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Multivariate Response: Changes in Covariances

The proportional change in the genetic covariances is likely to be greater than in
the genetic variances themselves. It must therefore be expected that the static

description of a population in terms of additive genetic variances and covariances
will be valid in prediction over a much shorter period for correlated response

than it will be for direct response. —Bohren, Hill and Robertson 1966

Version 23 January 2009

The previous chapter assumed that genetic variances and covariances do not appreciably
change over our time scale of interest for selection response. We now relax this assumption
and consider changes in G during selection. Much of our development of the dynamics
of G follows along similar lines to our development of changes in the genetic variance
under univariate selection. In previous chapters we showed that short-term changes in the
genetic variance occur from selection creating linkage disequilibrium (Chapter 13). Under the
infinitesimal model, these changes are straightforward to predict using Bulmer’s Equation
(13.7). Over longer time scales, allele frequencies change, and predicting of the change in
variance is no longer simple, requiring extensive knowledge of the distribution of allelic
effects (Chapters 14, 24-26). Finally, over even longer time scales, any initially usable genetic
variation is eventually removed by selection and drift, and further progress depends upon
the creation of new variation (typically by mutation). All of these themes also hold when
considering changes in G. One new theme is that genetic covariances are even more sensitive
to allele frequency changes than are genetic variances. We start with development of the
multivariate Bulmer’s equation for the change in G solely through the generation of linkage
disequilibrium under the infinitesimal model. We then examine the selection pressures on
genetic variances and covariances from both directional and quadratic selection, concluding
with an analysis under a general multivariate Gaussian fitness function. This class of fitness
functions is very flexible and widely used in modeling phenotypic evolution (Chapters 41-
43). Next, we consider the changes in genetic covariances under allele frequency change,
and review results from multi-trait selection experiments. We then turn to a discussion of
genetic models that generate pleiotropic correlations. We conclude by considering long-
term selection, first developing the multivariate version of Robertson’s results (Chapter
26) for long-term response under selection and drift (but no mutation) in the infinitesimal
framework. We then consider various other models of combinations of selection, mutation,
and drift that produce equilibrium values of G for populations under constant selection,
and conclude wiht a few general comments on what the theory suggests about the stability
of G.

CHANGES IN G UNDER THE INFINITESIMAL MODEL

Under the assumptions of the infinitesimal model (a very large number of loci, each of very
small effect, Chapter 24), there is no significant allele frequency change and thus any change
in the variances and covariances is due to linkage disequilibrium (LD). As developed in
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Chapter 13, Bulmer’s Equation (13.7) allows us to predict the change in LD (and hence the
change in the genetic and phenotypic variance) under the infinitesimal model. Here we
develop the multivariate extension of the Bulmer Equation.

As way of background, recall Bulmer’s treatment for the univariate case (Chapter 13).
All changes in the genetic and phenotypic variance are due to gametic-phase disequilibrium
d changing the additive variance. Thus σ2

A(t) = σ2
A(0) + dt, and σ2

z(t) = σ2
z(0) + dt. The

assumption of no allele frequency change allows us to use base genetic variance σ2
A(0) as

the linkage equilibrium value of G in any generation. Assuming unlinked loci, the current
value of d is halved each generation by segregation. Likewise, if d∗t is the amount of new
disequilibrium generated by selection in generation t, then the total disequilibrium just
before reproduction is d∗t + dt. Segregation between unlinked loci results in only half of the
disequilibrium being passed on to the offspring generation, so that

∆dt = dt+1 − dt = −d
∗
t + dt

2

The Dynamics of the Disequilibrium Matrix D

Moving to multiple characters, the additive genetic covariance between traits i and j in
generation t can be written as

σt(Ai, Aj) = σ0(Ai, Aj) + dt(i, j) (31.1a)

where dt(i, j) is the disequilibrium contribution at time t and σ0(Ai, Aj) the linkage equilib-
rium value from the base population. If allele frequency change has occurred (for example,
by drift), then this is replaced by σLE(Ai, Aj), the linkage equilibrium value given the cur-
rent allele frequencies. As above, selection generates d while recombination removes it, so
that

∆dt(i, j) = −d
∗
t (i, j) + dt(i, j)

2
(31.1b)

where (as in the univariate case) d∗ corresponds to the new LD generated by selection and
d to the current LD before selection.

Thus, in the multivariate case, disequilibrium is measured by the matrix Dt = Gt−G0,
and the phenotypic covariance matrix is given by Pt = P0 + Dt. These definitions assume
that allele frequencies (and hence G0) have not changed. If they have (for example, by drift),
then G0 is replaced by GLE , the G matrix for the current allele frequencies in the absence
of LD (Turelli 1988a, Turelli and Barton 1994, Shaw et al. 1995). The change in D over time
is given by

∆Dt = −D∗t + Dt

2
(31.2a)

Further, the amount of new disequilibrium generation by selection is just D∗ = G∗−G, the
difference between the covariance matrix before and after selection. Thus, the multivariate
version of Bulmer’s equation is given by

∆Dt = −G∗t −Gt + Dt

2
(31.2b)

To place this equation is a more usable form, we need to replace G∗ with a measure based on
the phenotypic covariance matrix before and after selection, both of which we can observe
directly. Recall that we did this in Example 30.2, which showed (Equation 30.12) under the
assumptions of the multivariate breeder’s equation that

G∗ −G = GP−1(P∗ −P)P−1G (31.3)
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where P∗ is the covariance matrix after selection, so that the change in the covariance matrix
is given by ∆P = P∗ −P. Substituting these results into Equation 31.2b gives

∆Dt =
1
2
(
GtP−1

t (P∗t −Pt)P−1
t Gt −Dt

)
(31.4a)

=
1
2
(
GtP−1

t ∆PtP−1
t Gt −Dt

)
(31.4b)

This multivariate version was obtained by Tallis (1987, Tallis and Leppard 1988), who also
allowed for assortative mating (see his papers for details). As expected, Equation 31.4b
collapses to the univariate Bulmer Equation (13.7b) when only a single trait is considered.
Recalling that Dt+1 = Dt + ∆Dt, we can rewrite Equation 31.4b as

Dt =
1
2
(
Dt−1 + Gt−1P−1

t−1∆Pt−1P−1
t−1Gt−1

)
(31.4c)

At equilibrium, ∆Dt = 0, and Equation 31.4b implies

D̃ = G̃ P̃
−1

∆̃P P̃
−1

G̃

where the tilde denotes an equilibrium value. Expressed as a function of D̃ this becomes

D̃ =
(
G0 + D̃

)(
P0 + D̃

)−1

(∆̃P)
(
P0 + D̃

)−1 (
G0 + D̃

)
(31.5)

If ∆P, the within-generation change in P, has a regular pattern, then Equation 31.5 can be
solved by iteration.

The Proportional Change Model for ∆P

One class of models for ∆P is the multivariate extension of Equation 13.10a, in which the
same proportional change in the variance occurs each generation, σ2(z∗t ) = (1 + κ)σ2(zt),
implying

∆σ2(zt) = σ2(z∗t )− σ2(zt) = κσ2(zt)

The multivariate extension of this would be

∆σ[ zi(t), zj(t) ] = κij σ[ zi(t), zj(t) ] (31.6)

We can write this in matrix form by using the Hadamard product ¯ of two matrices (also
know as the Schur product and, more descriptively, the entrywise product). Suppose A and
B are matrices of the same dimension. Their Hadamard product is simply the matrix whose
ijth element is the product of the ijth elements of the two matrices,

(A¯B)ij = AijBij (31.7)

Using Equation 31.7 we can write Equation 31.6 as

∆Pt = K¯Pt (31.8)

Here K is a symmetric matrix of constants, with ijth element κij as given by Equation 31.6.
At equilibrium,

∆̃P = K¯
(
P0 + D̃

)
(31.9a)
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and Equation 31.5 becomes

D̃ =
(
G0 + D̃

)(
P0 + D̃

)−1 (
K¯

(
P0 + D̃

))(
P0 + D̃

)−1 (
G0 + D̃

)
(31.9b)

Under this proportional change model, Equations 31.4b and 31.4b become

∆Dt =
1
2
(
GtP−1

t (K¯Pt) P−1
t Gt −Dt

)
(31.9c)

and

Dt =
1
2
(
Dt−1 + GtP−1

t (K¯Pt) P−1
t Gt

)
(31.9d)

As expected, this reduces to Equation 13.12 when only a single trait is considered.

Example 31.1. Suppose that selection is entirely on variances and covariances (the popula-
tion has evolved to an optimal value, so R = 0), with the pattern of selection on P given by
Equation 31.6, where

K =
(
−0.75 0.05

0.05 0.25

)
so that

∆P∗t = K¯Pt =
(
−0.75 · P11(t) 0.05 · P12(t)

0.05 · P21(t) 0.25 · P22(t)

)
The variance of trait 1 is reduced by 75% (as would happen with stabilizing selection on
this trait), while the variance of trait 2 is increased by 25% (as would happen with disruptive
selection). The covariance between these two traits is also increased by 5%. Assume the linkage-
equilibrium values of P and G are

P0 =
(

400 −50
−50 100

)
, G0 =

(
100 0
0 40

)
, K¯P0 =

(
−300 −2.5
−2.5 25

)
Thus, traits 1 and 2 are genetically uncorrelated at the start of selection, with a heritability of
100/400 = 0.25 for trait 1 and 0.40 for trait 2. In the first generation of selection, D0 = 0, and
(from Equation 31.9d),

D1 =
1
2
G0P−1

0 (K¯P0) P−1
0 G0 =

(
−10.53 −1.57
−1.57 1.79

)
The resulting covariance matrices after one generation of selection become

G1 = G0 + D1 =
(

89.47 −1.57
−1.57 41.79

)
, P1 = P0 + D1 =

(
389.47 −51.57
−51.57 101.79

)
Selection has decreased to genetic variance of trait 1, increased it for trait 2 and created a
(small) genetic covariance between the two traits. All of these changes are due to the creation
of LD and decay away (G reverts back to G0) once selection stops. Going through a second
generation of selection,

K¯P1 =
(
−292.10 −2.58
−2.58 25.45

)
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giving

D2 =
1
2
(
D1 + G1P−1

1 (K¯P1) P−1
1 G1

)
=
(
−13.88 −2.25
−2.25 2.85

)
with resulting genetic covariance matrix

G2 = G0 + D2 =
(

86.11 −2.25
−2.25 42.85

)
Hence, after two generations of selection, the heritability for trait 1 becomes (100-13.88)/(400-
13.88) = 0.22, while the heritability for trait 2 becomes 0.42, while a genetic correlation of

−2.25√
86.11 · 42.85

= −0.04

It is important to reminder the reader that all of the univariate caveats mentioned
in Chapter 13 still hold. In particular, the regression argument assumes linearity and ho-
moscedasticity, hence strongly relies on the assumption that the joint distribution of additive
genetic and phenotypic values is multivariate normal and remains so after selection. As we
showed in Chapter 13, even if these distributions are initially Gaussian, selection usually
introduces non-normality, although the departure is often small, especially for weak (as well
as very strong) selection. Further, the infinitesimal assumptions must still hold, namely that
changes in allele frequencies are sufficiently small that they have no effect on changing the
variance.

Within-Generation Changes G due to Selection on Variances and Covariances

We can also express Equation 31.4 in terms of the quadratic and directional selection gra-
dients, γ and β, which provides additional insight into the nature of selection. Recalling
from Chapter 29 the definitions of C (the quadratic selection differential), β, and γ, we have
P∗ −P = C− SST . Hence

P−1(P∗ −P)P−1 = P−1(C− SST )P−1

= P−1CP−1 −
(
P−1S

) (
P−1S

)T
= γ− ββT (31.10)

If the phenotypic covariance matrices (either before and/or after selection) differ between
sexes, then P∗ and P are replaced by the average of the covariance matrices for males and
females. Likewise, if γ and/or β differ in the parents, the appropriate average is used, e.g.,
(γf + γm)/2 and (βfβ

T
f + βmβ

T
m)/2.

When the breeder’s equation holds, γ and β are sufficient to describe phenotypic selec-
tion on the additive-genetic covariance matrix. From Equations 31.3 and 31.10, the within-
generation change in G becomes

G∗ −G = G(γ− ββT )G (31.11a)

Hence, the within-generation change in G has a component from directional selection and
a second from quadratic selection,

G∗ −G = −GββTG + GγG

= −R RT + GγG (31.11b)
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In terms of the change in covariance for two particular characters,

G∗ij −Gij = −
(

n∑
k=1

βk Gik

)(
n∑
k=1

βk Gjk

)
+

n∑
k=1

n∑
`=1

γk`GikG`j

= −Ri ·Rj +
n∑
k=1

n∑
`=1

γk`GikG`j (31.11c)

Thus the within-generation change in the additive genetic variance of character i is given by

G∗ii −Gii = − (Ri)
2 +

n∑
k=1

n∑
`=1

γk`GikGi` (31.11d)

Note that directional selection (Ri 6= 0) always generates negative disequilibrium (Felsen-
stein 1965). Additional insight is provided by assuming that G is initially a diagonal matrix
(potentially different additive variances, but no initial genetic covariances). In this case, the
within-generation change in the ijth element of G is

∆Gij = −RiRj + 2γijGiiGjj (31.12)

Thus, even if there is no initial genetic covariance between i and j, both directional and
quadratic selection can generate one. If both traits respond in the same direction, negative
genetic covariance is generated. Note that this does not mean the traits were selected in
the same direction, as βi and βj may have different signs from Ri and Rj . Conversely, if
they response in opposite directions, positive disequilibrium is generation. Likewise, in the
absence of directional selection, quadratic selection (γij 6= 0) creates genetic covariances
with the same sign as γij . If one imagines a population away from some optimal value, then
initally most of the selection (and hence changes in G) may be dominated by directional
selection (Ri terms). However, as an optimal is approached, directional selection becomes
very weak (Ri ∼ 0) and quadratic terms start to dominate. Thus the same fitness function
may result in the sign of Gij changing over time, reflecting these two different patterns of
selection.

Asymmetric Correlated Responses Occurs Under the Infinitesimal Model

In Chapter 30 we noted two different types of asymmetric correlated responses are fre-
quenctly seen in selection experiments: those that vary with the trait selected and those
that vary with the direction of selection on a particular trait. Villaneuva and Kennedy (1992)
trait-dependent asymmetric correlated responses can occur under the infinitesimal model
(i.e., no allele frequency change is required). To see how this arises, first note from Equation
31.11a that the within-generation change in G when strictly directional selection is occurring
is

G∗ −G = −GββTG

Thus, when β differs (as would occur when changing which trait is under direct selection),
so does the within-generation change, immediately suggesting how trait-dependent asym-
metric correlated responses (due to differential changes in G) can arise. Note that the change
in G requires one generation of selection, so that any asymmetric response is only apparent
if we select for a second generation (and hence use the perturbed covariance matrix).

To see this point further, consider the simple case of two traits, one under direct selec-
tion, the other changing as a correlated response. The within-generation change with strict
directional selection (Equation 31.12) is given by

∆Gij = −RiRj =
{−β2

1 σ
2
A(1) · σ(A1, A2) Direct selection on trait 1

−β2
2 σ

2
A(2) · σ(A1, A2) Direct selection on trait 2
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Thus, even with equal amounts of selection on the two different directly-selected traits (so
thatβ1 = β2), the changes in the genetic covariance will be different, except for the case where
both traits have the same additive variance. Unless there is a large disparity in the values of
the genetic variances, in general this effect will be modest and hence the large asymmetric
responses seen in experiments (Table 31.1) are more likely due to allele frequency change
than due to generation of LD.

Example 31.2. Consider the differential change in the genetic covariance when we select on
trait one versus trait two for the following genetic covariance matrix:

G =
(

10 2
2 40

)
Letβ(i) denote the gradient when selection is directly on trait i and assume the same strenght
of selection (β = 0.1) as the trait under selection changes. Thus,

β(1) =
(

0.1
0

)
, β(2) =

(
0

0.1

)
Since

ββT =
(

β2
1 β1β2

β1β2 β2
2

)
we have

β(1)β(1)T =
(

0.01 0
0 0

)
, β(2)β(2)T =

(
0 0
0 0.01

)
When we directly select on trait 1, the change in the covariance matrix following selection
(half of which persists into the next generation) is given by

G∗ −G = −Gβ(1)β(1)TG = −
(

1.00 0.20
0.20 0.04

)
while direct selection on trait 2 gives

G∗ −G = −Gβ(2)β(2)TG = −
(

0.04 0.80
0.80 16.00

)

Further insight into the difference in correlated responses was offered by Villaneuva
and Kennedy (1990, 1992), who obtain expressions for the equilibrium covariances when
directional truncation selection occurs on a particular trait (trait 1) and other traits i and j
show a correlated response. Recall (Table 13.1) that truncation selection with the uppermost
p saved reduces phenotypic variance in the directly selected trait by

∆σ2[z1(t)] = −κσ2[z1(t)]

where κ = ı
(
ı− z[1−p]

)
. The corresponding reduction in the additive variance of trait one

is
∆G11(t) = −κh2

1(t)G11(t)
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A classic result of Pearson (1903) is that the change in the variance on the selected trait
changes the variances of all other phenotypically-correlated traits,

∆Gii(t) = −κh2
1(t)ρ2

1i(t)Gii(t) (31.13a)

where ρ1i(t) is the additive genetic correlation between traits 1 and i in generation t. Thus,
no matter the sign of the correlation, the genetic variance of a trait is reduced by selected on
a genetically correlated trait. More generally, the change in the genetic covariance between
traits i and j due to selection on trait 1 is given by

∆Gij(t) = −κh2
1(t)ρ1i(t)ρ1j(t)

√
Gii(t)Gjj(t) (31.13b)

When G reaches its equilibrium value, Villaneuva and Kennedy (1990) show that the additive
genetic covariance between traits 1 and i is given by

G̃i1 =
Gi1(0)

1 + κ h̃2
1

(31.14a)

where h̃2
1 is the equilibrium heritability of the trait under selection (Equation 13.13d). Equa-

tion 31.14a makes two key points. First, the effect of selection on a correlated trait is to shrink
the genetic covariance towards zero, with the amount of shrinkage increasing with the heritabil-
ity of the trait under selection. Second, if two experiments are done, one with direct selection
on trait 1, the other with selection on trait i, then whichever trait has the highest heritability
will show the greatest change in the genetic covariance. Further, Villaneuva and Kennedy
obtained the equilibrium genetic correlation between traits 1 and i as

ρ̃1i =
ρ1i(0)√

1 + h̃2
1κ [1− ρ2

1i(0)]
(31.14b)

showing that the genetic correlation is also shrunk towards zero, with the amount of change
increasing with the heritability of the trait under direct selection. Both Equation 31.14a and b
predict that when disequilibrium-driven selection asymmetries occur, the correlated response
will be smaller when selecting on the trait with the higher heritability, as this produces the largest
reduction of the genetic covariance. Note that the infinitesimal model predicts equal amounts
of correlated response in trait i independent of whether trait 1 is up- or down-selected.
Hence, this second type of asymmetric correlated response (depending on the direction,
as opposed to the trait, selected) arises from allele frequency change, not disequilibrium.
Finally, Villaneuva and Kennedy (1990) note that the ratio of direct to correlated response
remains unchanged, so that the effect of disequilibrium is to reduce the correlated response
by the same proportion as it reduces the direct response.

Response in G Under a Multivariate Gaussian Fitness Model

As we observed in Chapter 24, selection generally introduces non-normality even if the
initial distribution is Gaussian. Ideally, we would like to have a class of fitness functions that
on one hand models directional, stabilizing, disruptive, and correlational selection and yet
still preserves normality. One such class is the general Gaussian fitness function,

W (z) = exp
(

aT z− 1
2

(z− θ)TW(z− θ)
)

(31.15a)

= exp

∑
i

αizi −
1
2

∑
i

∑
j

(zi − θi)(zj − θj)Wij
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where W is a symmetric matrix (note that some representations of this function use W−1 in
the quadartic product of Equation 31.15a in place of W, in order to emphasize the connection
with a covariance matrix). While the univariate version dates back to Weldon (1895, 1901)
and Haldane (1954), the more general multivariate form is due to Felsenstein (1977). A fuller
analysis of this general version starts later in the chapter and is finished in Chapter 41. For
now, consider the simpler version

W (z) = exp
(
−1

2
zTWz

)
(31.15b)

The elements of W measure quadratic selection. If W is a diagonal matrix, then Wii > 0
implies stabilizing selection on zi about an optimal value of θi, while Wii < 0 implies
disruptive selection about θi. The larger the magnitude of Wii, the stronger selection. As we
saw in Chapter 29, some care must be taken in interpreting the nature of the fitness surface
when W has non-zero off-diagonal elements. Note from our discussions on the canonical
axes of a quadratic form (Equation 29.26) that we can write

W = UΛUT

where Λ is a diagonal matrix of the eigenvalues of W and U = (e1, · · · , en) is the matrix of
the eigenvalues of W. Noting that

zTWz = zTUΛUT z = yTΛy, where y = UT z

we can transform the original vector of characters z to a new vector y of trait combinations,
such that

W (z) = exp
(
−1

2
yTΛy

)
= exp

(
−1

2

n∑
i=1

λi y
2
i

)
(31.15c)

where yi = eTi z. The sign of the eigenvalue λi indicates whether selection is stabilizing or
disruptive along the particular trait combination given by yi (λi > 0 indicates stabilizing
selection, λi < 0 indicates disruptive selection), while the magnitude indicate the strength
of selection (the larger the magnitude, the stronger the effect). If W has k zero eigenvalues,
the fitness surface has no curvature (is a plane) in k dimensions.

Suppose that before selection the distribution of z is MVN(0,P). Following selection,
the distribution is proportional to the product of the MVN density and W (z),

p(z∗) = const · exp
(
−1

2
zTP−1z

)
exp

(
−1

2
zTWz

)
= const · exp

(
−1

2
zT (P−1 + W)z

)
= const · exp

(
−1

2
zT (P∗)−1z

)
(31.16)

Note that the form of Equation 31.16 is that of a multivariate normal centered at zero, with
covariance matrix

P∗ =
(
P−1 + W

)−1
(31.17)

Thus, the distribution of z after selection remains MVN. Note that P∗ is independent of
the current mean µ of the trait. Equation 31.17 imposes a constraint on W, in that P∗ is a
covariance matrix, and hence does not contain any negative eigenvalues. While this does not
constrain the strength of stabilizing selection (positive eigenvalues for W can be arbitrarily
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large), it does constrain the allowable strength of disruptive selection, which if sufficiently
strong, (a sufficiently negative eigenvalue) may result in Equation 31.17 having one (or more)
negative eigenvalues and hence not be a proper covariance matrix. To see this, suppose both
P and W are diagonal, and hence their sum is also diagonal, with the diagonal elements
corresponding to the eigenvalues of P∗. For P∗ to be a proper covariance matrix, the diagonal
element corresponding to trait i needs to be positive, or

1
Pii

+Wii > 0, or Wii > −
1
Pii

(31.18)

this is always satisfied with Wii > 0, but only satisfied under very narrow conditions for a
negative Wii. The reason while the analysis of disruptive selection using a Gaussian fitness
model is so delicate is that fitness arbitrarily increases at an exponential rate as we move
away from the minimum (see Equation 31.15c), so that even a small change equates to strong
selection. Thus, the distribution must fall off at an appropriate rate (i.e., have a sufficiently
small variance) to keep mean fitness bounded. Further, the net result of distributive selection
is to increase the variance, generating more extreme individuals. While Equation 31.18 may
initially be satisfied, the amount of disequilibrium added must be sufficiently small to ensure
thatWii > −1/(Pii+Dii) still holds. Thus, while a very robust model for stabilizing selection,
the Gaussian fitness function is quite fragile for disruptive selections.

To apply the multivariate Bulmer Equation to obtain changes in G under Gaussian
fitness, first note that

P−1 (P∗ −P) P−1 = −
(
W−1 + P

)−1
(31.19a)

which is proved in Chapter 41. Thus,

G∗ −G = −G
(
W−1 + P

)−1
G (31.19b)

The dynamics of D (and hence G) under this general fitness function are given by

∆Dt = −1
2

(
Gt

(
W−1 + Pt

)−1
Gt + Dt

)
(31.20a)

Since Dt+1 = Dt + ∆Dt, we can also write

Dt =
1
2

(
Dt−1 −Gt−1

(
W−1 + Pt−1

)−1
Gt−1

)
(31.20b)

Equilibrium values satisfies

D̃ = −(G0 + D̃)
(
W−1 + (P0 + D̃)

)−1 (
G0 + D̃)

)
(31.20c)

Example 31.3. Consider the following quadratic fitness matrix

W =
(

5.0 −3.0
−3.0 4.0

)
which implies an individual fitness of

W (z) = exp
(
−2.5 z2

1 + 3z1z2 − 2.0 z2
2

)
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The eigenvalues of W are λ1 = 7.54 and λ2 = 1.46, so there is convex (i.e., stabilizing)
selection along both axes (i.e., the eigenvalues of W). Assume no initial disequilibrium with
P and G matrices of

P =
(

8 −2
−2 10

)
, G =

(
3 0
0 4

)
Since D0 = 0, following one generation of selection Equation 31.20b gives

D1 = −1
2

(
G0

(
W−1 + P0

)−1
G0

)
=
(
−0.55 −0.12
−0.12 −0.79

)
implying

G1 =
(

2.44 −0.12
−0.12 3.01

)
Thus, selection has generated a (small) genetic covariance between the two traits. This is
entirely due to disequilibrium and will decay to zero once selection stops. Proceeding to the
next generation,

D2 =
1
2

(
D1 − (G0 + D1)

(
W−1 + (P0 + D1)

)−1
(G0 + D1)

)
=
(
−0.67 −0.12
−0.12 −0.94

)
Further iteration gives

D̃ =
(
−0.708 −0.111
−0.111 −0.989

)
, G̃ =

(
2.292 −0.111
−0.111 3.011

)
, P̃ =

(
7.292 −2.111
−2.111 9.011

)
At equilibrium, the heritabilities for traits 1 and 2 become h2

1 = 2.292/7.292 = 0.314
and similarly h2

2 = 0.334, as compared to their initial values of 0.375 and 0.4, respectively.
Likewise, the equilibrium genetic correlation becomes

ρA =
−0.111√

2.292 · 3.011
= −0.04

ALLELE FREQUENCY CHANGES AND INSTABILITY OF GENETIC COVARIANCES

Two very different genetic phenomena (linkage and pleiotropy) contribute to genetic co-
variances and both can change over time. We have seem (under the infinitesimal model
framework) how selection can generate linkage disequilibrium (LD). When LD is present,
alleles at different loci that only effect single traits are nonetheless co-inherited to some ex-
tent, creating a correlation between their breeding values. Thus, unlinked loci, initially in
linkage equilibrium, can nonetheless contribute to genetic covariances (all the contribution
is generally small, e.g., Example 31.1). The second feature is pleiotropy, where an allele ge-
netically influences two (or more) traits. Under the infinitesimal mode, covariance changes
under LD are straightforward (if you like matrices). However, just as we saw for changes in
variances, the genetic details (distribution of allelic effects) are critical in predicting medium
to long term selection response in covariances. Just like different genetic models may all yield
the same initial heritability but very different long-term responses (Chapter 25), even more
models can yield the same initial genetic covariance. Indeed, as we argue below, a genetic
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covariance is much more fragile than a genetic variance, and changes in it are likely to be
more unpredictable than changes in genetic variances.

Pleiotropic-based Genetic Correlations May Become More Negative Over Time

One of the first suggestions about the behavior of genetic correlations under selection was
offered by Hazel (1943), Lush (1948), and Lerner (1950, 1958). Suppose we are selecting two
traits in the same direction. Alleles that effect only one of these two traits do not make any
pleiotropic contribution to the genetic variance and are ignored (of course, they can make a
linkage disequilibrium contribution). When an allele has an effect on both traits, it can take
one of four forms. Two forms show complementary pleiotropy, changing both traits in the
same direction, namely ++ and −− alleles. Here ++ denotes an allele that increases both
the first and second traits, while−− decreases both traits. Thus, these classes have effects in
the same direction and are quickly increased and (ultimately) fixed (++ alleles when both
traits are positively selected) or else are quickly lost by selection. The two remaining classes
of alleles show antagonistic pleiotropy, with effects on the two traits in opposite directions:
+− and −+ alleles. Such alleles (the argument goes) are under less selection than alleles
whose pleiotropic effects are in the same direction. Hence, selection enriches the frequencies
of alleles with these antagonistic pleiotropic effects, resulting in genetic covariances declining
(becoming more negative) as selection (to increase both traits) proceeds.

Under the same argument, if we are selecting for an increase in one trait and a decrease
in the other, then ++ and −− alleles become enriched, and the genetic covariances should
increase (become more positive) over time. Thus, the genetic covariance should evolve (at least
to some extent) away from the direction favored by selection. While this may seem somewhat
counterintuitive, recall that quantitative genetics is concerned with segregating variation.
Hence, selection may result in two lines showing increases in both traits (as complementary
pleiotropic alleles are fixed), the remaining genetic variation upon which future selection
must act for response shows a more negative covariance over time.

Genetic Covariances are More Fragile Than Genetic Variances

One of the first more formal analyses of the evolution of genetic covariances under selection
is the classic paper by Bohren et al. (1966), who were interested in how likely asymmet-
ric correlated responses were to occur. Recall from Chapter 30 that experiments can show
significantly different realized correlations between traits x and y in some cases depending
upon whether xwas up- or down-selected (e.g., Clayton et al. 1957), in others depending on
which trait was directly selection and which trait was the correlated response (e.g., Falconer
1960). Under the standard infinitesimal theory of selection response, the direction of selection
should have minimal impact on selection response. While asymmetric responses can occur
when different traits are selected, the effects are small unless the trait heritabilities are very
different. However, large asymmetric responses can occur as a result of differential changes
in genetic covariances as allele frequencies are changed in different directions.

Bohren et al. investigated the consequences of such allele frequency change on genetic
covariances, and found that they were much for “fragile” than genetic variances, i.e., they
were much more likely to show asymmetric changes, and do so quicker, than the corre-
sponding effects would have on genetic variances. They assume four different classes of
loci,

Class A Class B Class C Class D
Trait 1 α β1 γ1 0
Trait 2 0 β2 −γ2 δ
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Loci in classes A and D influence only single traits (and hence do not contribute to covari-
ances in the absence of LD), class B loci show complementary pleiotropy, while class C
show antagonistic pleiotropy. Assuming all effects are additive within and between loci (no
dominance nor epistasis), the genetic covariance is given by

σ(g1, g2) = 2 pB(1− pB)β1β2 − 2pC(1− pC)γ1γ2 (31.21)

where px is the frequency of an allele in class x. They found that the simplest conditions for
asymmetry depending on which trait was directly selected is the presence of class C alleles
(antagonistic pleiotropy) at frequencies differing from 1/2, with the maximal effect occuring
when alleles frequencies are around 0.2 or 0.8 (i.e., one allele is much more common than
the other). Note that when populations are formed for artificial selection by first crossing
two divergent lines, alleles differentially fixed (or at least at extreme frequencies) in the
two lines have their starting frequencies at (or close to) 0.5 in the resulting base population.
Thus, experiments starting with base populations formed in this matter can give a biased
(underestimate) picture about the frequency of asymmetric responses.

Bohren et al. note that asymmetric correlated responses are expected whenever the rel-
ative rates of response for the class B and class C loci are functions of which trait is being
selected and which trait is the correlated response. While most of Bohren et al.’s analysis
concerned the case where one trait was selected and the other changed as a correlated re-
sponse, they briefly examine the situation where both traits we selected in the same direction.
They confirmed the general suggestion by Hazel, Lush, and Lerner than eventually the ge-
netic covariances generally become more negative. However, they also found, depending
on the distribution of allele frequencies and effects, that the genetic covariance may actu-
ally increase in the first few generations. Simulation studies by Parker et al. (1969, 1970a/b)
showed that genetic covariances decline with time, and decrease most rapidly with higher
heritabilities. However, the only pleiotropic alleles included in the simulations were ++,
so this likely simply reflects a decline in the overall genetic variance. An additional (small
scale) simulation by Bennett and Swiger (1980) also showed that selection to increase two
positively-correlated traits resulted in a decrease in their correlation, as well as showing that
the genetic correlation increased when the two traits were selected in the opposite directions.
As with Parker et al., pleiotropy only appear through ++ alleles, but the results for selection
within and against the correlation were consistent with the suggestion by Hazel et al.

It is Difficult for Antagonistic Pleiotropy to Maintain Variation

The argument by Hazel, Lush, and Lerner that alleles showing antagonistic pleiotropy will
segregate in the population longer than those showing complementary pleiotropy naturally
leads to the question of the conditions for such alleles to be permanently maintained in the
face of selection. Rose (1982, 1985) was an early champion that alleles having antagonistic
pleiotropic effects on different life-history fitness components (such as reducing fecundity
while increasing life span) might be maintained in the population, but later felt that the
conditions for this were perhaps too restrictive (Rose et al. 1987).

A simple population-genetic model of this process was analyzed by Curtsinger et al.
(1994). Their concern was not the persistence time of such alleles under directional selection to
increase both traits (which is really the crux of the argument by Hazel et al.), but rather the
conditions under which they would be maintained in the population. They assumed a single
locus with two alleles that have alternative effects on two different fitness components. The
basic structure of their model is as follows:

A1A1 A1A2 A2A2

Fitness component 1 1 1− h1ν 1− ν
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Fitness component 2 1− f 1− h2f 1
Total Fitness 1− f (1− h1ν)(1− h2f) 1− ν

Allele A1 has a positive effect on fitness component (or trait) one but a negative effect on
component/trait two. Allele A2 has the opposite effects. A critical feature of this model is
the amount of dominance on both traits (measured by h1 and h2). The fitness components
are assumed to be multiplicative, with the total fitness for each genotype the product of the
two components.

Figure 31.1. Conditions for selection to stably maintain two antagonistic pleiotropic alleles
in a population under the Curtsinger et al. (1994) model. Complete additivity is assumed
(so that h1 = h2 = 0). Note the extremely restrictive conditions when selection is weak
(both f and ν are small). Also note that roughly equal amounts of selection f ' ν is also
required, although this is less of a constraint as the amount of selection on both increases.
After Curtsinger et al. (1994).

A stable polymorphic equilibrium exists when the heterozygote has the highest fitness
(Chapter 5), or

(1− h1ν)(1− h2f) > max(1− ν, 1− f) (31.22a)

Figure 31.1 plots the space of stable equilibrium (i.e. polymorphism) as a function of f and
ν for the completely additive case (h1 = h2 = 0.5), which is given by

2ν
2 + ν

< f <
2ν

2− ν (31.22b)

Note that the conditions are very restrictive for weak selection. Further, note that roughly
equal amounts of selection on both traits/components is also required.

Curtsinger et al. note when a beneficial reversal of dominance occurs (h1 = h2 = 0),
then Equation 31.22a is always satisfied (Rose 1982, 1985 also noted an important role for
beneficial reversals). This occurs when the dominance is reversed in a favorable direction for
the two traits (the heterozygote matches the higher fitness genotypes for both traits, A1A1

for trait one and A2A2 for trait 2). Conversely, if there is a deleterious reversal of dominance
(h1 = h2 = 1, with the heterozyogte matching A2A2 for trait one, and A1A1 for trait 2,
the lower-fitness genotypes) then Equation 31.22a is never satisfied. Thus, the conditions for
antagonistic pleiotropy to maintain a polymorphism at a locus are fairly restrictive, especially
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for weak selection. Curtsinger et al. suggest that a beneficial reversal of dominance is unlikely
for biochemical reasons. They also observed that expanding these results to two (or more)
loci makes the conditions even more restrictive.

Hedrick (1999) further extends the Curtsinger et al. model, using an important result
from Roberston (1962) on the maintenance of a polymorphism through heterozygote superi-
ority in a finite population. Roberston noted that unless the deterministic equilibrium allele
frequency was within 0.2 to 0.8, that selection actually enhances the loss of one allele relative
to drift (Chapter 26). Hence, the condition for the maintenance of a polymorphic locus for
a reasonable amount of time in a finite population is much more restrictive that Equation
31.22a, being the subset of this space that gives an equilibrium allele frequency within 0.2 to
0.8.

An important prediction of this model was noted by both Rose et al. (1987) and Curt-
singer et al. (1994): if a reversal of dominance occurs (which is largely required for a stable
polymorphism), then large amounts of dominance variance are expected in at least one
component/trait. In particular, Curtsinger et al. notes that

“if antagonisms of fitness components often plays a role in maintaining polymorphism, then
the dominance variance for fitness components should, on average, be about half as large as
the additive genetic variance for those same fitness components.”

They note that Drosophila quantitative traits typically do not should such large amounts
of dominance variance. However, Charlesworth and Hughes (1996) find that such high
amounts of dominance variance can often be avoided in an age-structured population.

The picture which emerges is that while antagonistic pleiotropy can indeed result in
a stable polymorphism in the face of selection, the conditions for this to occur at even a
single locus are very restrictive. Further, the generally low levels of dominance variation
also suggest that this is not a widespread phenomena. However, it is also important to stress
that these models examine conditions for the permanent persistence of such alleles, while all
that is required for the genetic covariances to become more negative over time is that they
persist longer than alleles showing complementary pleiotropy.

Hidden Pleiotropy: A Zero Genetic Covariance Can Still Harbor Many Pleiotropic Alleles

One reason for the greater unpredictability of changes in covariances (versus variances) is
that the observed genetic covariance is an extremely weak summary statistic for the un-
derlying amount of pleiotropic alleles present, and hence a very poor prediction of the
evolutionary potential for a change in the covariance (Lande 1980, Cheverud 1984, Wagner
1984, Gromko et al. 1991, Gromko 1995). For example, if the number of complementary
and antagonistic pleiotropic alleles are roughly equal, then the net effect of pleiotropy on
the genetic covariance is small. Indeed, it is zero when these effects exactly cancel. Thus,
two trait combinations, both with zero covariances, could mask very different evolution-
ary potentials. Suppose there are no pleiotropic alleles in trait combination one, while trait
combination two consists of nothing but pleiotropic alleles (i.e., there are no alleles that con-
tribute to only one trait). In the first case, the genetic covariance will only evolve over time
through linkage disequilibiurm, and this effect will decay quickly when selection stops. In
the second case, depending on the nature of selection, either large positive or large negative
genetic covariances can evolve, depending on whether selection enhances the frequencies
of complementary vs. antagonistic alleles. Further, as favorable pleiotropic alleles become
fixed, the remaining segregating pleiotropic alleles determine the genetic covariance seen
in the population, which can change the sign in the opposite direction. Turelli (1985) has
coined the term hidden pleiotropy to describe situations when there is a zero (or nearly so)
genetic covariance but a large reservoir of pleiotropic alleles for selection to exploit. As we
will see, hidden pleiotropy has important consequences for the response to selection and in


