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Matrix/linear algebra

+ Compact way for freating the algebra of
systems of linear equations

- Most common statistical methods can be

written in matrix form

- y = X'p + e is the general linear model
* OLS solution: p = (XTX)!1XTy
- ¥Y=X"p+Za+eis the general mixed model



Topics

+ Definitions, dimensionality, addition,
subtraction

* Matrix multiplication

+ Inverses, solving systems of equations

* Quadratic products and covariances

» The multivariate normal distribution

* Ordinary least squares

+ Vector/matrix calculus (taking derivatives)



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, ¢

12
a=(13] b=(2 0 5 21)
47

Column vector Row vector

(3 x1) (1x4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car



General Matrices

Usually written in bold uppercase, eg. A, C, D

(1)

(3 x3)
Square matrix (3x2)

(\ORTEN )

1
D
1

_— N W

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B, -- the element in row i

and column j



Addition and Subtraction of Matrices

If two matrices have the same dimension (same number

of rows and columns), then matrix addition and subtraction
simply follows by adding (or subtracting) on an element by
element basis

Matrix subtraction: (A-B);=A; -B

Examples:

3 0 1 2
A—<1 2) and B—<2 1)

4 2 o [ 2 -2
conen=(12) i ponmno(2 )



Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

a=(3), b=(1 2), d:(?)) B:(i) 3)

One useful partition is o write the matrix as
either a row vector of column vectors or
a column vector of row vectors



& = 2 I'

C.= 2 5 4 = r's

| | 2 I's
= (3: 1 2)
ro=(2 5 4)
r3=(1 1 2)

A row vector whose
elements are column
vectors

A column vector whose

elements are row vectors

. AW
'—‘IVW

Cy T7C3)
2
cz= | 4
2



Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a*b= Zaibi
1=1

1
a(g) and b=(4 5 7 9)
4

a'b=1%*4 + 2*5 + 3*7 + 4*9 = 60

Example:



Matrices are compact ways to write
systems of equations

r).‘l'| + (j;.l'-_) + -1.1';; =0
Txy —3x9 + 523 = -9

=21 =80T (;.1';; =12

10



The least-squares solution for the linear model
y=p+ 01z + - Py
yields the following system of equations for the f,
o(y,21) = P1o%(21) + Boo(21,22) + -+ + Bno(z1, 2n)
0(y,22)= P10(21,22) + B20?(22) + -+ + Bno(22, 2n)

O'(y, Zn): 610_(.*217 Zn) T 620_('2.27 Zn) + T ﬁnO_Q(zn)

This can be more compactly written in matrix form as

0%(z1)  o(z1,22) ... o(z1,2n) By o(y, z1)
o(z1,20)  0%(z) ... o(z2,2n) Bs B oy, 2)
0(z1,2n) 0(29,2n) ... 02<zn) On, o(y, zn)
XX B XTy

or, B = (XTX)! XTy 11



Matrix Multiplication:

The order in which matrices are multiplied effects
the matrix product, e.g. AB #ZBA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

Coxe) = Arxiy Broco Elements in the

ij-th element of C is given by/ iith column of B

k
Cij = ZE:AZJBZJ’ Elements in the i’rll';
= row of matrix A



Outer indices given dimensions of
resulting matrix, with r rows (A)

and ¢ columns (/ \

C(r'xc) A(r'xk) (kxc)

Inner mdmes must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose
A3x5B5x9C9x6D6x23

Yes, defined, as inner indices match. Resultisa 3 x 23
matrix (3 columns, 23 rows) 13



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

100 5]
mso

M = , where m; — (Mﬂ Mig e~ MiC)

m,

Likewise express N as a row vector of

column vectors %Z
N=(n; ny - np) where n; = ,
The ij-th element of L is the inner product \ =
of M's row i with N's column j j
/ml n; m; nes - mMy- nb\
ma-1; INn2-"nz -~°° IN2-

L=

\mr.nl mr.nz R mr.nb) 14



Exampl

e

AB - (@ b e f\ (ae+bg af+0bh
~\c d/\g h] \Nce+dg cf+dh

Likewise

BA (ae—l—cf eb -

- df
—dh)

ga+ch gd-

ORDER of multiplication matters! Indeed, consider
Cs,5 D5, 5 Which gives a 3 x b matrix, versus Ds,5 Cs,5,

which is not defined

15



The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT, = A,

Useful identities . )
(AB)T = BT AT a(:l) b(})
(ABC)T=CTBT AT

Inner product =a™ =a';xnb nx1

\/

Indices match, matrices conform
Dimension of resulting product is 1 X 1 (i.e. a scalar)

bl n
(¢ - an) ( ; ) =a'b=3> ot Note that b'a = (a™)"=a'b

bn 16



Outer product = ab™ = a (x b7 (1 x )

~._

Resulting product is an n x n matrix

(1

(1o ; 3
(._ bl [)2 Rese bn )

arby aybs ... ayb,

asby asbs ... asb,

b1 b3 s GaDE

17



Solving equations
» The identity matrix I

- Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with AI=TA= A

+ The inverse matrix A-1 (IF it exists)
- Definedby A A-1=T A-1A=1

- Serves the same role as scalar division

» To solve ax = ¢, multiply both sides by (1/a) to give
(1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,

» Hence x = (1/a)c
- Tosolve Ax=c, A-1Ax = A-lc
- Or A-l1Ax =Ix=x= Alc

18



The Identity Matrix, I

The identity matrix serves the role of the
number 1 in matrix multiplication: AL =A, IA= A

I is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=

O otherwise

(i1

OO -
o = O
_ O O

19



The Inverse Matrix, Al

For a square matrix A, define is Inverse A, as
the matrix satisfying

ATA = AAT =T

o a b —1 1 d _b
For A_(C d) A _@<—c a>

If this quantity (the determinant)
IS zero, the inverse does not exist.

20



If det(A) is not zero, Al exists and A is said to be
non-singular. If det(A) =0, A is singular, and no
unigue inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A~ is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family
of solutions (e.g., x; =2, but x, + x5 = 6)

21



Example: solve the OLS for finy = a + f;X; + X, + e

Bz Ve oo (0(3/,271)) v_ ( o=(z1) U(Zlazz))
o(y, 22) 0(z1,22)  0%(29)
It is more CompClCT to use 0'(21 ,ZQ) = P12 0'(21)0'(22)

1 _ 1 0%(z2)  —o(a, %)
Vo= 02(z1)0?(22) (1 — p3y) 0%(21)

_0(2’17 2’2)

22



)

1 la(y, 21) oy, 2) ]

104 L) " oo (z)

2

1 la(y, %) o(y.z1) ]

102, [ 02(z2) TP o(an)o(z)

If p;, = 0, these reduce to the two univariate slopes,

. O(yv Zl) O(ysz)
=02z M P T,

Likewise, if py, = 1, this reduces to a univariate regression,

23



Useful identities
(AT) ! = (A-)T
(AB)1=B1 Al

For a diagonal matrix D, the Det = | D | = product of
the diagonal elements

Also, the determinant of any square matrix A,
det(A), is simply the product of the eigenvalues A of A

Ae = )\e

If A is nx n, solutions o A are an n-degree polynomial.
If any of the roots to the equation are zero, A1l is not
defined. Further, some some linear combination b, we
have Ab = 0. 24



Variance-Covariance matrix

» A very important square matrix is the
variance-covariance matrix V associated
with a vector x of random variables.

* Vjj = Cov(x;,x;), so that the i-th diagonal
element of V is the variance of x;, and of f-
diagonal elements are covariances

- V is a symmetric, square matrix

25



The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals
the sum of the eigenvalues of A, tr(A) =X A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A / tr(V) is the fraction of the total variation
in X contained in the linear combination e;"x, where
e;, the i-th principal component of V is also the
i-th eigenvector of V (Ve, = A, e) 26



Quadratic and Bilinear
Forms

Quadratic product: for A, , ,and X, , ;

xT Ax = Z Zaz’jilfz’ﬂ?j Scalar (1 X 1)

1=1 j7=1

Bilinear Form (generalization of quadratic product)
for A, «n Gnx1 bmx their bilinear formis b™ . A, Gy x1

b'Aa =) > Aibia;

1=1 j=1

Note that bTAa =aTATb

27



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
CiX1 + CoX, + ... + C,X, ? (note this is a scalar)

n n n
2 (T _ 2 E _ § §
o (C X) =0 CX; | =0 C; g , C5 Ty
1=1 j=1

1=1

n n n n
= ZZU(Cixi,ijj) = ZZCz Cj 0 (xzﬁxj)

i=1 j=1 i=1j=1

—cl've
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

ocla’x,b'x)=a’'Vb

28



Example: Suppose the variances of x;, X,, and x5 are
10, 20, and 30. x, and x, have a covariance of -5,
x, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the new variables
Y = X1-3X,+DXx3 and y, = 6X,-4x3?

10 =5 10 | ()
10 0 30 D —4

Var(y,) = Var(c;"x) = ¢;" Var(x) ¢, = 960
Var(y,) = Var(c,'x) = ¢, Var(x) c, = 1200

Cov(y,y») = Cov(c, ™%, ¢,7x) = ¢, Var(x) ¢, = -910

29



Now suppose we transform one vector of random
variables into another vector of random variables

Transform x into

(i) kal - Akxnxnxl
(“) mel - Bmxnxnxl

The covariance between the elements of these
two transformed vectors of the original is a
k x m covariance matrix = AVBT

For example, the covariance between y; andy,
is given by the ij-th element of AVAT

Likewise, the covariance between y; and z;
is given by the ij-th element of AVBT

30



Positive-definite matrix

A matrix V is positive-definite if for all
vectors ¢ contained at least one non-zero
member, c'Vc > 0.

+ A non-negative definite matrix statisfies
c'Vc > 0.
* Any covariance-matrix is (at least) non-
negative definite, as Var(c'™x) = ¢™Vc > O.
* Any nonsingular covariance matrix is
positive-definite

- Nonsingular means det(V) >0

- Equivalently, all eigenvalues of V are positive, A; > 0. 31



The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
u; and variance o2,

This can be expressed more compactly in matrix form

32



Define the covariance matrix V for the vector x of
the n normal random variable by

o2 0 - 0 .
0 2 0

v=| . 7 | vi=]l
0 «-- .- (7%

Define the mean vector u by

i—1 03

[11 \ > 2 _QW)Q =x—p' V(x—p)

2
= k ; } Hence in matrix from the MVN pdf becomes
HUn

p(x) = (2m)" /2| V|7H2 exp [—%@c 'V p
Notice this holds for any vector u and symmetric

positive-definite matrix V,as | V | > 0. 33



The multivariate normal

» Just as a univariate normal is defined
by its mean and spread, a multivariate
normal is defined by its mean vector
u (also called the centroid) and
variance-covariance matrix V

34



Vector of means n determines location

Spread (geometry) about p determined by V

X1, X, equal variances,

X;, X, equal variances,
1 %2 €4 uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding

eigenvalues) determines the geometry of V.
35



Vector of means n determines location

Spread (geometry) about p determined by V

| NS
X1, X, equal variances, Var(xy) < Var(x,),
hegatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation
No tilt = uncorrelated 36



Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

.......
""""
. Ce,
. .
.
.
.
.
.
.
.
.
.
®e
.

vector €, the 1st eigenvector of V.

Me
The next largest axis of orthogonal
(at 90 degrees from) ey, is

A€, given by €,, the 2nd eigenvector

37



Properties of the MVN - T

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x~ MVN(u,V)

for y=x+a, yis MVN,(u+a,V)

for y=a'x= Zaixi, yis N@@' pu,a’ Va)
k=1

for y = Ax, y is MVN,, (Ap,, ATVA)

38



Properties of the MVN - IT

3) Conditional distributions are also MVN. Partition x
into two components, x; (m dimensional column vector)
and x, ( n-m dimensional column vector)

VX1X1 VX1X2
-(2) w(m) = v-(
2 2 VX1X2

Vxox,
X; | x, is MVN with m-dimensional mean vector
Hxi|x2 = My T+ Vxi X2V}221X2 (X2 — Hg)
and m X m covariance matrix

_ _ —1 T
Vxl\xz = Vxix: - Vxu X2VX2X2 VX1X2
39



Properties of the MVN - IIT

4) If xis MVN, the regression of any subset of
X on another subset is linear and homoscedastic

X1 = Hx, %2 + €
— My + VX1X2V}221X2 (XZ - I"’Z) + €

Where e is MVN with mean vector O and
variance-covariance matrix Vi |x,

40



oy T VX1X2VX2X2( 2 Nz) T e

The regression is linear because it is a linear function
of X,

The regression is homoscedastic because the variance-
covariance matrix for e does not depend on the value of
the x's

. _ —1 T
VXl\Xz — VX1X1 VX1 X2VX2X2 VX1X2

All these matrices are constant, and hence
the same for any value of x a1



Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

2o (1o 1 h2%/2 /h2/2\
2s | ~ MVN s |,o02| R2/2 1 ( 0 )
Zd i Hd h2/2 0 1

<d

Let x3 =(2), x2= (ZS>

h202 1 0
VXl,Xl — 0-27 VXl X2 — 9 . ( 11 )’ VX2’X2 - 03(0 1

— My + VX1X2V}Z21X2 (XZ - I"’Z) + €

42



Regression of Offspring value on Parental values (cont.)

= My + Vaxe Vaox, (X2 = By) + €

2

Hence, _ h?o?2 1 0 [ zs — s
o THeT g (1 1) 0 1)\ za—pa) €

h? h?
5 (s = pis) + 5 (2d = pua) +e

h2o2 1 0
VX1,X1 — O-gv VX1>X2 — - (1 1)’ VX2’X2 - Og(() 1

= o +

Where e is normal with mean zero and variance

_ _ —1 T
VX1‘X2 - VXle VXl X2VX2X2 VX1X2

h20?2 (1 0\ h202 (1
02 = o2 — 22(1 1)022(0 1) 22(1)

4
= 03 (1 —h—)
2 43




Hence, the regression of offspring trait value given
the trait values of its parents is
Z,=Un, + hZ/Z(ZS" MS) + hZ/Z(Zd" Md) +e

where the residual e is normal with mean zero and
Var(e) = 0,%(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

A, =, + (A u)/2+ (Ag-ny)/2+e
:AS/2+ Ad/2+e

where the residual e is normal with mean zero and
Var(e) = 0,%/2

44



Ordinary least squares

For the general linear model
Y= X3+e
The predicted values given 3 and the resulting residuals are given by
y=X8 e=y-Xg3
Ordinary least squares (OLS) finds the value @ the minimizes the sumn

(.Jf' st l:‘ll'('(l resie | 1 l:'|l>'~
f2 s (\'I'(‘
i =€ ,

. B, L5 s
(v — X3) (y - X0)

Qr

The solution is given by setting the derivative of this function with re-
spect to 3 equal to zero and solving.

Hence, we need to discuss vector/matrix derivatives
45



The gradient, the derivative of a vector-valued
function

() a2

Compute the gradient for

n

-/ \ D ”
Jix) E ;= xTx

r=1

Since O f/0 x; = 2r;, the gradient vector is just Vx| f(x) | = 2x.



Some common derivatives

Vx [a’]'x] = Vx [xy'a] = a

Vx [ AX] = AT
Turning to quadratic forms, if A is symmetric, then

Vx[x'Ax] =2 Ax
Vx[(x—2a)'A(x—a)] =2-A(x—A)
Vx [(a =) Aof@e— x): = —2-A(a—x)

Taking A =1,
Vx [xTx] = Vx[x']'lx] =2.-Ix=2-x

47



Y ei=e'e=(y—XB) (y—x0)

{4 P~y {4 I'T
=y y- 8 Xy-y XB+08 X X[
i ol T wrid
=y y-280Xy+08 X X3
where the last step follows since the matrix product B Xy vields a scaley and hence it
equals its transpose,
¢y
Xy = (STXTy) —vTX3
To find the vector 3 that minimizes e’ e, taking the derivative with respect to 3 and using
Equations Ab.la/c gives
dele

J8
Setting this equal to zero gives X' X3 = Xy giving

= XTy + 2XTX3

8- (xTx) "

48



Simple matrix commands in R

* R is case-sensitivel
t (A) = franspose of A
A%*%B = matrix product AB

- %% command = matrix multiplication
solve(A) = compute inverse of A

x <- = assignhs the variable x what is to
the right of the arrow

- eg., x <- 3.15

49



Example: Solve the equation 5 (); 1 -:'1 h(’
| — 5 ) p— ==
Ax = c. or x=A"l¢

First, input the matrix A. InR, c denotes a list,
and we built the matrix by columns,

> A <- matrix(c(5,7,-1,6,-3,-1,4,5,6),nron=3)
> A
[ 2] B :CI
BER 5 A
[Z:1] 7 -3 5
3,1 -1 -1 6
> > c<-matrix(c(6,-9,12), nron=3)
>
. Bl
Next, input the vectorc¢ 1 s
[2,] -9
Bz 212
> solve(A)%*%c
. 1 [, 1]
Finally, compute A-1c. [ -2.031008
[2,] 1.426357
[3,] 1.899225 50



10 =5 10 | 0
V={|-5 20 0], o= -2], c= 6
1o 0 30 H —4

> Ve-matrix(c(10,-5,10,-5,20,0,10,0,30), nron=3)

> \vl'

13 23 3
1,7 1 -5 10
2,1 -5 20 0
[3,] 10 O 30
> cl<-matrix(c(l,-2,5),nron=3)
> c2<-matrix(c(0,6,-4),nron=3)
- ol

Example 2: Compute Var(y;), L] [’1;12]

Var(y,), and Cov(y,,y,), G
>

where y; = ¢;"x. o
[1,] o

[Z,] 6
[3,] -4
> +(C1)XFRVE*%C] CITVCI
[,1]
[1,] 960
> +(C2)X RVE*%C2 CZTVCZ
[,1]
[1,] 1200
> t(cl)®*BVE*%c? CITVCZ
- L, l]
[1,] -910



det (A) returns the determinant of A

> det(V)
[1] 3250

eigen(A) returns the eigenvalues and vectors of A

> eigen(V)
fvalues
[1] 34.410103 21.117310 4.472587

fvectors

1] [.2] [:3d
[1,] ©.3996151 ©.2117936 0©.8918307
[2,] -0.1386580 -0.9477830 0.2871955
[3,] 0.906135 -0.2384340 -0.3493816

’

For example. second eigenvalue is Ay = 21117310, second eigenvalue

0.2117936
es — | —0.0477830
—00.2384340

52



Additional references

* Lynch & Walsh Chapter 8 (intro to
matrices)

* In notes package:

- Appendix 4 (Matrix geometry)

- Appendix 5 (Matrix derivatives)

- Matrix Calculations in R

53



