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Quantitative geneticists usually distinguish between the short- and long-term response to selec-
tion. If we are only trying to predict a few generations of selection response, knowledge of the
base population genetic variances (and in particular the heritability) is usually sufficient to make a
satisfactory prediction. However, as selection proceeds and allele frequencies change significantly,
the initial genetic variances essentially lack any predictive power for the long-term response. The
focus in this lecture is on just what predictions we can make for short-term response and some of
the complications that can arise.

Changes in the Mean: the Breeder’s Equation and its Extensions

It is critical to distinguish between the within- and between-generation changes induced by selec-
tion. The within-generation change is the difference in a population before and after an episode of
selection, while the between-generation change (the response to selection) is the difference between
the population distribution before selection and the distribution of the trait in the next generation
(measured at the suitable stage). The response to selection depends not only on the strength of
within-generation selection, but also on the fraction of offspring trait value that can be predicted
from parental value. If the latter is zero, no matter how strong the within-generation selection is,
there will be no response to selection.

The Selection Differential S and Response R

The within-generation change in the mean due to selection is

S = µ∗ − µ (10.1)

where µ is the population mean before selection and µ∗ the mean of the parents that reproduce (the
population mean after selection). S is called the selection differential.

The between-generation change, (the response to selection) R, is the change in means between the
population before selection and the population in the next generation,

R = µo − µ (10.2)

where µo is the character mean in the offspring (measured at the same stage as in their parents).
Another useful way to think about the response is in terms of breeding values, as the average

deviation of offspring from the population mean is just the mean breeding value of their parents.
Hence, the response can also be simply thought of as the net change in breeding value.

The Selection Intensity i

Much akin to the covariance being a poor indicator of the strength of an association, the selection
differential S is not particularly informative when trying to compare the strength of selection on
different traits and/or in different populations. A much more useful measure is the selection
intensity i,

i =
S

σz
(10.3)

which is the selection differential expressed as in fractions of phenotypic standard deviations.
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The Breeders’ Equation: Translating S into R

The parent-offspring regression allows us to translate the within-generation change S into the
between-generation change R. Recall (Lecture 1) that the predicted value ŷ given we know x is

ŷ = µy + by | x(x− µx )

Here we are trying to predict the offspring value yO given x = (Pf + Pm)/2, the midparent value.
Hence, by | x = bO |MP = h2 is the slope of the midparent-offspring regression, while µy = µx = µ,
the mean trait value in the population, giving

yO = µ+ h2

(
Pf + Pm

2
− µ

)
(10.4)

This regression holds for each midparent-offspring pair. Averaging over all parents, the average
difference between the mean (µ∗) of selected parents and the (before selection) population mean is

E[ (Pf + Pm)/2− µ] = µ∗ − µ = S

Likewise, the average value over all the offspring of these selected parents is E[ yO ] = µO. Thus,
averaging over all the midparents gives

µO = µ+ h2 S

since R = µO − µ, this gives
R = h2S (10.5)

This relationship is often called the Breeders’ Equation, and shows that the heritability of a character
is the link between the within-generation change S and the between-generation response R. If
h2 ' 0, then R ' 0 no matter how strong the amount of selection applied.

In some situations, males and females are subjected to different amounts of selection. Recall
from Lecture 2 (Equation 2.30a) that the regression of offspring value on the value of its sire and
dam can also be written as

µo = µz +
h2

2
(zs − µs) +

h2

2
(zd − µd) + e

giving the expected response as

R =
h2

2
Ss +

h2

2
Sd (10.6)

In this case, the Breeders Equation still holds, with the selection differential simply the average
differential of both sexes,

S =
Ss + Sd

2
There are several equivalent expressions for the Breeders’ Equation. First,

R =
σ2
A

σ2
z

S = σA
σA
σz

S

σz
= σAhi (10.7)

Alternatively,
R = h2S

σz
σz

= h2σzi (10.8)

While the breeders’ equation holds for a single generation of selection from an unselected base
population, its validity in predicting response over several generations depends on:

• The reliability of the h2 estimate

• Absence of environmental change between generations

• The absence of genetic change between the generation in which h2 was estimated and
the generation in which selection is applied.
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The later point is critical, as strictly speaking, the prediction equation is true for one gen-
eration only, since selection changes gene frequencies and thus h2 (through changes in the
genetic variances). In practice, the breeders’ equation is usually valid over several genera-
tions using the base population value for h2.

The Generalized Breeders’ Equation: Accuracy

We can extent the breeders’ equation to apply to much more general selection schemes
beyond simply choosing an individual solely on the basis of its phenotype. To obtain this
extension, first note that

h2σz =
(
σ2
A

σ2
z

)
σz =

(
σA
σz

)
σA = hσA

Hence, we can rewrite Equation 10.5 to recover Equation 10.7,

R = i · h · σA
Recall that h is simply the correlation between an individual’s breeding (A) and phenotypic
(P ) values, h = ρPA. This correlation quantifies the ability to predict the breeding value
of an individual from some measure (here that individual’s phenotype) and is called the
accuracy of the selection scheme used to chose parents. We can thus express the breeders
equation in terms of the accuracy of selection as

R = i · ρPA · σA (10.9)

Hence, the breeders equation can be consider as the following product:

Response = (Intensity)*(Accuracy in Predicting Breeding Value)*(Usable Variance)

More generally, if we use some measure u for predicting the breeding value of an individual
(used as a parent to from the next generation), then the breeders’ equation can be expressed
in terms of the accuracy ρuA of that measure in predicting breeding value,

R = i · ρuA · σA (10.10)

Example 10.1. Progeny testing, using the mean of a parent’s offspring to predict the parent’s
breeding value, is an alternative predictor of an individual’s breeding value. In this case, the
correlation between the mean of n offspring and the breeding value of the parent is

ρuA =
√

n

n+ a
, where a =

4− h2

h2

From Equation 10.10, the response to selection under progeny testing is

R = iσA

√
n

n+ a
= iσA

√
h2n

4 + h2(n− 1)

Note that for very large n that the accuracy approaches one (ρuA → 1). Progeny testing gives a
larger response than simple selection on the phenotypes of the parents (mass selection) when√

n

4 + h2(n− 1)
> 1, or n >

4− h2

1− h2

In particular, n > 4, 5, and 7, for h2 = 0.1, 0.25, and 0.5. Also note that the ratio of response for
progeny testing (Rpt) to mass selection (Rms) is just

Rpt
Rms

=
1
h

√
h2n

4 + h2(n− 1)
=
√

n

4 + h2(n− 1)
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The Generalized Breeders’ Equation: Generation Intervals

So far, we have been assuming non-overlapping generations — all parents only reproduce in one
generation interval. Of course, in most settings with domesticated animals, they live multiple years
and can have progeny over different years. In such cases, the response should be expressed in terms
of response per year. To express the breeders’ equation in terms of response per year, we first need
to compute the generation intervals Lx (the average age of parents when progeny are born) for
both sexes.

Example 10.2. Compute Ls and Ld for the following age structure:

Age of Birth of Progeny

Sires year 2 year 3 year 4 year 5 Total
Number 60 30 0 0 90

Dams year 2 year 3 year 4 year 5 Total
Number 400 600 100 40 1140

Ls =
2 · 60 + 3 · 30

60 + 30
= 2.33, Ld =

2 · 400 + 3 · 600 + 4 · 100 + 5 · 40
400 + 600 + 100 + 40

= 2.81

Incorporating the generation intervals, the yearly rate of response can be expressed as

Ry =
(
is + id
Ls + Ld

)
h2σp =

(
is + id
Ls + Ld

)
hσA (10.11a)

Thus, one way to increase response is to reduce the generation intervals, for example by having
younger parents. The problem is that there is a tradeoff between generation interval and selection
intensity. In species that are reproductively-limited (few offspring per dam), using younger dams
means that a higher fraction of the dams must be chosen to replace the population (i.e., to keep
the same number of animals in a herd). As a consequence, the selection intensity on these parents
(which increases as fewer parents are chosen) is reduced.

More generally, we can combine both selection accuracy and generation interval to give a more
general version of the breeders’ equation:

Ry =
(
is + id
Ls + Ld

)
ρuAσA (10.11b)

Expressed this way, there are three components of response that the breeder has some control over:
selection intensity i, generation interval L, and selection accuracy ρ (not much can be done with
increasing σ2

A). Response is increased by decreasing L and increasing ρ and i. We have already
discussed tradeoffs between L and i, and there are similar tradeoffs between L and ρ. Clearly, the
longer we wait to allow a parent to reproduce, the more accurate we can predict their breeding value,
as information from other relatives and from progeny-testing accumulates over time. However,
these increases in ρ also result in increases in L. The optimal selection program must balance all of
these competing interests.

Equation 10.11b also highlights the importance to animal breeding of advances in reproductive
technology such as artificial insemination (AI) and multiple ovulation embryo transplant (MOET)
schemes. The more offspring a parent can produce, the stronger a selection intensity we can apply
(and still keep a required fixed number of animals in our herd). Hence, AI has resulted in the
potential for far greater selection intensities (and unfortunately far more inbreeding) than would be
possible under natural insemination. Likewise, MOET schemes to increase the number of offspring
from females potentially allow for increases in the selection intensity on dams as well as decreases
in the generation interval.
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Truncation Selection

Truncation selection is by far the commonest form of artificial selection in plant and animal breeding
and in laboratory experiments. Under truncation selection, only the largest (or smallest) individuals
are allowed to reproduce (Figure 10.1). Truncation selection is usually described by either the percent
p of the population saved or the threshold phenotypic value T below (above) which individuals
are culled. The investigator usually sets these in advance of the actual selection. Hence, while S
is trivially computed after the parents are choosen, we would like to predict the expected selection
differential given either T or p. Specifically, given either T or p, what is the expected mean of the
selected parents? We initially assume a large number of individuals are saved. We then turn to
complications introduced by finite population size.

Figure 10.1. Under truncation selection, the uppermost (or lowermost) fraction p of a population is selected
to reproduce. Alternatively, one could set a threshold level in advance, above (below) which individuals are
allow reproduce. To predict response given either p or T , we need to know the mean of the selected tail (µ∗),
from which we can compute S = µ∗ − µ and then apply the breeders’ equation.

Selection Intensities and Differentials Under Truncation Selection

Given the threshold cutoff T , the expected mean of the selected adults is given by the conditional
mean, E( z | z ≥ T ). Generally it is assumed that phenotypes are normally distributed, and we use
this assumption throughout. With initial mean µ and variance σ2, this conditional mean is given in
Lecture 1 (Equation 1.12a), which gives the expected selection differential as

S = ϕ

(
T − µ
σ

)
σ

p
(10.12a)

where p is the fraction saved and ϕ(x) = (2π)−1/2 e−x
2/2 is the unit normal density function evalu-

ated at x. Hence, the (within-generation) mean after selection is just

µ∗ = µ+ S = µ+ ϕ

(
T − µ
σ

)
σ

p
(10.12b)

Generally, it is the fraction to be saved p (rather than T ) that is preset by the investigator (for
example, if we save the uppermost 5 percent, what is the expected S?). Given p, to apply Equation
10.12a, we must first find the threshold valueTp satisfying Pr(z > Tp) = p. Notice thatT in Equation
10.12a enters only as (T − µ)/σ, which transforms Tp to a scale with mean zero and unit variance.
Hence,

Pr
(
z − µ
σ

>
Tp − µ
σ

)
= Pr

(
U >

Tp − µ
σ

)
= p
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where U ∼ N(0, 1) denotes a unit normal random variable. Define z[p], the probit transformation
of p, by

Pr(U ≤ z[p] ) = p (10.13a)

In R, the command pnorm(p) returns the value for z[p]. We can also rewrite 10.13a as

Pr(U > z[1−p] ) = p (10.13b)

It immediately follows that z[1−p] = (Tp − µ)/σ, and Equation 10.12a gives the expected selection
intensity as

i =
S

σ
=
ϕ(z[1−p])

p
(10.14a)

One can obtain z[1−p] from normal distribution tables. Alternatively, a number of approximations
have been suggested for Equation 10.14a. Assuming normality, Smith (1969) suggests

i ' 0.8 + 0.41 ln
(

1
p
− 1
)

(10.14b)

Simmonds (1977) found that this approximation is generally quite good for
0.004 ≤ p ≤ 0.75, and offered alternative approximations for p values outside this range. The
most precise approximation is Saxton’s (1988), with

i ' 2.97425− 3.38197 p0.2 − 1.9319 p0.4 + 2.3097 p0.6

0.51953 + 0.88768 p0.2 − 2.38388 p0.4 + p0.6
(10.14c)

Example 10.3. Consider selection on a normally distributed character in which the upper 5% of the
population is saved (p= 0.05). From unit normal tables (e.g., Table 11.1 of LW), z[1−0.05] = 1.645 as
Pr[U ≥ 1.645] = 0.05. Hence,

i =
ϕ(1.645)

0.05
=

0.103
0.05

' 2.06

In R, we can compute ϕ(z[0.95]) with the command dnorm(qnorm(0.95)) . Applying Equation 10.8
gives the expected response to this amount of selection as R = h2 σ 2.06. Smith’s approximation gives
the selection intensity as

i ' 0.8 + 0.41 ln
(

1
0.5
− 1
)
' 2.01

which is quite reasonable. Saxton’s approximation gives i ' 2.06.

Correcting the Selection Intensity for Finite Samples

If the number of individuals saved is small, the preceding formulae overestimate the selection
differential because of sampling effects (Burrows 1972). To see this, assume M adults are sampled
at random from the population and the largest N of these are used to form the new generation,
giving p = N/M . The expected selection coefficient is computed from the distribution of order
statistics. Rank theM observed phenotypes as z1,M ≥ z2,M . . . ≥ zM,M where zk,M is referred to as
the kth order statistic when M observations are sampled. The expected selection intensity is given
by the expected mean of the N selected parents, which is the average of the first N order statistics,

E( i ) =
1
σ

(
1
N

N∑
k=1

E(zk,M )− µ
)

=
1
N

N∑
k=1

E(z′k,M )
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where z′k,M = (zk,M−µ)/σ are the standarized order statistics. Figure 10.2 plots exact values for the
expected selection intensity for small values ofN when phenotypes are normally distributed. Note
that finite population size results in Equation 10.14a overestimating the actual selection intensity,
although the difference is small unless N is very small.

Figure 10.2. The expected selection intensity E( i ) under truncation selection with normally-distributed
phenotypes, as a function of the total number of individuals measured M and the fraction of these saved
p = N/M , N being the number of these adults allowed to reproduce. The curve M = ∞ is given by using
Equation 10.14a, which is exact ifN andM are infinite. The values on the curves forM = 10, 20, 50, and 100
were obtained from the average of the expected values of the N largest unit normal order statistics. Note that
Equation 10.14a is generally a good approximation, unless N is very small.

Burrows (1972) developed a finite-sample approximation for the expected selection intensity for
any reasonably well-behaved continuous distribution. Using the standardized variabley = (z−µ)/σ
simplifies matters considerably. Letting φ(y) be the probability density function of the phenotypic
distribution, and yp the truncation point (e.g., Pr( y ≥ yp ) = p), Burrows’ approximation is

E( i(M,N) ) ' µyp −
(M −N) p

2N(M + 1)φ( yp )
(10.15a)

where

µyp = E ( y | y ≥ yp ) =
1
p

∫ ∞
yp

xϕ(x) dx

is the truncated mean, which can be obtained by numerical integration. Since the second term of
Equation 10.15a is positive, if M is finite the expected truncated mean overestimates the expected
standardized selection differential.

For a normal distribution,

E( i(M,N) ) ' i−
[

M −N
2N(M + 1)

]
1
i

= i−
[

1− p
2p(M + 1)

]
1
i

(10.15b)
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where i is given by Equation 10.14a. Bulmer (1980) suggests an alternative finite-sample approx-
imation for E( i(M,N) ) when phenotypes are normally distributed, using Equation 10.14a with p
replaced by

p̃ =
N + 1/2

M +N/(2M)
(10.16)

Example 10.4. Consider the expected selection intensity on males when the upper 5% of the sampled
males are used to form the next generation and phenotypes are normally distributed. If the number of
males sampled is very large, then from Example 10.3, the expected selection intensity is i ' 2.06. Suppose,
however, that only 20 males are sampled so that only the largest male is allowed to reproduce in order
to give p = 0.05. The expected value for this male is the expected value of the largest order statistic
for a sample of size 20. For the unit normal, the expected value of the largest order statistic in a sample
of 20 is ' 1.87 (Harter 1961) and hence E( i(20,1) ) ' 1.87. There is considerable spread about this
expected value, as the standard deviation of this order statistic is 0.525. How well do the approximations
of E( i(20,1) ) perform? Burrow’s approximation gives

E( i(20,1) ) ' 2.06− (20− 1)
2 (20 + 1) 2.06

= 2.06− 0.22 = 1.84

while Bulmer’s approximation uses

p̃ =
1 + 1/2

20 + 1/40
' 0.075

which gives z0.075 ' 1.44. Since ϕ(1.44) = 0.1415,

E( i(20,1) ) ' 0.1415/0.075 ' 1.89

A final correction for finite population size was noted by Rawlings (1976) and (especially)
Hill (1976, 1977). If families are sampled, such that n individuals are choosen per family, then
the selection intensity is further reduced because the correlations between family members. In
particular, if a total of M individuals are sampled, with n individuals per family then Burrow’s
correction (Equation 10.15b) is modified to become

i−
[

1− p
2p(M + 1)(1− τ + τ/n)

]
1
i

(10.17)

where τ is the intra-class correlation of family members.

Selection on Threshold Traits

Discrete characters can often be modeled by assuming an underlying continuous character z (usually
referred to as the liability) that maps to the observed discrete character states (Figure 10.3). Con-
sider the simplest case where the character is either present when the liability exceeds a threshold
value ( z ≥ T ) or absent when it does not ( z < T ). Let µt be the mean liability and qt the frequency
of individuals displaying the character in generation t. If liability is well enough behaved to satisfy
the assumptions of the breeders’ equation (e.g., a linear biparental-offspring regression; no epis-
tasis, genotype-environmental interactions or correlations), then µt+1 = µt + h2St. We index the
selection differential St by generation, as the amount of selection on threshold characters changes
each generation. The problem is to estimate µt from the observed frequencies of character states.
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Figure 10.3. Selection on a character with a single threshold T . z is the value on the underlying scale of
liability. Assuming z is a well-behaved quantitative character, µt+1 = µt +Sth

2, where St = µ∗t −µt. Using
the probit transform (Equation 10.13) we can translate from q, the frequency of individuals displaying the
character, to µ, the mean of z.

If the values on the underlying scale are normally distributed, we can choose a scale that
sets the threshold value at T = 0 and assigns z a variance of one. Since z − µt is a unit normal,
Pr( z ≥ 0 ) = Pr( z − µt ≥ −µt ) = Pr(U ≥ −µt ) = qt and hence (Equation 10.13b)

µt = −z[1−qt] (10.18)

where z[p], the probit transformation of p (Equation 10.13). For example, if 5% of a large population
displays the trait, µ = −z[0.95]. From normal probability tables, Pr(U < 1.645 ) = 0.95, hence
z[0.95] = 1.645 and µ = −1.645. For small samples, estimation of µ requires the use of order
statistics.

The response to selection, as measured by the change in the frequency of the character, is

qt+1 = Pr(U ≥ −µt+1)
= Pr(U ≥ −µt − h2 St )
= Pr(U ≥ z[1−qt] − h2St ) (10.19)

It remains to obtainSt = µ∗t−µt, whereµ∗ is the mean value of z in the selected parents in generation
t. The selected population may consist entirely of adults displaying the character. However, more
individuals than this may be required to keep the population at constant size, especially if qt and the
number of sampled individuals are small. In this case, the selected adults consist of two populations:
those displaying the trait (hence z ≥ 0) and those not (z < 0). Letting pt be the fraction of selected
adults displaying the character,

µ∗t = (1− pt)E(z|z < 0;µt) + ptE(z|z ≥ 0;µt) (10.20)
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Applying Equation 1.12a (Lecture 1) and noting that the unit normal density function satisfies
ϕ(x) = ϕ(−x), gives

E(z|z ≥ 0;µt) = µt +
ϕ(µt)
qt

, and E(z|z < 0;µt) = µt −
ϕ(µt)
1− qt

Substituting into Equation 10.20 gives

St = µ∗t − µt =
ϕ(µt)
qt

pt − qt
1− qt

(10.21)

As expected, if pt > qt, St > 0. St depends critically on qt and is very unlikely to remain constant
over several generations of selection. Maximal selection occurs if only individuals displaying the
trait are saved ( pt = 1 ), in which case Equation 10.21 reduces to St = ϕ(µt)/qt.

Example 10.5. Consider a threshold character whose liability has heritability h2 = 0.25. What is
the expected response to selection if the initial frequency of individuals displaying the character is 5%
and selection is practiced by selecting only adults displaying the character? As was calculated earlier,
q0 = 0.05 implies µ0 = −1.645. In each generation, only individuals displaying the trait are saved.
Equation 10.21 gives the selection differential as

S0 =
ϕ(−1.645)

0.05
' 0.106

0.05
' 2.064

giving
µ1 = µ0 + h2S = 0 = −1.645 + 0.25 · 2.062 = −1.129

and hence (Equation 10.18)
q1 = Pr(U ≥ 1.129 ) = 0.129

After one generation of selection, the character frequency is expected to increase to 12.9%. Changes in q
and S after further iterations are plotted in Figure 10.4.

Figure 10.4. Response to selection on a threshold character. The initial frequency of individuals displaying
the trait is 5%. Selection occurs by only allowing adults displaying the trait to reproduce (pt = 1). Solid circles
denote qt, open squares denote St. The liability is assumed to have h2 = 0.25.
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Permanent Versus Transient Response

The slope of the parent-offspring regression can be inflated by epistasis, genotype× environment
interactions and correlations, and environmental effects shared by parents and their offspring.
Hence, even if the parent-offspring regression is linear, the slope can deviate significantly from h2/2,
altering the response from that predicted by the breeders’ equation. For example, with epistasis
and correlation between parental and offspring environmental values,

bop =
h2

2
+

1
σ2
z

(
σ2
AA

4
+
σ2
AAA

8
+
σ2
AAAA

16
+ · · ·+ σ(Ep, Eo)

)
(10.22a)

Assuming a linear biparental regression, the response to a single generation of selection becomes

R = h2 S +
S

σ2
z

(
σ2
AA

2
+
σ2
AAA

4
+
σ2
AAAA

8
+ · · ·+ σ(Efa, Eo) + σ(Emo, Eo)

)
(10.22b)

which can deviate significantly from h2 S. Why then do we pay so much attention to h2?
The reason is that we are interested in the permanent response to selection. Recall that one of

our main assumptions throughout this lecture is that changes in allele frequencies are negligible,
hence any changes in genetic variances are due to gametic-phase disequilibrium rather than changes
in allele frequencies. Under this assumption, epistasis and/or shared environmental factors inflate
the transient response to selection, but once selection stops, their contribution to response decays
away. Changes in genotypic frequencies attributable to gametic-phase disequilibrium and environ-
mental correlations are due to nonrandom associations built up by selection. Recombination and
randomization of environmental effects causes these correlations to decay. Conversely, changes in
allele frequencies are permanent. Once selection is stopped, the new allele frequencies are stable
(assuming that our time scale for observing a population is such that drift and mutation have negli-
gible effects). Hence, as will be shown shortly, the permanent response under the conditions leading
to Equation 10.22 is h2 S. One exception is when significant inbreeding occurs. In this case, σ2

AA

and other non-additive variance components can contribute to permanent response.

Response with Epistasis

The response when additive× additive epistatic variance is present was examined by Griffing
(1960a,b) for the infinitesimal model. Under the assumption that phenotypes are normally dis-
tributed and that the effects at any particular locus are small relative to the total phenotypic variation,
the response to one generation of selection is

R = S

(
h2 +

σ2
AA

2σ2
z

)
(10.23)

One might expect that R(n), the cumulative response after n generations of selection, is simply
n times the result given by Equation 10.23. However, any increased response due to epistasis is
only temporary, reflecting gametic-phase disequilibrium generated by selection. As disequilibrium
decays under recombination, so does the component of response due to epistasis. This occurs
because the contribution from epistasis is due to favorable combinations of alleles at different loci,
specifically those alleles that interact epistatically to change the character in the direction favored
by selection. Recombination breaks down these combinations, removing the epistatic contribution.
Griffing showed that for two linked loci (separated by recombination fraction c), the response when
a generation of selection is followed by τ generations of no selection is

S

(
h2 + (1− c)τ σ

2
AA

2σ2
z

)
(10.24)
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which converges to h2 S. Equation 10.24 follows by noting that the probability a gamete containing
specific alleles from both loci remains intact following one generation of recombination is 1 − c.
Thus, after τ generations only (1 − c)τ of the favorable two-locus combinations selected at τ = 0
remain unaltered by recombination.

Summing Equation 10.24 over t gives the cumulative response after t generations with constant
selection differential S as

R(t) = t h2 S +RAA(t) (10.25)

whereRAA(t) denotes the cumulative additive× additive epistatic contribution. With t generations
of selection followed by τ generations of no selection, the cumulative response is

t h2 S + (1− c)τ RAA(t) (10.26)

which converges to R = t h2 S for large τ (i.e., many generations after selection is stopped), which
is the value predicted from the breeders’ equation.

The presence of epistasis can result in a curvilinear selection response if σ2
AA/σ

2
z is sufficiently

large. However, it is usually difficult to distinguish this from a linear response. Further, much of
the curvilinearity occurs in the first few generations, as with a constant selection differential, the
increment to response decreases each generation, eventually converging to h2S and hence a linear
response from that point on.

Once selection is relaxed, the total response decays back to that predicted from the breeders’
equation. Interestingly, this situation mimics the effects of natural selection countering artificial
selection, which also results in a decay of the cumulative response once artificial selection stops.
Thus, in order to predict the permanent response correctly we must know h2. If only the parent-
offspring slope is estimated, this can overestimate the final amount of response due to the inclusion
of σ2

AA and higher order epistatic variances.

Maternal Effects: Response Under Falconer’s Model

Maternal effects are another potential complication for the breeders’ equation. They can result in
apparent reversed responses wherein the mean embarrassingly changes in the opposite direction
of that predicted from the breeders’ equation. They can also result in other unusual dynamics such
as time lags.

The simplest model of maternal effects (motivated by the inheritance of litter size in mice) is that
of Falconer (1965). Falconer assumes the maternal contribution is a linear function of the maternal
phenotype zmo, so that M = mzmo and the phenotypic decomposition becomes

z = G+mzmo + e (10.27)

Conceivably, M could be a nonlinear function of zmo, but linearity is assumed for tractability. We
refer to Equation 10.27 as the dilution model, as the effect of the maternal phenotype is diluted over
several generations. The parameter m can be regarded as the partial regression coefficient (holding
genotypic value constant) of offspring phenotype on maternal phenotype and and can be estimated
as the difference between the mother- and father-offspring regression slopes. Negative estimates of
m have been reported, which as we will shortly see can (in some cases) lead to a reversed response.
For example, Falconer (1965) estimated m = −0.15 for litter size in mice. Thus, if a mother has a
large litter, her offspring pay a penalty in terms of their own litter size. This actually make sense
in that the larger the litter, the less resources each offspring gets from their mother, which might
reduce their adult size, which in turn could negatively influence their own liter size. Likewise,
Janssen et al. (1988) estimatedm values of−0.58 and−0.40 for age of maturity in two replicate lines
of springtails.
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Assume that the joint distribution of phenotypes and breeding values in parents and offspring is
multivariate normal. Further assuming no epistasis, the expected phenotypic value of an offspring
whose mother has phenotypic value zmo is

E(zo |Amo, Afa, zmo) =
Amo

2
+
Afa

2
+mzmo (10.28a)

where Amo and Afa are the maternal and paternal breeding values. Averaging over the selected
parents, the mean in generation t+ 1 is

µz(t+ 1) =
A∗fa(t) +A∗mo(t)

2
+ mµ∗mo(t) (10.28b)

whereA∗fa(t) andA∗mo(t) are the mean breeding values of the selected parents and µ∗mo(t) the mean
phenotypic value of selected mothers in generation t. Using the regression of breeding value on
phenotype,

A = µA + bAz ( z − µz ) + e

allows us to predict the breeding value A of an individual from its phenotypic value z. Thus we
can rewrite A∗mo(t) as

Es (Amo ) = Es

(
µA(t) + bAz [ zmo − µz(t) ] + e

)
= µA(t) + bAzSmo(t) (10.29)

where Es( ) denotes the expected value over the selected parents. A similar expression holds
for A∗fa(t). In the absence of maternal effects, bAz = h2. However, the dilution model generates a
covariance betweenM andA, specificallyσA,M = mσ2

A / ( 2−m ), which in turn alters the covariance
between z and A. The resulting regression slope (at equilibrium) is

bAz = h2 2
2−m (10.30)

Starting with an unselected base population, the response to a single generation of selection is

∆µz(1) = Smo(1)
(

h2

2−m +m

)
+ Sfa(1)

h2

2−m (10.31)

An interesting consequence of Equation 10.28 is that ifm < 0, there is some possibility of a reversed
response, where ∆µz has opposite sign of S. If Sfa = Smo = S, a reversed response is expected if

m < 1−
√

1 + 2h2 (10.32a)

If selection is only occuring on females, this condition is

m < 1−
√

1 + h2 (10.32b)

An example of an apparent maternally-induced reversed response was seen by Falconer (1960, 1965)
in his selection experiments on litter size in mice. This character shows a negative maternal effect,
withm and h2 estimated to be−0.13 and 0.11, respectively. Since selection for litter size occurs only
in females, Equation 10.32b implies that a reversed response in the first generation is expected (as
1−
√

1 + 0.11 ' −0.05 > m).
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Figure 10.5. Prediction from the model, using Falconer’s estimated values of h2 = 0.11 and m = −0.13.
The predicted change in population mean following a single generation of selection on females with Smo > 0
is plotted. There is a reversed response in the first generation, even though the net genetic change is to increase
the character. By generation 3, the nongenetic change in phenotypic mean has largely decayed away, revealing
the net genetic change of Smo h2/[(1−m)(2−m)] = 0.044Smo.

Gene Frequency Changes Under Selection

Next, we turn to population-genetic considerations of the expected allele frequency changes at loci
underlying a quantitative trait.

How quickly does selection change the frequency of alleles at loci contributing to a trait under
selection? We start by reviewing a few results from population genetics. Consider a diallelic locus,
with alleles A1 and A2, whose genotypes have the following relative fitnesses:

Genotype A1A1 A1A2 A2A2

Fitness 1 1 + s 1 + 2s

This is an example of additive fitness. With these fitnesses, for every offspring left by an individual
with anA1A1 genotype, 1+2s offspring are left (on average) by individuals with anA2A2 genotype.
If q represents the frequency of alleleA2 before selection, then the change in the frequency of q after
selection is given by

∆q =
sq(1− q)
1 + 2sq

' sq(1− q) when | 2sq | << 1 (10.33)

Thus, under these fitnesses, the change in the frequency of the favorable allele is proportional to s.
In finite populations, genetic drift can overpower the effects of selection. In particular, when

4Ne | s | << 1

the fate of an allele is largely determined by gene drift, rather than selection. In such cases, favorable
alleles can easily be lost by drift.
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Now consider a locus contributing to a character z under selection. Suppose the genotypes at
this locus make the following contribution to the character:

Genotype A1A1 A1A2 A2A2

Contribution 0 a 2a

For a trait with phenotypic variation σ2
z under selection intensity i, this induces additive fitnesses

on these genotypes, with

s ' a

σz
i (10.34)

Hence, the change in allele frequency depends on both the strength of selection i and the relative
contribution a/σz of the character to the overall trait value. As expected, loci with larger contribu-
tions are under stronger selection than loci with minor contributions and hence have faster allele
frequency changes. Further note that if

4Ne| s | =
4Ne| a i |

σz
<< 1 (10.35)

then the effect of selection on this locus is weaker than the effects of drift (see Lecture 3). Thus,
many favorable QTL alleles can be lost by drift if either their effects (a/σz), the strength of selection
on the character (i), or the effective population size (Ne) are sufficiently small.

More generally, if the locus shows dominance towards the character, the fitnesses become

Genotype A1A1 A1A2 A2A2

Contribution 0 a(1 + k) 2a
Induced fitness 1 1 + s(1 + h) 1 + 2s

where for the induced fitnesses s = ai/σz(as above) and h = k.

Short-term Changes in the Variance

Selection has two routes by which to change the genetic variances, and hence the heritability and
selection response. First, it can change the frequencies at individual alleles. When the contribution
to a trait from any locus is very small, these selection-induced changes in allele frequencies over a
few generations are also very small. However, selection also creates correlations between alleles at
different loci (linkage disequilibrium), and this can result in an immediate change in the variance.

Bulmer’s Equation for the Change in Variance

Consider the within-generation change in the variance, δσ2
z = σ2

z∗−σ2
z . Using regression arguments

similar to those leading to the breeders’ equation, the expected response in the variance to a single
generation of selection is

d = σ2
O − σ2

P =
h4

2
δσ2
z (10.36)

where σ2
O is the variance in the offspring and σ2

P the variance in the unselected population. This
the variance response analog to the response in mean (the breeders’ equation), with h4/2 replacing
h2 and δσ2

z replacing S.

It turns out that all the change in the variance is due to a change in the additive genetic variance, so
that if Va denotes the additive variance before selection, then after one generation of selection

VA(1) = Va + d, VP (1) = VA(1) + VD + VE = VP + d (10.37)
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where VP is the phenotypic variance in the base (pre-selection) population. The heritability thus
becomes

h2(1) =
VA(1)
VP (1)

=
Va + d

VP + d

Truncation selection reduces the variance (δσz < 0), which results in reduced additive genetic
variance and heritability in the next generation, slowing response. This reduction in variance due
to selection creating linkage disequilibrium is referred to as the Bulmer effect, after Michael Bulmer’s
pioneering work on this subject in the 1970’s (Bulmer 1971, 1974, 1976).

One subtle feature of changes in the variance is that recombination breaks down the selection-
induced correlations, so that in the absence of selection, d(t + 1) = d(t)/2 (assuming unlinked
loci). Hence, one must iterate to obtain the value of the variance in generation t. Starting with an
unselected base population, d(0) = 0, we obtain the value for d(t+ 1) by iterating

d(t+ 1) =
d(t)

2
+
h4(t)

2
δσz(t) (10.38a)

The first term (d/2) is the decay in linkage disequilibrium from recombination while the second
term is the amount of new disequilibrium created by selection. Note for above that

σ2
z(t) = σ2

z(0) + d(t), and h2(t) =
VA(t)
VP (t)

=
Va + d(t)
VP + d(t)

(10.38b)

While all this looks rather complicated at first glance, its really a very straight forward series of
substitutions. The net result for directional selection is that most of the reduction in variance occurs
over the first few generations, which rapidly approaches an equilibrium value (the equilibrium
reduction in the additive variance), see Example 10.7 (below). However, under disruptive selection
(selection to increase the variance, for example by selecting both the largest and smallest parents),
the variance may continue to increase substantially over many generations before settling on its
equilibrium value.

At equilibrium, d(t+ 1) = d(t), and Equation 10.38a reduces to

d̃ = h̃4 δ̃(σ2
z) (10.39)

where tilde denotes an equilibrium value. Equation 10.38 is the analogue of the breeders’ equation
for predicting changes in variance. Provided the joint distribution of phenotypic and genotypic val-
ues remains multivariate normal, under the infinitesimal model the complete dynamics of the phe-
notypic distribution are described by Equation 10.38 and the breeders’ equation R(t) = h2(t)S(t),
where S(t) is the selection differential in generation t. Equation 10.38 makes the further point that
if we wish to use variance components to predict the response to selection, we need to start from an
unselected base population. If a population has been experiencing previous selection, then d 6= 0 and
hence the change σ2

A (and, in turn, the response to selection) cannot be predicted without knowing
the d value in the starting population.

Example 10.6. Data of Rendel (1943) suggests stabilizing selection occurs on egg weight in ducks. Of 960
eggs followed, 64.5% hatched. The change in mean egg weight (in grams) after selection was negligible,
but the variance showed a significant decrease. The variance was 52.7 before selection (using all 960 eggs)
and 43.9 after selection (in those eggs that hatched), giving δ(σ2

z) = −8.8. Assuming that the reduction
in variance due to gametic-phase disequilibrium is at equilibrium and taking h̃2

z = 0.60 (the heritability
for egg weight in poultry) gives

d̃ = h̃4 δ̃(σ2
z) = (0.6)2(−8.8) = −3.2
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and

σ̃ 2
A = h̃2 σ̃ 2

z = 0.6 · 52.7 = 31.6

Assuming the infinitesimal model, if selection is stopped, the additive variance is expected to eventually
increase to

σ2
A = σ2

a = σ̃ 2
A − d̃ = 31.6 + 3.2 = 34.8

with half this change being accomplished in one generation (assuming all underlying loci are unlinked).
Similarly, σ2

z = 52.7 + 3.2 = 55.9 and h2 = 34.8/55.9 = 0.62.

Change in Variance Under Truncation Selection

Provided the normality assumptions of the infinitesmal model hold, the changes in variance under
any selection model can be computed by obtaining the within-generation change in the phenotype
variance, δ(σ2

z(t) ), and applying Equation 10.38. In the general case, this requires numerical iteration
to obtain the equilibrium heritiability and genetic variance. However, when the phenotypic variance
after selection can be written as

σ2
z∗ = (1− κ)σ2

z (10.40a)

where κ is a constant independent of the variance, analytic solutions for the equilibrium variances
and heritability can be obtained. In this case,

δσz(t) = σ2
z∗(t)− σ2

z(t) = (1− κ)σ2
z(t)− σ2

z(t) = −κσ2
z(t)

and Equation 10.38a becomes

d(t+ 1) =
d(t)

2
− kh

4(t)
2

σ2
z(t) (10.40b)

Truncation selection — both as we have defined it for directional selection (Figure 10.1) and double
truncation giving disruptive or stabilizing selection (Figure 10.6) — satisfies Equation 10.40a. As
shown in Table 10.1, for truncation selection κ (the fractional reduction in the variance) is strictly a
function of the fraction p of the population saved and the type of truncation used.

Figure 10.6 Stabilizing and disruptive selection using double truncation. In both cases, a fraction p of the
population is allowed to reproduce. In stabilizing selection, the central p of the distribution is saved, while
under disruptive selection the uppermost and lowermost p/2 are saved.
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Table 10.1 Changes in the phenotypic variance under the various schemes of single- and double-truncation
given in Figure 10.6. Assuming the character is normally distributed before selection, the phenotypic variance
after selection is given by σ2

z∗ = (1− κ)σ2
z , where κ is a function of the fraction p of individuals saved. Here

ϕ denotes the unit normal density function and z[p] satisfies Pr(U ≤ z[p]) = p [so that Pr(U > z[1−p]) = p],
where U is a unit normal random variable. i is the selection intensity (Equation 10.14a).

Directional Truncation Selection: Uppermost (or lowermost) p saved

κ =
ϕ
(
z[1−p]

)
p

(
ϕ
(
z[1−p]

)
p

− z[1−p]

)
= i

(
i− z[1−p]

)
Stabilizing Truncation Selection: Middle fraction p of the distribution saved

κ =
2ϕ
(
z[1/2+p/2]

)
z[1/2+p/2]

p

Disruptive Truncation Selection: Uppermost and lowermost p/2 saved

κ = −
2ϕ
(
z[1−p/2]

)
z[1−p/2]

p

Example 10.7. Suppose directional truncation selection is performed (equally on both sexes) on a
normally distributed character with σ2

z = 100, h2 = 0.5, and p = 0.20 (the upper 20 percent of the
population is saved). From normal distribution tables,

Pr(U ≤ 0.84) = 0.8, hence z[1−p] = z[0.8] = 0.84

Likewise, evaluating the unit normal gives ϕ(0.84) = 0.2803, so that

i = ϕ(0.84)/p = 0.2803/0.20 = 1.402

From Table 5.1, the fraction of variance removed by selection is

κ = 1.402 (1.402− 0.84) = 0.787

Thus κ/2 = 0.394 and Equation 10.40b gives

d(t+ 1) =
d(t)

2
− 0.394

[ 50 + d(t) ]2

100 + d(t)

Starting selection in generation 0 on a base population in gametic-phase equilibrium, iteration yields

Generation 0 1 2 3 4 5 ∞
d(t) 0.00 −9.84 −11.96 −12.45 −12.56 −12.59 −12.59

σ2
A(t) 50.00 40.16 38.04 37.55 37.44 37.41 37.41

h2(t) 0.50 0.45 0.43 0.43 0.43 0.43 0.43
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Essentially all of the decline in additive variance occurs in the first three generations. How does this
reduction in σ2

A influence the per generation change in mean, R(t)? Since i is unchanged, but h2 and σ2
z

change over time, Equation 10.8 gives the response as

R(t) = h2(t) i σz(t) = 1.402h2(t)
√
σ2
z + d(t) = 1.402h2(t)

√
100 + d(t)

Response declines from an initial value of R = 1.4 · 0.5 · 10 = 7 to an equilibrium per-generation value of
R̃ = 1.4 · 0.43 ·

√
87.41 = 5.6.

How well do these predictions hold up for directional selection? Somewhat surprisingly, not
many experiments have directly examined these issues. One reason is that the predicted change
in h2 under directional selection is usually expected to be small and hence laborious to detect
(requiring very large sample sizes). One indirect study is that of Atkins and Thompson (1986), who
subjected blackface sheep to selection for increased bone length. Following 18 years of selection,
realized heritability was estimated to be 0.52± 0.02. Using the infinitesimal model, they predicted
the expected base population heritability should be 0.57, in agreement with the estimated base
population heritiability of 0.56 ± 0.04. Further, the infinitesimal model predicts a 10% decrease in
phenotypic variance. The observed values were a 9% decrease in the upwardly-selected line and
an 11% decrease in the downwardly-selected line.

A more direct study is that of Sorensen and Hill (1982), who subjected two replicate lines of
Drosophila melanogaster to directional truncation selection on abdominal bristle number for four
generations and then relaxed selection (Table 10.2). They interpreted their data as being consistent
with the presence of a major allele (or alleles) at low frequency in the base population. These alleles
are lost by sampling accidents in some replicates (e.g., replicate 2 which shows no net increase in
additive variance). If not lost, they are expected to increase rapidly in frequency due to selection,
increasing additive variance (replicate 1), with this increase being partly masked by generation
of negative disequilibrium with other loci. Once selection stops, disequilibrium breaks down,
resulting in a further increase in additive variance (compare the additive variance in lines H3
and C7 in replicate 1). Hence, even when major alleles are present, generation of gametic-phase
disequilibrium reduces the rate of selection response.

Table 10.2 Heritability and additive genetic variance in an experimental population undergoing directional
selection on abdominal bristle number in Drosophila melanogaster. The base population is denoted by B. At the
third generation of selection (H3) and the following three generations of relaxed selection (C7, in generation
7), h2 was estimated from the response to divergent selection and σ2

A subsequently estimated by ĥ 2σ2
z . The

standard error for ĥ 2 in all cases was 0.04. From Sorensen and Hill (1982).

ĥ 2(t) σ̂ 2
A(t)

B H3 C7 B H3 C7
Replicate 1 0.42 0.45 0.59 3.63 5.83 7.66
Replicate 2 0.38 0.26 0.26 2.96 2.28 2.08
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Lecture 10 Problems

1. Taking the selection differential as the difference between the means of selected parents and
the mean before selection makes the assumption that each selected parent contributes equally to
the next generation. Biases introduced by differential fertility can be removed by using effective
selection differentials, Se,

Se =
1
np

np∑
i=1

( ni
n

)
(zi − µz) =

(
1
np

np∑
i=1

( ni
n

)
zi

)
− µz

where zi and ni are the phenotypic value and total number of offspring of the ith parent, np the
number of parents selected to reproduce, n the average number of offspring for selected parents,
andµz is the mean before selection. If all selected parents have the same number of offspring (ni = n
for all i), then Se reduces to S. However, if there is variation in ni among selected parents, Se can be
considerably different from S. This corrected differential is occasionally referred to as the realized
selection differential.

Suppose 5 parents are selected, with the following trait values and offspring number:
Parent phenotypic value number of offspring

1 45 1
2 40 2
3 35 3
4 33 5
5 32 5

If the mean before selection is 30, compute the S and Se. If h2 = 0.3, what is the expected response
that would be estimated under the two differentials?

2. Consider a population not currently under selection, with σ2
z = 100 and h2 = 0.5 and d(0) = 0

(no disequilibrium). Consider two types of selection (i) stabilizing where σ2
z∗ = 0.5σ2

z (i.e., k = 1/2)
and (ii) disruptive selection σ2

z∗ = 1.5σ2
z (k = −1/2). For both types of selection compute d(1) and

d(2), σ2
A(1) and σ2

A(2), σ2
z(1) and σ2

z(2), and h2(1) and h2(2).
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Solutions to Lecture 10 Problems

1. Here µ∗ = 37, giving S = 7, while n = 3.2 and
i zi ni ni/n zi · ni/n
1 45 1 0.3125 14.06
2 40 2 0.6250 25.00
3 35 3 0.9375 32.81
4 33 5 1.563 51.56
5 32 5 1.563 50.0

1
np

np∑
i=1

( ni
n

)
zi = 34.69

Giving Se = 4.69. Assuming h2 = 0.3, using the uncorrected S gives a response ofR = 0.3 · 7 = 2.1,
while the true expected response if R = 0.3 · 4.69 = 1.4

2. Here σ2
a = h2σ2

z = 50, and d(0) = 0

d(1) = d(0)− k(h4/2)σ2
z(0) =

{
0− 0.5 ∗ 0.125 ∗ 100 = −6.25 for stabilizing, k = 0.5
0 + 0.5 ∗ 0.125 ∗ 100 = 6.25 for disruptive, k = −0.5

σ2
A(1) = σ2

a + d(1) =
{

43.75 for stabilizing
56.25 for disruptive

, σ2
z(1) = σ2

z + d(1) =
{

93.75 for stabilizing
106.25 for disruptive

h2(1) = σ2
A(1)/σ2

z(1) =
{

0.467 for stabilizing
0.529 for disruptive

d(2) = d(1)/2− k(h4(1)/2)σ2
z(1) =

{−6.25/2− 0.5(0.462/2) ∗ 93.75 = −8.02 for stabilizing
6.25/2 + 0.5(0.532/2) ∗ 106.25 = 10.59 for disruptive

σ2
A(2) = σ2

a + d(2) =
{

41.77 for stabilizing
60.57 for disruptive

, σ2
z(2) = σ2

z + d(2) =
{

91.77 for stabilizing
110.6 for disruptive

h2(2) = σ2
A(2)/σ2

z(2) =
{

0.455 for stabilizing
0.548 for disruptive
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