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Matrix/linear algebra

• Compact way for treating the algebra of
systems of linear equations

• Most common statistical methods can be
written in matrix form
– y = XT! + e is the general linear model

• OLS solution:  ! = (XTX)-1 XT y

– Y = XT ! + Z a + e is the general mixed model
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Topics
• Definitions, dimensionality, addition,

subtraction

• Matrix multiplication

• Inverses, solving systems of equations

• Quadratic products and covariances

• The multivariate normal distribution

• Ordinary least squares

• Vector/matrix calculus (taking derivatives)
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Matrices:  An array of elements

Vectors:  A matrix with either one row or one column.

Column vector Row vector

(3 x 1) (1 x 4)

 Usually written in bold lowercase, e.g. a, b, c 

a =




12
13
47


 b = ( 2 0 5 21)

Dimensionality of a matrix:  r x c (rows x columns)
think of Railroad Car
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Square matrix

(3 x 3)
(3 x 2)

General Matrices

Usually written in bold uppercase, e.g. A, C, D 

C =




3 1 2
2 5 4
1 1 2


 D =




0 1
3 4
2 9




Dimensionality of a matrix:  r x c (rows x columns)
  think of Railroad Car

A matrix is defined by a list of its elements.
 B has ij-th element Bij -- the element in row i
and column j
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Addition and Subtraction of Matrices
If two matrices have the same dimension (same number
of rows and columns), then matrix addition and subtraction
simply follows by adding (or subtracting) on an element by
element basis

Matrix addition:   (A+B)ij = A ij + B ij

Matrix subtraction:   (A-B)ij = A ij - B ij

Examples:

    

A =
(

3 0
1 2

)
and B =

(
1 2
2 1

)

C = A+ B =
(

4 2
3 3

)
and D = A−B =

(
2 −2
−1 1

)
- -

-
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Partitioned Matrices
It will often prove useful to divide (or partition) the 
elements of a matrix into a matrix whose elements are
itself matrices. 

C =




3 1 2
2 5 4
1 1 2



 =




3
... 1 2

· · · · · · · · · · · ·
2

... 5 4
1

... 1 2




=
(

a b
d B

)

a = (3 ) , b = ( 1 2 ) , d =
(

2
1

)
, B =

(
5 4
1 2

)

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors
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A row vector whose 
elements are column 
vectors

A column vector whose 
elements are row vectors
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Towards Matrix Multiplication:  dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

 Example:

 a .b = 1*4 + 2*5 + 3*7 + 4*9 = 60

a · b =
n∑

i=1

aibi
.

a =




1
2
3
4


 and b = (4 5 7 9 )
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Matrices are compact ways to write
systems of equations
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y = µ + β1x1 + · · · βnxn

The least-squares solution for the linear model

yields the following system of equations for the !i

σ(y,z1) = β1σ2(z1) + β2σ(z1, z2) + · · · +βnσ(z1, zn)

σ(y,z2)= β1σ(z1, z2) + β2σ2(z2) + · · · +βnσ(z2, zn)
...

...
...

. . .
...

σ(y, zn)= β1σ(z1, zn)+β2σ(z2, zn)+ · · · +βnσ2(zn)

This can be more compactly written in matrix form as 




σ2(z1) σ(z1, z2) . . . σ(z1, zn)
σ(z1, z2) σ2(z2) . . . σ(z2, zn)

...
...

. . .
...

σ(z1, zn) σ(z2, zn) . . . σ2(zn)









β1

β2
...

βn



 =





σ(y, z1)
σ(y, z2)

...
σ(y, zn)





XTX XTy!

or, ! =  (XTX)-1 XTy 
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Matrix Multiplication:

The order in which matrices are multiplied effects
the matrix product, e.g.  AB = BA 

For the product of two matrices to exist, the matrices
must conform.  For AB, the number of columns of A must
equal the number of rows of B. 

The matrix C = AB  has the same number of rows as A
and the same number of columns as B.

 C(rxc) = A(rxk)  B(kxc)

 ij-th element of C is given by 

Cij =
k∑

l=1

AilBlj Elements in the ith
row of matrix A

Elements in the
jth column of B



13

 C(rxc) = A(rxk)  B(kxc)

Inner indices must match
columns of A = rows of B 

Outer indices given dimensions of
resulting matrix, with r rows (A)
and c columns (B)

Example:  Is the product ABCD defined?  If so, what
is its dimensionality?  Suppose

A3x5B5x9C9x6D6x23

Yes, defined, as inner indices match.  Result is a 3 x 23
matrix (3 columns, 23 rows)
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More formally, consider the product L = MN

M =





m1

m2
...

mr



 where mi = (Mi1 Mi2 · · · Mic )…

Express the matrix M as a column vector of row vectors

N = ( n1 n2 · · · nb ) where nj =




N1j

N2j

...
Ncj




Likewise express N as a row vector of
column vectors

The ij-th element of L is the inner product
of M’s row i with N’s column j 

L =


m1 · n1 m1 · n2 · · · m1 · nb

m2 · n1 m2 · n2 · · · m2 · nb
...

...
. . .

...
mr · n1 mr · n2 · · · mr · nb



 .
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Example

     

AB =
(

a b
c d

) (
e f
g h

)
=

(
ae + bg af + bh
ce+ dg cf + dh

)

BA =
(

ae + cf eb +df
ga + ch gd +dh

)
Likewise

ORDER of multiplication matters!  Indeed, consider
C3x5 D5x5 which gives a 3 x 5 matrix, versus D5x5 C3x5 , 
which is not defined
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The Transpose of a Matrix

The transpose of a matrix exchanges the 
rows and columns, AT

ij = Aji

Useful identities
(AB)T = BT AT

(ABC)T = CT BT AT

Inner product = aTb = aT
(1 X n) b 

(n X 1)

Indices match, matrices conform

Dimension of resulting product is 1 X 1 (i.e. a scalar)

     

a =




a1
...
an



 b =




b1
...

bn





(a1 · · · an )




b1
...

bn


 = aTb =

n∑

i=1

aibi Note that bTa = (aTb)T = aTb
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Outer product = abT = a (n X 1) bT 
(1 X n)

Resulting product is an n x n matrix
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Solving equations
• The identity matrix I

– Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with AI=IA= A

• The inverse matrix A-1 (IF it exists)
– Defined by A A-1 = I, A-1A = I

– Serves the same role as scalar division
• To solve ax = c, multiply both sides by (1/a) to give

(1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,

• Hence x = (1/a)c

• To solve Ax = c,  A-1Ax = A-1 c

• Or A-1Ax  = Ix = x = A-1 c
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The Identity Matrix, I
The identity matrix serves the role of the

number 1 in matrix multiplication:  AI =A, IA = A

I is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

Iij = 
1 for i = j

0 otherwise

I3x3 =




1 0 0
0 1 0
0 0 1




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The Inverse Matrix, A-1

)(A = a b
c d

For 

For a square matrix A, define is Inverse A-1, as
the matrix satisfying

A-1A = AA-1 = I

A 1 =
1

ad bc

(
d b
c a

)

If this quantity (the determinant)
is zero, the inverse does not exist.
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If det(A) is not zero, A-1 exists and A is said to be
non-singular.  If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch & 
Walsh

A- is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is 
consistent, then some of the variables have a family
of solutions (e.g., x1 =2, but x2 + x3 = 6) 
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Example:  solve the OLS for ! in y = " + !1x1 + !2x2 + e

c =




σ(y, z1)

σ(y, z2)



 V =




σ2(z1) σ(z1, z2)

σ(z1, z2) σ2(z2)



! =  V-1 c

σ(z1 ,z2) = ρ12 σ(z1)σ(z2)It is more compact to use

V−1 =
1

σ2(z1)σ2(z2) (1− ρ2
12)




σ2(z2) −σ(z1, z2)

−σ(z1, z2) σ2(z1)








β1

β2



 =
1

σ2(z1)σ2(z2) (1− ρ2
12)




σ2(z2) −σ(z1, z2)

−σ(z1, z2) σ2(z1)








σ(y,z1)

σ(y,z2)




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If #12 = 0, these reduce to the two univariate slopes,

β1 =
σ(y, z1)
σ2(z1)

and β2 =
σ(y, z2)
σ2(z2)

β1 =
1

1− ρ2
12

[
σ(y, z1)
σ2(z1)

− ρ12
σ(y,z2)

σ(z1)σ(z2)

]

β2 =
1

1− ρ2
12

[
σ(y, z2)
σ2(z2)

− ρ12
σ(y,z1)

σ(z1)σ(z2)

]

-

Likewise, if #12 = 1, this reduces to a univariate regression,
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Useful identities 

(AB)-1 = B-1 A-1 

(AT)-1 = (A-1)T

Also, the determinant of any square matrix A, 
det(A), is simply the product of the eigenvalues $ of A

Ae = $e

If A is n x n, solutions to $ are an n-degree polynomial.
If any of the roots to the equation are zero, A-1 is not
defined.  Further, some some linear combination b, we
have Ab = 0.

For a  diagonal matrix D, the Det = | D | = product of
the diagonal elements
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Variance-Covariance matrix

• A very important square matrix is the
variance-covariance matrix V associated
with a vector x of random variables.

• Vij = Cov(xi,xj), so that the i-th diagonal
element of V is the variance of xi, and off-
diagonal elements are covariances

• V is a symmetric, square matrix
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The trace
The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals

the sum of the eigenvalues of A,  tr(A) = % $i

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

$i / tr(V) is the fraction of the total variation 
in x contained in the linear combination ei

Tx, where
ei, the i-th principal component of V is also the
i-th eigenvector of V (Vei = $i ei)
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Quadratic and Bilinear
Forms

Quadratic product: for An x n and xn x 1 

xTAx =
n∑

i=1

n∑

j=1

aijxixj Scalar (1 x 1)

Bilinear Form  (generalization of quadratic product)
 for Am x n,  an x 1, bm x1  their bilinear form is  bT

1 x m Am x n an x 1

Note that bTA a   = aTAT
 b 

 

bTAa =
m∑

i=1

n∑

j=1

Aijbiaj
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Covariance Matrices for
Transformed Variables

σ2
(
cTx

)
= σ2

(
n∑

i=1

cixi

)
= σ




n∑

i=1

ci xi ,
n∑

j=1

cj xj





=
n∑

i=1

n∑

j=1

σ (ci xi, cj xj) =
n∑

i=1

n∑

j=1

ci cj σ (xi,xj)

= cTVc

What is the variance of the linear combination,
  c1x1 + c2x2 + … + cnxn ? (note this is a scalar)

Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

σ(aTx,bTx) = aTVb     
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Example:  Suppose the variances of x1, x2, and x3 are
10, 20, and 30.  x1 and x2 have a covariance of -5,
x1 and x3 of 10, while x2 and x3 are uncorrelated. 

What are the variances of the new variables
y1 = x1-3x2+5x3 and  y2 = 6x2-4x3?

Var(y1) = Var(c1
Tx) = c1

T Var(x) c1 = 960

Var(y2) = Var(c2
Tx) = c2

T Var(x) c2 = 1200

Cov(y1,y2) = Cov(c1
Tx, c2

Tx) = c1
T Var(x) c2 = -910
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Now suppose we transform one vector of random
variables into another vector of random variables

Transform x into 
     (i) yk x 1 = Ak x n xn x 1 

(ii) zm x 1 = Bm x n xn x 1 

The covariance between the elements of these
two transformed vectors of the original is a
k x m covariance matrix = AVBT

For example, the covariance between yi and yj

is given by the ij-th element of AVAT

Likewise, the covariance between yi and zj

is given by the ij-th element of AVBT
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Positive-definite matrix
• A matrix V is positive-definite if for all

vectors c contained at least one non-zero
member, cTVc > 0.

• A non-negative definite matrix statisfies
cTVc > 0.

• Any covariance-matrix is (at least) non-
negative definite, as Var(cTx) = cTVc > 0.

• Any nonsingular covariance matrix is
positive-definite
– Nonsingular means det(V) > 0

– Equivalently, all eigenvalues of V are positive, $i > 0.
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The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
µi and variance &2

i

This can be expressed more compactly in matrix form

p(x) =
n∏

i=1

(2π) 1/2σ 1
i exp

(
− (xi− µi)2

2σ2
i

)

= (2π)−n/2

(
n∏

i=1

σi

) 1

exp

(
−

n∑

i=1

(xi −µi)2

2σ2
i

)

- -

-
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Define the covariance matrix V for the vector x of 
the n normal random variable by

Define the mean vector µ by 

Hence in matrix from the MVN pdf becomes

Notice this holds for any vector µ and symmetric
positive-definite matrix V, as | V | > 0.

|V| =
n∏

i=1

σ2
iV =





σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 · · · · · · σ2

n





…

n
-∑

i=1

(xi µi)2

σ2
i

= (x −µ)T V−1 (x −µ)

µ =





µ1

µ2
...

µn





p(x) = (2π) n/2 |V|−1/2 exp
[
−1

2
(x−µ)T V−1 (x −µ)

]
-
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The multivariate normal

• Just as a univariate normal is defined
by its mean and spread, a multivariate
normal is defined by its mean vector
µ (also called the centroid) and
variance-covariance matrix V
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Vector of means µ determines location

µ

Spread (geometry) about  µ determined by V

µ

x1, x2 equal variances,
positively correlated

x1, x2 equal variances,
uncorrelated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.
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Vector of means µ determines location

µ

Spread (geometry) about  µ determined by V

x1, x2 equal variances,
negatively correlated

µ

Var(x1) < Var(x2), 
uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation
No tilt = uncorrelated
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Eigenstructure of V

µ

e1$1

e2$2

The direction of the largest axis of 
variation is given by the unit-length 

vector e1,  the 1st eigenvector of V.

The next largest axis of orthogonal

(at 90 degrees from) e1,  is

given by e2, the 2nd eigenvector
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 Properties of the MVN - I

1) If x is MVN,  any subset of the variables in x is also MVN

2) If  x is MVN,  any linear combination of the 
elements of x  is also MVN.  If x ~ MVN(µ,V)  

for y = x + a, y is MVNn(µ + a, V)

for y = aT x =
n∑

k=1

aixi, y is N(aTµ,aT Va)

for y = Ax, y is MVNm

(
Aµ,AT VA

)
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Properties of the MVN - II

3) Conditional distributions are also MVN.  Partition x
into two components, x1 (m dimensional column vector)
and  x2 ( n-m dimensional column vector)

x1 | x2 is MVN with m-dimensional mean vector

and m x m covariance matrix

     

x =
(

x1

x2

)
µ =

(
µ1
µ2

)
and V =




Vx1x1 Vx1x2

VT
x1x2

Vx2x2





µx1|x2 = µ1 + Vx1x2V
−1x2x2(x2 −µ2)

--Vx1|x2
= Vx1x1 Vx1x2V

−1x2x2
VT

x1x2
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Properties of the MVN - III

4)  If x is MVN, the regression of any subset of 
x  on another subset is linear and homoscedastic 

Where e is MVN with mean vector 0 and
variance-covariance matrix Vx1|x2

x1 = µx1 x2
+ e|

= µ1 + Vx1x2V
−1x2x2

(x2 − µ2) + e
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The regression is linear because it is a linear function
of x2

µ1 + Vx1x2V
−1x2x2

(x2 − µ2) + e

The regression is homoscedastic because the variance-
covariance matrix for e does not depend on the value of 
the x’s

--Vx1|x2
= Vx1x1 Vx1x2V

−1
x2x2

VT
x1x2

All these matrices are constant, and hence
the same for any value of x
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Example:  Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN.  Then from the correlations
among (outbred) relatives,




zo

zs
zd



∼MVN








µo

µs

µd



 , σ2
z




1 h2/2 h2/2

h2/2 1 0
h2/2 0 1





Let x1 = ( zo ) , x2 =
(

zs

zd

)

( )

( )Vx1,x1 = σ2
z, Vx1 ,x2 =

h2σ2
z

2 ( 1 1 ) , Vx2,x2 = σ2
z

1 0
0 1

= µ1 + Vx1x2V
−1x2x2

(x2 − µ2) + e
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Regression of Offspring value on Parental values (cont.)

Hence,

Where e is normal with mean zero and variance

( ) ( )
σ2

e = σ2
z −

h2σ2
z

2
( 1 1 ) σ−2

z
1 0
0 1

h2σ2
z

2
1
1

= σ2
z

(
1− h4

2

)

  

 -

zo = µo +
h2σ2

z

2
(1 1 ) σ−2

z

(
1 0
0 1

)(
zs − µs

zd− µd

)
+ e

= µo +
h2

2
(zs−µs) +

h2

2
(zd− µd) + e

= µ1 + Vx1x2V
−1x2x2

(x2 − µ2) + e

( )Vx1,x1 = σ2
z, Vx1 ,x2 = h2σ2

z

2
( 1 1 ) , Vx2,x2 = σ2

z
1 0
0 1

--Vx1|x2
= Vx1x1 Vx1x2V

−1x2x2
VT

x1x2
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Hence, the regression of offspring trait value given
the trait values of its parents is

zo = µo  + h2/2(zs- µs) + h2/2(zd- µd) + e

where the residual e is normal with mean zero and
Var(e) = &z

2(1-h4/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

Ao = µo  + (As- µs)/2 +  (Ad- µd)/2 + e
     = As/2 +  Ad/2 + e

where the residual e is normal with mean zero and
Var(e) = &A

2/2



45

Ordinary least squares

Hence, we need to discuss vector/matrix derivatives
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The gradient, the derivative of a vector-valued
function
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Some common derivatives
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Simple matrix commands in R

• R is case-sensitive!

•  t(A) = transpose of A

•  A%*%B = matrix product AB

• %*% command = matrix multiplication

•  solve(A) = compute inverse of A

•  x <-   =  assigns the variable x what is to
the right of the arrow
– e.g.,  x <- 3.15
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Example:  Solve the equation

First, input the matrix A.  In R, c denotes a list,
and we built the matrix by columns, 

Next, input the vector c 

Finally, compute A-1c.
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Example 2:  Compute Var(y1), 
Var(y2), and Cov(y1,y2),
where yi = ci

Tx.

c1
TVc1

c2
TVc2

c1
TVc2
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det(A)  returns the determinant of A

eigen(A)  returns the eigenvalues and vectors of A
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Additional references

• Lynch & Walsh Chapter 8 (intro to
matrices)

• In notes package:

– Appendix 4 (Matrix geometry)

– Appendix 5 (Matrix derivatives)

– Matrix Calculations in R


