¢, T

* y=XB +Za+Wc+e
Again, if common family effect ignored (we
assumey = Xp + Za + e*) the error structure is
e*=0.2I+ 02 WWT

- Where 0% =0p?/4 + 0,2

- The common family effect may contain both environment ,
and non-additive genetic components



Example: Measure 7 individuals, first five
are from family one, last two from family 2

y = XB +Za+Wc+e

Y A 1 0
/ !112l \ /12\ | ()\
Y3 Az 1 0 v_
y=|va |, Z=1, a=| Ay |, W=]|1 0], c= (‘_l )
- Co
s, As 1 0
e Ag 0 1
\ .z/(,— ) \ \1(— \(_) | )

Z = T as every individual has a single record.
If there are missing and/or repeated records,
Z does not have this simple structure
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y=Xp +Za+Wc+e

Y11 A 1 0
(UB\ /Ag\ 1 0
Y Aq 1 0 .
y' = [JE = Z == I a = ‘..’1.1 = \Rr = ] () . C = ((..l))
s As 1 0 2

e Ag 0 1
KHT} \Ar) \n 1)
Again, matrix multiplication gives us the form of the Z and

W matrices. Consider y,:
Yo = W+ Ag+ Ca+ ey
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Maternal effects with genetic
components

* The phenotype of an offspring can be influenced
by its mother beyond her genetic contribution

* For example, two offspring with identical
genotypes will still show potentially significant
differences in size if they receive different
amounts of milk from their mothers

» Such maternal effects can be quite important

* While we have just discussed models with common
family effects, these are potentially rather
different that maternal effects models

- Common family environmental effects are assumed not to
be inherited across generations. 17



+ Consider milk yield. The heritability for
this trait is around 30% and the milk yield
of the mother has a significant impact on
the weight of her offspring

+ Offspring with high breeding values for
milk will tend to have daughters with
above-average milk yield, and hence above-
average maternal effects

* The value of an offspring can be
considered to consist of two components

- A direct effect (intrinsic breeding value)
- A maternal contribution
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Phenotypic value = direct value + maternal value

Pz: Pd+ Pm
e N

Observable Latent (unseen) values

Both of the latent values can be further decomposed into
breeding plus residual (environmental + non- additive genetic)
values
Py=u+ A +Eyg Po=u+A,_ +E,,
The direct breeding value A, appears in the phenotype of its
carrier

The maternal breeding value A, DOES NOT appear in the
phenotype of its carrier, but rather in the phenotype of her

of fspring 19



Direct vs. maternal breeding values

- The direct and maternal contributions are best
thought of as two separate, but potentially
correlated, traits.

- Hence, we need to consider o(A4,A,,) in addition to ¢ 2(A,)
and 6 2(A,). This changes the form of the mixed-model
equations

+ The direct BV (A,) is expressed in the individual
carrying it

* The maternal BV (A,,) is only expressed in the
offspring trait value (and only mom's A,, appears)
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Covariance structure

a 0 02(*’4(1 ) A 0-(*'4(1-. *4772) A
a4, 0 ‘ O-(*'il(l-. *‘4112) A 02(*'4712) A

This is often written using the Kronecker (or direct) product:

(I.HB a'lnB
(] B e mn B

a,] 0 0-2(*441) 0(14(1-. *‘4771 )
~ GR A G =
a,, 0 0.(*'4(1% *‘4112) 02(‘471))



The mixed-model becomes

Direct effects
breeding values

\
y=Xp+Za,+Za, +e
/

Maternal effects
breeding values

The error structure needs a little care, as the
direct E4 and maternal E,, residual values can be
correlated™. Initially, we will assume Var(e) ~ 0, I

*See Bijma 2006 J. Anim. Sci. 84:800-806 for treatment
of correlated environmental residuals under this model 22



The resulting mixed-model equations become

/ XX X7 X"Z, \ / B \ /X"'y\

ZoXT ZIZi4+MA™Y Z1Z.. 4+ 2,A77 a; | =| Zly

\z,,,X’ A MR Bl SAT / \a,,,) \Z;’,’,y/

where the weights A\; are related to elements in the inverse of G. viz.,

R = |
M X a1 of 0%(Ay) o(Ag 4m)
(/\2 /\f} ) = & — 8 0(‘4{1- *Am) o ( m
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Filling out the maternal effects
incident matrix Z,_

A little bookkeeping care is needed when filling out Z,, because the
A,, associated with a record (measured individual) is that of their
mother.

d 1-
— 4 7 have

@ records
bl/ e \@

All sires

@ - unrelated
| __— @
C \ @ ~_

9 7 24

o T o




The observed values are y; through y-.
What we can estimate are A through A,
Ao Through A, ;
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Pt ok

Y2 Ad,2 A
Ys Agz A
y — Y4 ? A4 = "lt.’.A y Zt-" — I a’” - 4
Ys Ad s ‘*l

Ye Age
\UT) \:Lir/
Note that we estimate A, even though we don't have a
record (observation) on her.

Since Z, a,, must be a7 x 1 matrix,Z, is7 x4 (asa, is4 x1)

Record 1 is associated with A,
Records 2 and 3 are associated with A,

Records 4 and 5 are associated with A,

Records 6 and 7 are associated with A, ; 26



Z?H —

Record 1 is associated with A,

Records 2 and 3 are associated with A,

Records 4 and 5 are associated with A,

Records 6 and 7 are associated with A, ;

0
0
0
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0
0

0

0
0
0
0

0
0
0

0
0

0
0
0
0

1/
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0
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What about A, 4 through A, ;?

Although we have records that only directly relate A, fo A, 3, through the
use of A we can (in theory) also estimate the maternal breeding values for
individuals 4 through 7. Note this includes the maternal BVs for the two
males (5 & 7), as they can pass this onto their daughters.
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Note that

L 00 0 0 0 0 0 \ : |
01 0 0 00 0 0 |
01 0 0 00 0 0 .‘ A
Za*=]0 0 1 0 0 0 0 0 ",l’“*‘ = | .A
00 1 0000 0 : A

000 1 00 0 0 |
0/ |\ 4 1

0O 0 0 1 0 0 0

All this raises the question about what can, and cannot, be
estimated from the data (y) and the design (Z,,, Z4)?

First issue: Is the structure of the design such that we
can estimate all of the variance components. This is the
issue of identifiability.
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Estimability vs. Identifiability

Details: Identifiability of Variance Components

Due to potential confounding of effects, any particular design might not allow for all vari-
ables of interest to be uniquely estimated. For the vector 3 of tixed effects, this is the concept
of estimability (LW Chapter 26). For z ~ (X 3.V, the vector of tixed effects is estimable
(all have unique values) if (XTV1X)-1 exists. Otherwise, some of the fixed effects are
confounded and cannot be separated by the design (X being used. With (co)variance com-
ponents (often called dispersal parameters), a similar concept, identifiability, also exists.
If variance components are not identitiable in the design, then BLUPs for their associated
vectors of random effects do not exist.
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Condihons foridentifiability of REML estimates of (co)vaniance com ponents are given by Rothenberg (1971),
llang (1996), and Cantet and Cappa (2008). Before presenting these, we firstreview a few details about REML.
Recall (LW Chapter 27) that REML estimates are those that maxamize that part of the likelihood function
that1is independentof the fixed effects (this1s often stated as being the translationinvariant part). LetV be
the covanance matnx of z, which is a function ofits vanance com ponents. As detailed in LW Chapter 27,
Harwville (1977) shows that (if it exasts) the transformaton provided by the matnx

P=V~" N IX(XTVIX)—XTVv (1a)
plays acritical role in REML estimates. Thatthis matnx can remove fixed effects can be seen by noting that
Pz = V! (z - X.,;) (1h)

yields a vector that 1s the data vector adjusted by the (estimated) fixed effects. Now consider covanance
structures of the form

szv,ﬂ,- [2?1]
e=1

where V, 15 a matnx ofknown constants and the #, are unlknown vanances and covanances to be estimated.
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The equations to maximize the likelthood over the restricted space (the REML estimates) are given by
LW Equations 27.18 and 27.19, and are solved iteratively. These equations involve the trace (sum of the
diagonal elements) of matnx products involving P and the V;. Recall (LW Appendix 4) that for a vector @
of n unknowns, the Fisherinformation matnx F (the matnx of second partal denvatives of the likelihood
with respect to the parameters) can be used to provide large-sam ple standard errors. The resulting » x »
information matnx for REML estimates of the unknown #; in Equation Za1s

F;; = trace (PV,;PV;) (2h)

Much in the same fashion that the existence of (X' V™' X)~! inform s us that all fixed effects are estimable
in a given design, all variance com ponents #; are identifiable if all of the eigenvalues of F are positive, that
15, that F'1s positive-definite (Rothenberg 1971, liang 1996). For the matemal effects mixed model, Equation
2a becomes

V =Vi0(Ag) + Vao(Ag A) + Va0 (A) + Vil (3a)

where

m

Vi=Z4AZT, Vi= (z,,Az"" 4 z,,,Az;’,') , Vi =Z_,AZT, V,=I (3h)

Substituting Equations la and 3b into Equation 2b fills out the F matnx (which 1s only 4 x 4 in this case
given the four unknown varniance components). For any parhcular design, the eigenvalues of this matnx
can be com puted to determine if the variance com ponents are all identifiable.
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Second issue, connectivity

Even if the design is such that we can estimate all the genetic
variances, whether we can estimate all of the g, a4, and a, in the
model depends on whether a unique inverse exists for the MME:

( x''x X'z, X 7. \ 7 3 \ /X"’y\

ZaXT ZXZg+MAT' ZTZ., + XA = | zly

a,
\z,,,.X"' 2T ZatdaA ™ ZE D dgA™! / \.1 / \z;{; y/

Unique estimates of all the B require (XTV-1X)! exists

If (XTV-1X)! does not exist, a generalized inverse is used
which can uniquely estimate k linear combinations of the

B where k is the rank of XTV-1X (LW Appendix 3).
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Likewise, if the MME equation does not have an inverse (and this is
not due to constraints on ), then a generalized inverse can be used
to estimate unique estimates of certain linear combinations of the
ay and a,..

( x''x X'z, X 7. \ 7 3 \ /X"’y\

Z X" ZiZa+MAT' ZYZ,, + AT a; | = | Zly

\z,,,.X"' 2> ZiwtdagAr BT +,\;;A") \.1/ \z;{;y/

A key role in ensuring that unique estimates of a4 and a,, exist is
played by the relationship matrix A. If individuals with records
and individuals without records are sufficiently well connected
(non-zero entries in A for their pair-wise relatedness), then we
usually can estimate values of un-observed individuals (although
their precision is another issue). 34



