
Appendix 2
Introduction to Bayesian Analysis

A form of inference which regards parameters as being random variables possessed of prior
distributions reflecting the accumulated state of knowledge — Kendall and Buckland (1971)
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The history of statistical methods in genetics closely parallels advances in computation.
Before the widespread use of computers, method-of-moments approaches were common
as they are relatively easy to compute. Here, a summary statistic of the data is computed
whose expected value is the parameter of interest. In the mid-1970’s, maximum-likelihood
(ML) methods become much more common place, as they offer a very flexible platform for
statistical analysis (estimation, determining precision, hypothesis testing), but at the cost
of numerically searching an often highly complex multidimensional likelihood surface (LW
Appendix 4). Both these approaches typically return point estimators for variables of inter-
est, along with some measure of their uncertainty. As opposed these classical (or frequentist)
statistical methods, Bayesian statistics (which can be viewed as a natural extension of likeli-
hood methods) is concerned with generating the full distribution for the parametersΘ given
the data x, i.e., the posterior distribution p(Θ |x). As such, Bayesian statistics provides a
much more complete picture of the uncertainty in the estimation of the unknown parame-
ters, especially after the confounding effects of nuisance parameters are removed.

Our treatment here is intentionally quite brief and we refer the reader any number of
introductory texts (e.g, Berger 1985, Carlin and Louis 2000, Gelman et al. 2003, Lee 2012)
for a more complete introduction, and to Sorensen and Gianola (2002) for applications to
classical quantitative genetics. While very deep (and very subtle) differences in philosophy
separate hard-core Bayesians from hard-core frequentists (Efron 1986, Glymour 1981), our
treatment here of Bayesian methods is motivated simply by their use as a powerful statistical
tool. This appendix focuses on the basic theory of Bayesian statistics, while computational
approaches are examined in Appendix 3.

WHY ARE BAYESIAN METHODS BECOMING MORE POPULAR?

In addition to providing a more formal framework for dealing with parameter uncertainty,
two specific features have fueled the rapid growth of Bayesian approaches in genetics and
genomics. First, under a Bayesian analysis, all parameters are random (as opposed to fixed)
effects (Chapter 19). This has profound implications for degrees of freedom. Consider a
microarray experiment with 30,000 features (genes of interest) whose expression levels are
contrasted over a set of 100 normal versus 100 cancerous liver cells. Treating the differen-
tial expression level of any particular gene as a fixed effect (an unknown constant to be
estimated) very quickly uses all of the degrees of freedom given the small sample size. Con-
versely, if these are treated as random effects, with the expression difference being a random
variable drawn from some underlying (and unknown) distribution, then the only degrees
of freedom lost are those used to estimate the associated distribution parameters. Further,
prediction of the random realization that corresponds to a particular gene borrows infor-
mation over all genes. Thus, in high-dimensional experiments a Bayesian analysis handles
designs where the number of parameters pÀ n, the number of observations. Furthermore,
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its framework fully manages the uncertainly over these estimates. Second, computation ap-
proaches such as MCMC (Appendix 3) often provide for efficient approaches to examine
even high-dimensional datasets. Thus, in settings with a large number of nuisance parame-
ters, or a high-dimensional dataset, a Bayesian approach not only has considerable appeal,
it may be the only approach that is feasible.

BAYES’ THEOREM

The foundation of Bayesian statistics is Bayes’ theorem. Suppose we observe a random
variable x and wish to make inferences about another random variable θ, where θ is drawn
from some distribution Pr(θ). From the definition of conditional probability,

Pr(θ |x) =
Pr(x, θ)
Pr(x)

(A2.1a)

where (for now) x and θ are discrete random variables. Again from the definition of condi-
tional probability, we can express the joint probability by conditioning on θ to give

Pr(x, θ) = Pr(x | θ) Pr(θ) (A2.1b)

Putting these together gives Bayes’ theorem:

Pr(θ |x) =
Pr(x | θ) Pr(θ)

Pr(x)
(A2.2a)

Notice that Bayes’ theorem allows us to flip which variable we are conditioning on, allowing
us to move from Pr(x | θ) to Pr(θ |x). With n possible outcomes (θ1, · · · , θn),

Pr(θj |x) =
Pr(x | θj) Pr(θj)

Pr(x)
=

Pr(x | θj Pr(θj)
n∑
i=1

Pr(θi) Pr(x | θi)
(A2.2b)

In Bayesian statistics, we let x represent an observable variable (the data), while θ represents
a parameter describing the distribution of x. In this setting Pr(θ) is the prior distribution
of possible parameter values, while Pr(θ |x) is the subsequent posterior distribution of θ
given the observed data x.

All of the above statements hold for continuous random variables, with the probability
density function p replacing the discrete probabilty Pr. In particular, the continuous multi-
variate version of Bayes’ theorem is

p(Θ |x) =
p(x |Θ) p(Θ)

p(x)
=
p(x |Θ) p(Θ)∫
p(x,Θ) dΘ

(A2.3)

whereΘ = (θ(1), θ(2), · · · , θ(k)) is a vector of k (potentially) continuous variables. As with the
univariate case, p(Θ) is the assumed prior distribution of the unknown parameters, while
p(Θ |x) is the posterior distribution given the prior p(Θ) and the data x.

The origin of Bayes’ theorem has a fascinating history (Stigler 1983). It is named after the
Rev. Thomas Bayes, a priest who never published a mathematical paper in his lifetime. The
paper in which the theorem appears was posthumously read before the Royal Society by his
friend Richard Price in 1764. Stigler suggests it was first discovered by Nicholas Saunderson,
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a blind mathematician/optician who, at age 29, became Lucasian Professor of Mathematics
at Cambridge (the position held earlier by Issac Newton). This is an example of Stigler’s
Law of Eponymy (Stigler 1980), wherein no discovery or invention is named after its first
discoverer (an eponym). As is fitting, this law is self-consistent, as this phenomena was first
noticed by Merton (1965).

Example A2.1. Suppose one in every 1000 families has a genetic disorder (sex-bias) in which
they produce only female offspring. For any particular family, define the (indicator) random
variable

θ =
{

0 normal family

1 sex-bias family

Suppose we observe a family with 5 girls and no boys. What is the probability this is a sex-bias
family? From prior information, there is a 1/1000 chance that any randomly-chosen family is
a sex-bias family, so Pr(θ = 1) = 0.001. Likewise x = five girls, and

Pr(five girls | sex bias family) = 1, Pr(five girls | normal family) = (1/2)5

Hence, Pr(x = 5 | θ = 1) = 1, while Pr(x = 5 | θ = 0) = (1/2)5. It remains to compute
the probability that a random family from the population with five children has all girls.
Conditioning over all types of families (normal + sex-bias),

Pr(5 girls) = Pr(5 girls | normal)*Pr(normal) + Pr(5 girls | sex-bias)*Pr(sex-bias)

giving
Pr(x) = (1/2)5 · (999/1000) + 1 · (1/1000) = 0.0322

Hence,

Pr(θ = 1 |x = 5 girls) =
Pr(x | θ = 1) Pr(θ = 1)

Pr(x)
=

1 · 0.001
0.0322

= 0.031

Thus, a family of five with all girls is 31 times more likely than a random family to have the
sex-bias disorder.

Example A2.2. Suppose a major gene (with alleles Q and q) underlies a character of interest.
The distribution of phenotypic values for each major locus genotype follows a normal distri-
bution with variance one and means 2.1, 3.5, and 1.3 for QQ, Qq, and qq (respectively). Suppose
the frequencies of these genotypes for a random individual drawn from the population are
0.3, 0.2, and 0.5 (again for QQ, Qq, and qq respectively). If an individual from this population
has a phenotypic value of 3, what is the probability of it being QQ? Qq? qq?

Let ϕ(x |µ, 1) = (2π)−1/2e−(x−µ)2/2 denote the density function for a normal distribution
with mean µ and variance one. To apply Bayes’ theorem, the values for the priors and the
conditionals are as follows:

Genotype, G Pr(G) p(x|G) Pr(G)·p(x|G)

QQ 0.3 ϕ(3 | 2.1, 1) = 0.266 0.078
Qq 0.2 ϕ(3 | 3.5, 1) = 0.350 0.070
qq 0.5 ϕ(3 | 1.3, 1) = 0.094 0.047
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Since p(x) =
∑
G Pr(G)·p(x | G) = 0.195, Bayes’ theorem gives the posterior probabilities for

the genotypes given the observed value of 3 as:

Pr(QQ |x = 3) = 0.078/0.195= 0.409

Pr(Qq|x = 3) = 0.070/0.195 = 0.361

Pr(qq |x = 3) = 0.047/0.195 = 0.241

Thus, there is a 41 percent chance this individual has genotype QQ, a 36 percent chance it is
Qq, and only a 24 percent chance it is qq.

FROM LIKELIHOOD TO BAYESIAN ANALYSIS

The method of maximum likelihood (LW Appendix 4) and Bayesian analysis are closely
related. Suppose `(Θ |x) is the assumed likelihood function. Under ML estimation, we would
compute the mode of the likelihood function (the maximal value of `, as a function of Θ
given the data x), and use the local curvature to construct confidence intervals. Hypothesis
testing follows using likelihood-ratio (LR) statistics. The strengths of ML estimation rely on
its large-sample properties, namely that when the sample size is sufficiently large, we can
assume both normality of the estimators and that most LR tests follow χ2 distributions.
These nice features don’t necessarily hold for small samples. Coversely, a Bayesian analysis
is exact for any sample size given a specificed prior.

To transition from a likelihood to a Bayesian analysis, we start with some prior distri-
bution p(Θ) capturing our initial knowledge/best guess about the possible values of the
unknown parameter(s). From Bayes’ theorem, the data (likelihood) is combined with the
prior distribution to produce a posterior distribution,

p(Θ |x) =
1

p(x)
· p(x |Θ) · p(Θ) (A2.4a)

= (normalizing constant) · p(x |Θ) · p(Θ) (A2.4b)

= constant · likelihood · prior (A2.4c)

as p(x |Θ) = `(Θ |x) is just the likelihood function (LW Appendix 4) and 1/p(x) is a constant
(with respect toΘ). Because of this, the posterior distribution is often written as

p(Θ |x) ∝ `(Θ |x) p(Θ) (A2.4d)

where the symbol∝means “proportional to” (equal up to a constant). Note that the constant
p(x) normalizes p(x |Θ) · p(Θ) to one, and hence can be obtained by integration,

p(x) =
∫
Θ
p(x |Θ) · p(Θ) dΘ (A2.5)

The dependence of the posterior on the prior (which can easily be assessed by trying different
priors) provides an indication of how much information on the unknown parameter values
is contained in the data (the curvature of the likelihood surface). If the posterior is highly
dependent on the prior, then the data likely has little signal (a flat likelihood surface), while if
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the posterior is largely unaffected by different priors, the data are likely highly informative (a
sharply peaked likelihood surface). To see this, taking logs on Equation A2.4c (and ignoring
the normalizing constant) gives

log(posterior) = log(likelihood) + log(prior) (A2.6)

When the likelihood signal is strong, it largely dominates the prior in the resulting posterior,
but when a likelihood is weak, the prior can dominate.

Marginal Posterior Distributions

Often, only a subset of the unknown parameters is really of concern to us, the rest being
nuisance parameters that are of no interest, but still must be fitted in the model. A very
strong feature of Bayesian analysis is that we can account for all the uncertainty introduced
into parameters of interest by uncertainty in the values of nuisance parameters. This is
accomplished by integrating the nuisance parameters out of the posterior distribution to
generate a marginal posterior distribution for the parameters of interest. For example,
suppose the mean and variance of data coming from a normal distribution are unknown, but
our real interest is in the variance. Estimating the mean introduces additional uncertainly
into our variance estimate, which is not fully captured by standard classical approaches.
Under a Bayesian analysis, the posterior marginal distribution for σ2 is simply

p(σ2 |x) =
∫
p(µ, σ2 |x ) dµ

The resulting marginal posterior for σ2 captures all of the uncertainty in the estimation of µ
that influences the uncertainty in σ2. This is an especially nice feature when a large number
of nuisance parameters must be estimated.

The marginal posterior may involve several parameters (generating joint marginal
posteriors). Write the vector of unknown parameters as Θ = (Θ1,Θnu), where Θnu is the
vector of nuisance parameters. Integrating overΘnu gives the desired marginal for the vector
Θ1 of parameters of interest as

p(Θ1 |y) =
∫
Θnu

p(Θ1,Θnu |y) dΘnu (A2.7)

SUMMARIZING THE POSTERIOR DISTRIBUTION

How do we extract a Bayes estimator for some unknown parameter θ? If our mindset is to
use some sort of point estimator (as is usually done in classical statistics), there are a number
of candidates. We could follow maximum likelihood and use the mode of the posterior
distribution (its maximal value),

θ̂ = max
θ

[ p( θ |x )] (A2.8a)

We could take the expected value of θ given the posterior,

θ̂ = E[ θ |x ] =
∫
θ p( θ |x )dθ (A2.8b)

Another candidate is the median of the posterior, where the estimator satisfies Pr(θ >

θ̂ |x) = Pr(θ < θ̂ |x) = 0.5, hence∫ +∞

θ̂

p( θ |x )dθ =
∫ θ̂

−∞
p( θ |x )dθ =

1
2

(A2.8c)
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However, using any of the above estimators, or even all three simultaneously, loses the full
power of a Bayesian analysis, as the full estimator is the entire posterior density itself . If
we cannot obtain the full form of the posterior distribution, it may still be possible to obtain
one of the three above estimators. However, as we will see in Appendix 3, we can generally
obtain the posterior by simulation using MCMC sampling, and hence the Bayes estimate of
a parameter is frequently presented as a frequency histogram (potentially smoothed) from
MCMC-generated samples from the posterior distribution.

Highest Density Regions (HDRs)

Given the posterior distribution, construction of confidence intervals is obvious. For example,
a 100(1− α) confidence interval is given by any (Lα/2, Hα/2) satisfying∫ Hα/2

Lα/2

p(θ |x) dθ = 1− α

To reduce possible candidates, one typically uses highest density regions, or HDRs, where
for a single parameter the HDR 100(1−α) region(s) are the shortest intervals giving an area
of (1−α). More generally, if multiple parameters are being estimated, the HDR region(s) are
those with the smallest volume in the parameter space. HDRs are also referred to as Bayesian
confidence intervals or credible intervals.

It is critical to note that there is a profound difference between a confidence interval
(CI) from classical (frequentist) statistics and a Bayesian analysis. The interpretation of a
classical confidence interval is that is we repeat the experiment a large number of times, and
construct CIs in the same fashion, (1 − α) of the time the confidence intervals will enclose
the unknown parameter. Thus, it is a measure of the frequency of times in independent
experiments that the CI encloses the true value (and hence the term frequentist for this type
of statistics). In contrast, with a Bayesian HDR, there is a (1−α) probability that the interval
contains the true value of the unknown parameter. While these two intervals at first blush
appear to be essentially identical, they are not and indeed are fundamentally (but subtly)
different. Often the CI and Bayesian intervals contain essentially the same values, but again
the interpretational difference remains. The key point is that the Bayesian prior allows us to
make direct probability statements about θ, while under classical statistics we can only make
statements about the behavior of the statistic if we repeat an experiment a large number of
times. Given the important conceptual difference between classical and Bayesian intervals,
Bayesians typically avoid using the term confidence interval.

Bayes Factors and Hypothesis Testing

In the classical hypothesis testing framework, we have two alternatives. The null hypothesis
H0 that the unknown parameter θ belongs to some set or interval Θ0 (θ ∈ Θ0), versus the
alternative hypothesis H1 that θ belongs to the alternative set Θ1 (θ ∈ Θ1). Θ0 and Θ1 contain
no common elements (Θ0 ∩ Θ1 = ®) and the union of Θ0 and Θ1 contains the entire space
of values for θ (i.e., Θ0 ∪Θ1 = Θ).

In the classical statistical framework of the frequentists, one uses the observed data
to test the significance of a particular hypothesis, and (if possible) compute a p-value (the
probability p of observing a value equal to, or more extreme than, that of the test statistic
if the null hypothesis is indeed correct). At first blush, one would think that the idea of a
hypothesis test is trivial in a Bayesian framework, as using the posterior distribution gives
us expected p values, as

Pr(θ > θ0) =
∫ ∞
θ0

p( θ |x) dθ and Pr(θ0 < θ < θ1) =
∫ θ1

θ0

p( θ |x) dθ
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The fault in this logic under a Bayesian framework is that we also have prior information and
Bayesian hypothesis testing addresses whether, given the data, we are more or less inclined
towards the hypothesis than suggested by our prior. For example, suppose that the prior
distribution of θ is such that Pr(θ > θ0) = 0.10, while for the posterior distribution Pr(θ >
θ0) = 0.05. The later is significant at the 5 percent level in a classical hypothesis testing
framework, but the data only doubles our confidence in the alternative hypothesis relative
to our belief based on prior information. If Pr(θ > θ0) = 0.50 for the prior, then a 5% posterior
probability would greatly increase our confidence in the alternative hypothesis. Hence, the
prior probabilities influence hypothesis testing. To formalize this idea, let

p0 = Pr(θ ∈ Θ0 |x), p1 = Pr(θ ∈ Θ1 |x) (A2.9a)

denote the probability, given the observed data x, that θ is in the null (p0) and alternative (p1)
hypothesis sets. Note that these are posterior probabilities. Since Θ0∩Θ1 = ® and Θ0∪Θ1 = Θ,
it follows that p0 + p1 = 1. Likewise, for the prior probabilities we have

π0 = Pr(θ ∈ Θ0) and π1 = Pr(θ ∈ Θ1) (A2.9b)

Thus the prior odds of H0 versus H1 are π0/π1, while the posterior odds are p0/p1.
The Bayes factor B0 in favor of H0 versus H1 is given by the ratio of the posterior odds

divided by the prior odds,

B0 =
p0/p1

π0/π1
=
p0π1

p1π0
(A2.10a)

The Bayes factor is loosely interpreted as the odds in favor of H0 versus H1 given by the
data. Since π1 = 1− π0 and p1 = 1− p0, we can also express this as

B0 =
p0(1− π0)
π0(1− p0)

(A2.10b)

By symmetry note that the Bayes factor B1 in favor of H1 versus H0 is just B1 = 1/B0.

Example A2.3. Consider our first example from above where the prior and posterior prob-
abilities for the null were π0 = 0.1 and p0 = 0.05 (respectively). The Bayes factor in favor of
H1 versus H0 is

B1 =
π0(1− p0)
p0(1− π0)

=
0.1 · 0.95
0.05 · 0.9 = 4.22

Similarly, for the second example where the prior for the null was π0 = 0.5,

B1 =
0.5 · 0.95
0.05 · 0.5 = 19

Here, the data gave close to a twenty-fold improvement (relative to the prior) in support of H1.
While p values and Bayes factors represent fundamentally different approaches to an analysis and
are not formally comparable. However, a loose interpretation is that a factor of 20 is akin to the
level of support of a p = 0.05 and a factor of 100 to p = 0.01.

When the hypotheses are simple (i.e., single values), say Θ0 = θ0 and Θ1 = θ1, then for
i = 0, 1,

pi ∝ p(θi) p(x | θi) = πi p(x | θi)
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Thus
p0

p1
=
π0 p(x | θ0)
π1 p(x | θ1)

(A2.11a)

and the Bayes factor (in favor of the null) reduces the

B0 =
p(x | θ0)
p(x | θ1)

(A2.11b)

which is simply a likelihood ratio (LW Appendix 4).
When hypotheses are composite (containing multiple members), things are slightly

more complicated. First note that the prior distribution of θ conditioned on H0 vs. H1 is

pi(θ) = p(θ)/πi for i = 0, 1 (A2.12)

as the total probability θ ∈ Θi = πi, so that dividing by πi normalizes the distribution to
integrate to one. Thus

pi = Pr(θ ∈ Θi |x) =
∫
θ∈Θi

p(θ |x)dθ

∝
∫
θ∈Θi

p(θ)p(x | θ)dθ

= πi

∫
θ∈Θi

p(x | θ)pi(θ)dθ (A2.13)

where the second step follows from Bayes’ theorem and the final step follows from Equation
A2.12, as πi pi(θ) = p(θ). The Bayes factor in favor of the null hypothesis becomes

B0 =
(
p0

π0

)(
π1

p1

)
=

∫
θ∈Θ0

p(x | θ)p0(θ)dθ∫
θ∈Θ1

p(x | θ)p1(θ)dθ
, (A2.14)

which is a ratio of the weighted likelihoods of Θ0 and Θ1.
A compromise between Bayesian and classical hypothesis testing was suggested by

Lindley (1965). If the goal is to conduct a hypothesis test of the form H0: θ = θ0 vs. H2:
θ 6= θ0 and we assume a diffuse prior, then a significance test of level α follows by obtaining
a 100(1−α)% HDR for the posterior and rejecting the null hypothesis if and only if θ is outside
of the HDR. See Lee (2012) for further discussions on hypothesis testing (or lack thereof) in
a Bayesian framework.

THE CHOICE OF A PRIOR

Obviously, a critical feature of any Bayesian analysis is the choice of a prior. The key here
is that when the data have sufficient signal, even a bad prior will still not greatly influence
the posterior. In a sense, this is an asymptotic property of Bayesian analysis in that all but
pathological priors will be overcome by sufficient amounts of data. As mentioned above,
one can check the impact of the prior by assessing the stablity of posterior over a collection of
diverse priors. The location of a parameter (mean or mode) and its precision (the reciprocal
of the variance) of the prior is usually more critical than its actual shape in terms of conveying
prior information. The shape (family) of the prior distribution is often chosen to facilitate
calculation of the posterior, especially through the use of conjugate priors that, for a given
likelihood function, return a posterior in the same distribution family as the prior (i.e., a
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gamma prior returning a gamma posterior when the likelihood is Poisson). We will return
to conjugate priors shortly, but first discuss other approaches for construction of priors.

Diffuse Priors

One of the most common priors is the flat or diffuse (also called uninformative or naive)
prior which is simply a constant,

p(θ) = k =
1

b− a for a ≤ θ ≤ b (A2.15a)

This conveys that we have no a priori reason to favor any particular parameter value over
another. With a flat prior, the posterior just a constant times the likelihood,

p(θ |x) = C `(θ |x) (A2.15b)

and we typically write that p(θ |x) ∝ `(θ |x). In many cases, classical expressions from
frequentist statistics are obtained by Bayesian analysis assuming a flat prior.

If the variable (i.e. parameter) of interest ranges over (0,∞) or (−∞,+∞), then strictly
speaking a flat prior does not exist, as if the constant takes on any non-zero value, the integral
does not exist. In such cases a flat prior (i.e., assuming p[θ |x] ∝ `[θ |x]) is referred to as an
improper prior, and case must be taken to ensure that this results in a proper posterior (i.e.,
it has a finite integral over the parameter range).

The Jeffreys’ Prior

Jeffreys (1961) proposed a general prior based on the Fisher information I of the likelihood.
Recall (LE Appendix 4) that

I(θ |x ) = −Ex
(
∂2 ln `(θ |x )

∂ θ2

)
The Jeffreys’ prior is given

p(θ) ∝
√
I(θ |x ) (A2.16)

A full discussion, with derivation, can be found in Lee (2012).

Example A2.4. Consider the likelihood of x successes in n independent draws from a bino-
mial,

`(θ |x) = Cθx(1− θ)n−x

where the constant C does not involve θ. Taking logs gives

L(θ |x) = ln [ `(θ |x) ] = lnC + x ln θ + (n− x) ln(1− θ)

Thus
∂L(θ |x)

∂θ
=
x

θ
− n− x

1− θ
and likewise

∂2L(θ |x)
∂θ2

= − x

θ2
− (−1) · (−1)

n− x
(1− θ)2

= −
(
x

θ2
+

n− x
(1− θ)2

)
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Since E[x ] = nθ, we have

−Ex
(
∂2 ln `(θ |x )

∂ θ2

)
=
nθ

θ2
+
n(1− θ)
(1− θ)2

= n θ−1(1− θ)−1

The Jeffreys’ prior becomes

p(θ) ∝
√
θ−1(1− θ)−1 ∝ θ−1/2(1− θ)−1/2

which is a Beta Distribution (Equation A2.38).

When there are k parameters, I is the k × k Fisher Information matrix of the expected
second partials,

I(Θ |x )ij = −Ex
(
∂2 ln `(Θ |x )
∂ θi∂ θj

)
In this case, the Jeffreys’ prior becomes

p(Θ) ∝
√

det[I(θ |x ) ] (A2.17)

Example A2.5. Suppose our data consists of n independent draws from a normal distribu-
tion with unknown mean and variance, µ and σ2. In LW Appendix 4, we showed that the
information matrix in this case is

I = n

 1
σ2

0

0
1

2σ4


Since the determinant of a diagonal matrix is the product of the diagonal elements, we have
det(I) ∝ σ−6, giving the Jeffreys’ prior for µ and σ2 as

p(Θ) ∝
√
σ−6 = σ−3

Since the prior does not involve µ, we assume a flat prior for µ (i.e. p(µ) = constant). Note
here that the prior distributions of µ and σ2 are independent, as

p(µ, θ) = constant · σ−3 = p(µ) · p(σ2)

POSTERIOR DISTRIBUTIONS UNDER NORMALITY ASSUMPTIONS

To introduce the basic ideas of Bayesian analysis, as well as treating a common assumption
in quantitative genetics, consider the case where data are drawn from a normal (Gaussian)
distribution, so that the likelihood function for the ith observation xi is

`(µ, σ2 |xi) =
1√

2πσ2
exp

(
− (xi − µ)2

2σ2

)
(A2.18a)
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Assuming independence, the resulting full likelihood for all n data points is

`(µ |x ) =
1√

2πσ2
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
(A2.18b)

=
1√

2πσ2
exp

[
− 1

2σ2

(
n∑
i=1

x2
i − 2µnx+ nµ2

)]
(A2.18c)

Gaussian Likelihood with Known Variance and Unknown Mean

Assume the variance σ2 is known, while the mean µ is unknown. For a Bayesian analysis, it
remains to specify the prior for µ, p(µ). Suppose we assume a Gaussian prior, µ ∼ N(µ0, σ

2
0),

so that

p(µ) =
1√

2πσ2
0

exp
(
− (µ− µ0)2

2σ2
0

)
(A2.19)

The mean and variance of the prior, µ0 and σ2
0 are referred to as hyperparameters. Here, µ0

specifies a prior location for the parameter, while σ2
0 specifies our uncertainty in this prior

location – the larger σ2
0 , the greater our uncertainty. In the limit as σ2

0 →∞, p(µ) approaches
a flat (and in this case, improper) prior.

A useful device when calculating the posterior distribution is to ignore terms that are
constants with respect to the unknown parameters. Suppose x denotes the data andΘ1 is a
vector of known model parameters, while Θ2 is a vector of unknown parameters. If we can
write the posterior as

p(Θ2 |x,Θ1) = f(x,Θ1) · g(x,Θ1,Θ2) (A2.20a)

then
p(Θ2 |x,Θ1) ∝ g(x,Θ1,Θ2) (A2.20b)

which follows since f(x,Θ1) is constant with respect toΘ2.
With the prior given by Equation A2.19, we can express the resulting posterior distri-

bution as

p(µ |x) ∝ `(µ |x ) · p(µ)

∝ exp

(
− (µ− µ0)2

2σ2
0

− 1
2σ2

[
n∑
i=1

x2
i − 2µnx+ nµ2

])
(A2.21a)

We can factor out additional terms not involving µ to obtain

p(µ |x) ∝ exp
(
− µ2

2σ2
0

+
µµ0

σ2
0

+
µnx

σ2
− nµ2

2σ2

)
(A2.21b)

Factoring in terms of µ, the term in the exponential becomes

−µ
2

2

(
1
σ2

0

+
n

σ2

)
+ µ

(
µ0

σ2
0

+
nx

σ2

)
= −µ

2

σ2
∗

+
2µµ∗
2σ2
∗

(A2.22a)

where

σ2
∗ =

(
1
σ2

0

+
n

σ2

)−1

and µ∗ = σ2
∗

(
µ0

σ2
0

+
nx

σ2

)
(A2.22b)
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Finally, by completing the square, we have

p(µ |x) ∝ exp
(
− (µ− µ∗)2

2σ2
∗

+ f(x, µ0, σ
2, σ2

0)
)

(A2.22c)

Recalling Equation A2.20b, we can ignore the second term in the exponential and the resulting
posterior for µ becomes

p(µ |x) ∝ exp
(
− (µ− µ∗)2

2σ2
∗

)
(A2.23a)

demonstrating that the posterior density function forµ is a normal with meanµ∗ and variance
σ2
∗, e.g.,

µ | (x, σ2) ∼ N
(
µ∗, σ

2
∗
)

(A2.23b)

Notice that the posterior density is in the same form as the prior. This occurred because
the prior conjugated with the likelihood function – the product of the prior and likelihood
returned a distribution in the same family as the prior (but with different distribution pa-
rameters). The use of such conjugate priors associated with a given family of likelihood
functions is a key concept in Bayesian analysis and we explore it more fully below.

We are now in a position to inquire about the relative importance of the prior versus the
data. Under the assumed prior, the mean (and mode) of the posterior distribution is given
by

µ∗ = µ0
σ2
∗
σ2

0

+ x
σ2
∗

σ2/n
(A2.24)

With a very diffuse prior on µ (i.e., σ2
0 À σ2), σ2

∗ → σ2/n and µ∗ → x. Also note from
Equation A2.22b that as we collect enough data (i.e., sufficiently large n), σ2

∗ → σ2/n and
again µ∗ → x.

Gamma, Inverse-gamma, χ2, and χ−2 Distributions

Before examining the Gaussian likelihood with unknown variance, a brief aside is needed
to develop χ−2, the inverse chi-square distribution. We do this via the gamma and inverse-
gamma distribution.

The χ2 is a special case of a two parameter distribution, the Gamma. A gamma-
distributed variable is denoted by x ∼ Gamma(α, β), with density function

p(x |α, β) =
βα

Γ(α)
xα−1e−βx for α, β, x > 0 (A2.25a)

α and β are often referred to as the shape and scale parameters. As a function of x, note that

p(x |α, β) ∝ xα−1e−βx (A2.25b)

We can parameterize a gamma in terms of its mean and variance by noting that

µx =
α

β
, σ2

x =
α

β2
(A2.25c)

Γ(α), the gamma function evaluated at α (which normalizes the gamma distribution), is
defined as

Γ(α) =
∫ ∞

0

yα−1e−ydy (A2.26a)
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The gamma function is the generalization of the factorial function from integers to all positive
numbers. If n is an integer, then Γ(n) = (n−1)!. More generally, (as integration by parts will
show) Γ satisfies the following identities

Γ(α+ 1) = αΓ(α), Γ(1) = 1, Γ(1/2) =
√
π (A2.26b)

The χ2 distribution is a special case of the gamma, as a χ2 with n degrees of freedom is
a gamma-distributed α = n/2, β = 1/2, i.e., χ2

n ∼ Gamma(n/2, 1/2), giving the density
function as

p(x |n) =
2−n/2

Γ(n/2)
xn/2−1e−x/2 (A2.27a)

Hence for x ∼ χ2
n,

p(x) ∝ xn/2−1e−x/2 (A2.27b)

The inverse gamma distribution will prove useful as a conjugate prior for Gaussian
likelihoods with unknown variance. It is defined by the distribution of y = 1/x where
x ∼ Gamma(α, β). The resulting density function, mean, and variance become

p(x |α, β) =
βα

Γ(α)
x−(α+1)e−β/x for α, β, x > 0 (A2.28a)

The mean and variance for this distribution are only defined (finite) if α is sufficiently large,

µx =
β

α− 1
, for α > 1; σ2

x =
β2

(α− 1)2(α− 2)
, for α > 2 (A2.28b)

Note for the inverse gamma that

p(x |α, β) ∝ x−(α+1)e−β/x (A2.28c)

If y ∼ χ2
n, then x = 1/y follows an inverse chi-square distribution, and denote this by

x ∼ χ−2
n . This is a special case of the inverse gamma, with (as for a normal χ2) α = n/2,

β = 1/2. The resulting density function is

p(x |n) =
2−n/2

Γ(n/2)
x−(n/2+1)e−1/(2x) (A2.29a)

with mean and variance

µx =
1

n− 2
, σ2

x =
2

(n− 2)2(n− 4)
(A2.29b)

The scaled inverse chi-square distribution is more typically used, where the scale parameter
β (which equals 1/2 under a chi-square) is replaced β = σ2

0/2,

p(x |n) ∝ x−(n/2+1)e−σ
2
0/(2x) (A2.30a)

so that the 1/(2x) term in the exponential is replaced by a σ2
0/(2x) term. The scaled-inverse

chi-square distribution thus involves two parameters, σ2
0 and n and is denoted by χ−2

(n,σ2
0)

or

SI−χ2(n, σ2
0). Note that if

x ∼ χ−2
(n,σ2

0)
then σ2

0 · x ∼ χ−2
n , (A2.30b)
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showing that σ2
0 can be thought of as a scaling factor on a standard (β = 1/2) inverse chi-

square.

Table A2.1. Summary of the functional forms of various gamma-related distribution discussed above.

Distribution α β p(x)/constant

Gamma (α, β) xα−1 exp(−βx)
χ2
n n/2 1/2 xn/2−1 exp(−x/2)

Inverse-Gamma (α, β) x−(α+1) exp(−β/x)
Inverse-χ2

n n/2 1/2 x−(n/2+1) exp[−1/(2x)]
Scaled Inverse-χ2

n,σ2
0

n/2 σ2
0/2 x−(n/2+1) exp[−σ2

0/(2x)]

Gaussian Likelihood With Unknown Variance: Scaled Inverse-χ2 Priors

Now suppose the data are drawn from a normal with known mean µ, but unknown variance
σ2. The resulting likelihood function can be expressed as

`(σ2 |x, µ) ∝ (σ2)−n/2 · exp
(
−nS

2

2σ2

)
(A2.31a)

where

S2 =
1
n

n∑
i=1

(xi − µ)2 (A2.31b)

Notice that since we condition on x and µ (i.e., their values are known), S2 is a constant.
Further observe that, as a function of the unknown variance σ2, the likelihood is proportional
to a scaled inverse-χ2 distribution (cf., Equation A2.30a). Taking the prior for the unknown
variance also as a scaled inverse χ2 with hyperparameters ν0 and σ2

0 , the posterior becomes

p(σ2 |x, µ) ∝ (σ2)−n/2 exp
(
−nS

2

2σ2

)
(σ2)−ν0/2−1 · exp

(
− σ2

0

2σ2

)
= (σ2)−(n+ν0)/2−1 exp

(
−nS

2 + σ2
0

2σ2

)
(A2.32a)

Comparison to Equation A2.30a shows the resulting posterior is also a scaled inverse χ2

distribution with parameters νn = (n+ ν0) and σ2
n = (nS2 + σ2

0). Hence,

for the prior σ2 ∼ χ−2
ν0,σ2

0
, σ2

n · σ2 | (x, µ) ∼ χ−2
νn (A2.32b)

Student’s t Distribution

The final distribution needed for a Bayesian analysis of a Gaussian likelihood is the t (or
Student’s t) distribution. Suppose that xi ∼ N(µ, σ2), so that for n independent draws,
x ∼ N(µ, σ2/n), implying (x − µ)/

√
σ2/n ∼ U , where U ∼ N(0, 1) denotes a unit normal.

Likewise, the sample variance Var(x) follows a scaled chi-square distribution, with Var(x) ∼
(n − 1)σ2χ2

n−1 (LW Equation A5.14c). When the estimated variance Var(x) is used in place
of the true variance σ2, (x− µ)/

√
Var(x)/n now follows a t distribution with n− 1 degrees

of freedom, giving raise to the very familar t-test. Notice that

tn−1 =
(
x− µ
σ/
√
n

)(
1√

Var/σ2

)
=

U√
χ2
n−1/(n− 1)
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Thus, a tν random variable follows the distribution of a unit normal divided by the square
root of a scaled chi-square with ν degrees of freedom,

tν =
U√
χ2
ν/ν

(A2.33a)

Relative to a normal, a t distribution is more peaked with heavier tails, and this kurtosis
becomes more pronounced as ν decreases. Indeed, the tails fall off sufficiently slowly that a t
with two degrees of freedom has an infinite variance, while a t with four (or fewer) degrees
of freedom has an infinite fourth moment. The coefficient of kurtosis (LW Equation 2.12a)
for a t with ν > 4 degrees of freedom is k4 = 6/(ν − 4), which approaches the value (zero)
for a normal for large ν. For ν > 30, the t essentially becomes a unit normal distribution.

One can add scale and location to a standard tν , generating a three-parameter family of
distributions,

tν(µ, σ) = µ+ σ · tν (A2.33b)

The resulting mean and variance are

E[tν(µ, σ)] = µ, σ2[tν(µ, σ)] = σ2 ν

ν − 2
for ν > 2 (A2.33c)

Hence, µ and σ control the location and scale (uncertainty about the location), while ν
controls the kurtosis, with heavy tails for ν small and little/no kurtosis for ν > 20. The
resulting density function is

p(x | ν, µ, σ) =
Γ[(ν + 1)/2]
Γ[ν/2]σ

√
π ν

[
1 +

1
ν

(
x− µ
σ

)2
]−(ν+1)/2

(A2.33d)

The role of the t distribution Bayesian statistics is two-fold. First, it is often used as a
more robust prior, as its heavier tails may better account for outliers. Using a t distribution
with low degrees of freedom (often ν = 5) offers a prior that is much like a normal, but
allows for more frequent extreme values. The second scenario is that the marginal posterior
for µ of a Gaussian likelihood with a normal prior on the mean and an inverse chi-square
on the variance is a t distribution. This arises after the joint posterior is integrated over all
possible σ2 values (i.e., over an inverse chi-square).

General Gaussian Likelihood: Unknown Mean and Variance

Putting all these pieces together, the posterior density for draws from a normal with unknown
mean and variance is obtained as follows. First, write the joint prior by conditioning on the
variance,

p(µ, σ2) = p(µ |σ2) · p(σ2) (A2.34a)

As above, assume a scaled inverse chi-square distribution for the variance and, conditioned
on the variance, normal prior for the mean with hyperparameters µ0 and σ2/κ0,

σ2 ∼ χ−2
ν0,σ2

0
, µ |σ2 ∼ N

(
µ0,

σ2

κO

)
(A2.34b)

We write the variance for the conditional mean prior this way because σ2 is known (as we
condition on it) and we scale this by the hyperparameter κ0.

The resulting posterior marginals become

σ2 |x ∼ χ−2
νn,σ2

n
, and µ |x ∼ tνn

(
µn,

σ2
n

κn

)
(A2.35)
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where
νn = ν0 + n, κn = κ0 + n (A2.36a)

µn = µ0
κ0

κn
+ x

n

κn
= µ0

κ0

κ0 + n
+ x

n

κ0 + n
(A2.36b)

σ2
n =

1
νn

(
ν0σ

2
0 +

n∑
i=1

(xi − x )2 +
κ0n

κn
(x− µ0)2

)
(A2.36c)

tn(µ, σ2) denotes a t-distribution with n degrees of freedom, mean µ and scale parameter σ2.

CONJUGATE PRIORS

The use of a prior density that conjugates the likelihood allows for analytic expressions of
the posterior density. As we will see in Appendix 3, this is critical in developing a Gibbs
sampler for our problem of interest. Table A2.2 summarizes the conjugate priors for several
common likelihood functions, with the various families of distributions discussed below.

Table A2.2. Conjugate priors for common likelihood functions. If one uses the distribution family of
the conjugate prior with its paired likelihood function, the resulting posterior is in the same distribution
family (albeit, of course, with different parameters) as the prior.

Likelihood Conjugate prior Equation

Binomial Beta A2.38
Multinomial Dirichlet A2.37a
Poisson Gamma A2.27a
Normal
µ unknown, σ2 known Normal A2.18a
µ known, σ2 unknown Inverse Chi-Square A2.30a

Multivariate Normal
µ unknown, V known Multivariate Normal LW 8.24
µ known, V unknown Inverse Wishart A2.41

The Beta and Dirichlet Distributions

When we have frequency data, such as for data drawn from a binomial or muiltinomial
likelihood, the Dirichlet distribution is an appropriate prior. Suppose Xi is the number
of observations in category 1 ≤ i ≤ k and n is the total number of observations so that
xi = Xi/n is the observed frequency in category i. We denote that a random variable x
follows such a distribution by writing x ∼ Dirichlet(α1, · · · , αk). The resulting probability
density is

p(x1, · · ·xk) =
Γ(α0)

Γ(α1) · · ·Γ(αk)
xα1−1

1 · · ·xαk−1
k (A2.37a)

where

α0 =
k∑
i=1

αi, 0 ≤ xi < 1,
k∑
i=1

xi = 1, αi > 0 (A2.37b)

where

µxi =
αi
α0
, σ2(xi) =

αi(α0 − αi)
α2

0(α0 + 1)
, σ2(xi, xj) = − αi αj

α2
0(α0 + 1)

(A2.37c)
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An important special case of the Dirichlet (for k = 2 classes) is the Beta distribution,

p(x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1, α, β > 0 (A2.38)

Wishart and Inverse Wishart Distributions

The Wishart distribution can be thought of as the multivariate extension of the χ2 distri-
bution. In particular, if x1, · · · ,xn are independent and identically distributed with xi ∼
MVNk(0,V) – that is, each is drawn from a k-dimensional multivariate normal with mean
vector zero and variance-covariance matrix V, then the random (k × k symmetric, positive
definite) sample covariance matrix

W =
n∑
i=1

xi xTi ∼ Wn(V) (A2.39)

Hence, the sum follows a Wishart with n degrees of freedom and parameter V. Recalling
that the sum of n squared unit normals follows a χ2

n distribution, the Wishart is the natural
extension to the multivariate normal. Indeed, for k = 1 with V = (1), the Wishart is just a χ2

n

distribution. The Wishart distribution is the sampling distribution for covariance matrices
(just like the χ2 is associated with the distribution of a sample variance, Chapter 11). The
probability density function for a Wishart is given by

p(W) = 2−nk/2π−k(k−1)/k |V |−n/2 |W |(n+k+1)/2 exp
(
− 1

2 tr
[
V−1W

])∏k
i=1 Γ

(
n+1−i

2

) (A2.40)

Where the trace (tr) of a matrix is just the sum of its diagonal elements, e.g., tr(A) =
∑
Aii.

If Z ∼Wn(V), then Z−1 ∼W−1
n

(
V−1

)
, where W−1 denotes the Inverse-Wishart distribu-

tion. Odell and Feiveson (1966) present an algorithm to obtain generate random draws from
the Wishart.

The density function for an Inverse-Wishart distributed random matrix W is

p(W) = 2−nk/2π−k(k−1)/k |V |n/2 |W |−(n+k+1)/2 exp
(
− 1

2 tr
[
VW−1

])∏k
i=1 Γ

(
n+1−i

2

) (A2.41)

Thus, the Inverse-Wishart distribution is the distribution of the inverse of the sample covari-
ance matrix.
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Figure A2.1. After O’Hara et al. (2008)
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