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Covariance, Regression, and Correlation

In the previous chapter, the variance was introduced as a measure of the dispersion
of a univariate distribution. Additional statistics are required to describe the joint
distribution of two or more variables. The covariance provides a natural measure
of the association between two variables, and it appears in the analysis of many
problems in quantitative genetics including the resemblance between relatives,
the correlation between characters, and measures of selection.

As a prelude to the formal theory of covariance and regression, we first pro-
vide a brief review of the theory for the distribution of pairs of random variables.
We then give a formal definition of the covariance and its properties. Next, we
show how the covariance enters naturally into statistical methods for estimating
the linear relationship between two variables (least-squares linear regression) and
for estimating the goodness-of-fit of such linear trends (correlation). Finally, we
apply the concept of covariance to several problems in quantitative-genetic the-
ory. More advanced topics associated with multivariate distributions involving
three or more variables are taken up in Chapter 8.

JOINTLY DISTRIBUTED RANDOM VARIABLES

The probability of joint occurrence of a pair of random variables (x, y) is specified
by the joint probability density function, p(x, y), where

P( y1 ≤ y ≤ y2, x1 ≤ x ≤ x2 ) =
∫ y2

y1

∫ x2

x1

p(x, y) dx dy (3.1)

We often ask questions of the form: What is the distribution of y given that x equals
some specified value? For example, we might want to know the probability that
parents whose height is 68 inches have offspring with height exceeding 70 inches.
To answer such questions, we use p(y|x), the conditional density of y given x,
where

P( y1 ≤ y ≤ y2 |x ) =
∫ y2

y1

p( y |x ) dy (3.2)

Joint probability density functions, p(x, y), and conditional density functions,
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p(y|x), are connected by
p(x, y) = p( y |x ) p(x) (3.3a)

where p(x) =
∫ +∞
−∞ p( y |x ) dy is the marginal (univariate) density of x.

Two random variables, x and y, are said to be independent if p(x, y) can be
factored into the product of a function of x only and a function of y only, i.e.,

p(x, y) = p(x) p(y) (3.3b)

If x and y are independent, knowledge of x gives no information about the value
of y. From Equations 3.3a and 3.3b, if p(x, y) = p(x) p(y), then p( y |x ) = p(y).

Expectations of Jointly Distributed Variables

The expectation of a bivariate function, f(x, y), is determined by the joint proba-
bility density

E[ f(x, y) ] =
∫ +∞

−∞

∫ +∞

−∞
f(x, y) p(x, y) dx dy (3.4)

Most of this chapter is focused on conditional expectation, i.e., the expectation
of one variable, given information on another. For example, one may know the
value of x (perhaps parental height), and wish to compute the expected value of
y (offspring height) given x. In general, conditional expectations are computed
by using the conditional density

E( y |x ) =
∫ +∞

−∞
y p( y |x ) dy (3.5)

If x and y are independent, then E(y|x) = E(y), the unconditional expectation.
Otherwise, E( y |x ) is a function of the specified x value. For height in humans
(Figure 1.1), Galton (1889) observed a linear relationship,

E( y |x ) = α + βx (3.6)

where α and β are constants. Thus, the conditional expectation of height in off-
spring (y) is linearly related to the average height of the parents (x).

COVARIANCE

Consider a set of paired variables, (x, y). For each pair, subtract the population
mean µx from the measure of x, and similarly subtract µy from y. Finally, for
each pair of observations, multiply both of these new measures together to obtain
(x − µx)(y − µy). The covariance of x and y is defined to be the average of this
quantity over all pairs of measures in the population,

σ(x, y) = E[ (x− µx) (y − µy) ] (3.7)
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Figure 3.1 Scatterplots for the variables x and y. Each point in the x-y plane
corresponds to a single pair of observations (x, y). The line drawn through the
scatterplot gives the expected value of y given a specified value of x. (A) There
is no linear tendency for large x values to be associated with large (or small) y
values, so σ(x, y) = 0. (B) As x increases, the conditional expectation of y given
x, E(y|x), also increases, and σ(x, y) > 0. (C) As x increases, the conditional
expectation of y given x decreases, and σ(x, y) < 0.

We often denote covariance by σx,y. Because E(x) = µx and E(y) = µy, expansion
of the product leads to further simplification,

σ(x, y) = E[ (x− µx) (y − µy) ]
= E (xy − µy x− µx y + µx µy )
= E(x y)− µy E(x)− µx E(y) + µx µy

= E(x y)− µx µy (3.8)

In words, the covariance is the mean of the pairwise cross-product x y minus the
cross-product of the means. The sampling estimator of σ(x, y) is similar in form
to that for a variance,

Cov(x, y) =
n ( xy − x · y )

n− 1
(3.9)

where n is the number of pairs of observations, and

xy =
1
n

n∑
i=1

xi yi

The covariance is a measure of association between x and y (Figure 3.1). It
is positive if y increases with increasing x, negative if y decreases as x increases,
and zero if there is no linear tendency for y to change with x. If x and y are
independent, then σ(x, y) = 0, but the converse is not true — a covariance of
zero does not necessarily imply independence. (We will return to this shortly; see
Figure 3.3.)
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Useful Identities for Variances and Covariances

Since σ(x, y) = σ(y, x), covariances are symmetrical. Furthermore, from the defi-
nition of the variance and covariance,

σ(x, x) = σ2(x) (3.10a)

i.e., the covariance of a variable with itself is the variance of that variable. It also follows
from Equation 3.8 that, for any constant a,

σ(a, x) = 0 (3.10b)
σ(a x, y) = a σ(x, y) (3.10c)

and if b is also a constant

σ(a x, b y) = a b σ(x, y) (3.10d)

From Equations 3.10a and 3.10d,

σ2(a x) = a2σ2(x) (3.10e)

i.e., the variance of the transformed variable ax is a2 times the variance of x. Likewise,
for any constant a,

σ[ (a + x), y ] = σ(x, y) (3.10f)

so that simply adding a constant to a variable does not change its covariance with another
variable.

Finally, the covariance of two sums can be written as a sum of covariances,

σ[ (x + y), (w + z) ] = σ(x, w) + σ(y, w) + σ(x, z) + σ(y, z) (3.10g)

Similarly, the variance of a sum can be expressed as the sum of all possible vari-
ances and covariances. From Equations 3.10a and 3.10g,

σ2(x + y) = σ2(x) + σ2(y) + 2σ(x, y) (3.11a)

More generally,

σ2

(
n∑
i

xi

)
=

n∑
i

n∑
j

σ(xi, xj) =
n∑
i

σ2(xi) + 2
n∑

i<j

σ(xi, xj) (3.11b)

Thus, the variance of a sum of uncorrelated variables is just the sum of the variances of
each variable.

We will make considerable use of the preceding relationships in the remainder
of this chapter and in chapters to come. Methods for approximating variances and
covariances of more complex functions are outlined in Appendix 1.
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REGRESSION

Depending on the causal connections between two variables, x and y, their true
relationship may be linear or nonlinear. However, regardless of the true pattern
of association, a linear model can always serve as a first approximation. In this
case, the analysis is particularly simple,

y = α + βx + e (3.12a)
where α is the y-intercept, β is the slope of the line (also known as the regression
coefficient), and e is the residual error. Letting

ŷ = α + βx (3.12b)
be the value of y predicted by the model, then the residual error is the deviation
between the observed and predicted y value, i.e., e = y− ŷ. When information on
x is used to predict y, x is referred to as the predictor or independent variable
and y as the response or dependent variable.

The objective of linear regression analysis is to estimate the model parameters,
α and β, that give the “best fit” for the joint distribution of x and y. The true
parameters α and β are only obtainable if the entire population is sampled. With
an incomplete sample, α and β are approximated by sample estimators, denoted
as a and b. Good approximations of α and β are sometimes obtainable by visual
inspection of the data, particularly in the physical sciences, where deviations from
a simple relationship are due to errors of measurement rather than biological
variability. However, in biology many factors are often beyond the investigator’s
control. The data in Figure 3.2 provide a good example. While there appears to
be a weak positive relationship between maternal weight and offspring number
in rats, it is difficult to say anything more precise. An objective definition of “best
fit” is required.

Derivation of the Least-Squares Linear Regression

The mathematical method of least-squares linear regression provides one such
best-fit solution. Without making any assumptions about the true joint distri-
bution of x and y, least-squares regression minimizes the average value of the
squared (vertical) deviations of the observed y from the values predicted by the
regression line. That is, the least-squares solution yields the values of a and b

that minimize the mean squared residual, e2. Other criteria could be used to de-
fine “best fit.” For example, one might minimize the mean absolute deviations
(or cubed deviations) of observed values from predicted values. However, as we
will now see, least-squares regression has the unique and very useful property of
maximizing the amount of variance in y that can be explained by a linear model.

Consider a sample of n individuals, each of which has been measured for x
and y. Recalling the definition of a residual

e = y − ŷ = y − a− bx (3.13a)
and then adding and subtracting the quantity ( y+b x ) on the right side, we obtain



40 CHAPTER 3

N
u

m
be

r 
of

 o
ff

sp
ri

ng

Weight of mother (g)

31–40 11–20

14

12

10

8

6

4

2

0
200180160140120100

Individuals in bivariate class:

806040

21–30 1–10

Figure 3.2 A bivariate plot of the relationship between maternal weight and
number of offspring for the sample of rats summarized in Table 2.2. Different-
sized circles refer to different numbers of individuals in the bivariate classes.

e = ( y − y )− b ( x− x )− ( a + b x− y ) (3.13b)

Squaring both sides leads to

e2 = ( y − y )2 − 2 b ( y − y ) ( x− x ) + b2( x− x )2 + ( a + b x− y )2

− 2 ( y − y ) (a + b x− y ) + 2 b ( x− x )( a + b x− y ) (3.13c)

Finally, we consider the average value of e2 in the sample. The final two terms in
Equation 3.13b drop out here because, by definition, the mean values of (x − x)
and (y − y) are zero. However, by definition, the mean values of the first three
terms are directly related to the sample variances and covariance. Thus,

e2 =
(

n− 1
n

) [
Var(y)− 2 b Cov(x, y) + b2 Var(x)

]
+ ( a + b x− y )2 (3.13d)

The values of a and b that minimize e2 are obtained by taking partial derivatives
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of this function and setting them equal to zero:

∂ (e2)
∂ a

= 2 (a + b x− y ) = 0

∂ (e2)
∂ b

= 2
[(

n− 1
n

)
[−Cov(x, y) + b Var(x) ] + x ( a + b x− y )

]
= 0

The solutions to these two equations are

a = y − b x (3.14a)

b =
Cov(x, y)

Var(x)
(3.14b)

Thus, the least-squares estimators for the intercept and slope of a linear regression
are simple functions of the observed means, variances, and covariances. From the
standpoint of quantitative genetics, this property is exceedingly useful, since such
statistics are readily obtainable from phenotypic data.

Properties of Least-squares Regressions

Here we summarize some fundamental features and useful properties of the least-
squares approach to linear regression analysis:

1. The regression line passes through the means of both x and y. This relationship
should be immediately apparent from Equation 3.14a, which implies y =
a + b x.

2. The average value of the residual is zero. From Equation 3.13a, the mean
residual is e = y − a − b x, which is constrained to be zero by Equation
3.14a. Thus, the least-squares procedure results in a fit to the data such
that the sum of (vertical) deviations above and below the regression line
are exactly equal.

3. For any set of paired data, the least-squares regression parameters, a and b,
define the straight line that maximizes the amount of variation in y that can be
explained by a linear regression on x. Since e = 0, it follows that the variance
of residual errors about the regression is simply e2. As noted above, this
variance is the quantity minimized by the least-squares procedure.

4. The residual errors around the least-squares regression are uncorrelated with the
predictor variable x. This statement follows since

Cov(x, e) = Cov[ x, (y − a− b x) ] = Cov(x, y)− Cov(x, a)− b Cov(x, x)
= Cov(x, y)− 0− b Var(x)

= Cov(x, y)− Cov(x, y)
Var(x)

Var(x) = 0
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Figure 3.3 A linear least-squares fit to an inherently nonlinear data set. Although
there is a systematic relationship between the residual error (e) and the predictor
variable (x), the two are uncorrelated (show no net linear trend) when viewed
over the entire range of x. The mean residual error ( e = 0 ) is denoted by the
dashed line on the right graph.

Note, however, that Cov(x, e) = 0 does not guarantee that e and x are
independent. In Figure 3.3, for example, because of a nonlinear relation-
ship between y and x, the residual errors associated with extreme values
of x tend to be negative while those for intermediate values are positive.
Thus, if the true regression is nonlinear, then E( e |x ) 6= 0 for some x val-
ues, and the predictive power of the linear model is compromised. Even
if the true regression is linear, the variance of the residual errors may vary
with x, in which case the regression is said to display heteroscedasticity
(Figure 3.4). If the conditional variance of the residual errors given any
specified x value, σ2( e |x ), is a constant (i.e., independent of the value
of x), then the regression is said to be homoscedastic.

5. There is an important situation in which the true regression, the value of
E( y |x ), is both linear and homoscedastic — when x are y are bivariate nor-
mally distributed. The requirements for such a distribution are that the
univariate distributions of both x and y are normal and that the condi-
tional distributions of y given x, and x given y, are also normal (Chapter
8). Since statistical testing is simplified enormously, it is generally desir-
able to work with normally distributed data. For situations in which the
raw data are not so distributed, a variety of transformations exist that can
render the data close to normality (Chapter 11).

6. It is clear from Equations 3.14a,b that the regression of y on x is different from
the regression of x on y unless the means and variances of the two variables are
equal. This distinction is made by denoting the regression coefficient by
b(y, x) or by,x when x is the predictor and y the response variable.
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Figure 3.4 The dispersion of residual errors around a regression. (A) The regres-
sion is homoscedastic — the variance of residuals given x is a constant. (B) The
regression is heteroscedastic — the variance of residuals increases with x. In this
case, higher x values predict y with less certainty.

For practical reasons, we have expressed properties 1 – 6 in terms of the
estimators a, b, Cov(x, y), and Var(x). They also hold when the estimators are
replaced by the true parameters α, β, σ(x, y), and σ2(x).

Example 1. Suppose Cov(x, y) = 10, Var(x) = 10, Var(y) = 15, and x = y = 0.
Compute the least-squares regressions of y on x, and of x on y.

From Equation 3.14a, a = 0 for both regressions. However,

b(y, x) = Cov(x, y)/Var(x) = 10/10 = 1

while b(x, y) = Cov(x, y)/Var(y) = 2/3. Hence, ŷ = x is the least-squares
regression of y on x, while x̂ = (2/3)y is the regression of x on y.

CORRELATION

For purposes of hypothesis testing, it is often desirable to use a dimensionless
measure of association. The most frequently used measure in bivariate analysis
is the correlation coefficient,

r(x, y) =
Cov(x, y)√

Var(x) Var(y)
(3.15a)
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Note that r(x, y) is symmetrical, i.e., r(x, y) = r(y, x). Thus, where there is
no ambiguity as to the variables being considered, we abbreviate r(x, y) as r.
The parametric correlation coefficient is denoted by ρ(x, y) (or ρ) and equals
σ(x, y)/σ(x)σ(y). The least-squares regression coefficient is related to the cor-
relation coefficient by

b(y, x) = r

√
Var(y)
Var(x)

(3.15b)

An advantage of correlations over covariances is that the former are scale indepen-
dent. This can be seen by noting that if w and c are constants,

r(w x, c y) =
Cov(w x, c y)√

Var(w x) Var(c y)
=

w c Cov(x, y)√
w2 Var(x) c2 Var(y)

= r(x, y) (3.16a)

Thus scaling x and/or y by constants does not change the correlation coefficient,
although the variances and covariances are affected. Since r is dimensionless with
limits of ±1, it gives a direct measure of the degree of association: if |r| is close to
one, x and y are very strongly associated in a linear fashion, while if |r| is close to
zero, they are not.

The correlation coefficient has other useful properties. First, r is a standardized
regression coefficient (the regression coefficient resulting from rescaling x and y such
that each has unit variance). Letting x′ = x/

√
Var(x) and y′ = y/

√
Var(y) gives

Var(x′) = Var(y′) = 1, implying

b(y′, x′) = b(x′, y′) = Cov(x′, y′) =
Cov(x, y)√

Var(x) Var(y)
= r (3.16b)

Thus, when variables are standardized, the regression coefficient is equal to the
correlation coefficient regardless of whether x′ or y′ is chosen as the predictor
variable.

Second, the squared correlation coefficient measures the proportion of the variance
in y that is explained by assuming that E(y|x) is linear. The variance of the response
variable y has two components: r2 Var(y), the amount of variance accounted for
by the linear model (the regression variance), and (1− r2) Var(y), the remaining
variance not accountable by the regression (the residual variance). To obtain this
result, we derive the variance of the residual deviation defined in Equation 3.13a,

Var(e) = Var( y − a− bx ) = Var( y − bx )

= Var(y)− 2 b Cov(x, y) + b2 Var(x)

= Var(y)− 2 [ Cov(x, y) ]2

Var(x)
+

[ Cov(x, y) ]2 Var(x)
[ Var(x) ]2

=
(

1− [ Cov(x, y) ]2

Var(x) Var(y)

)
Var(y) = (1− r2) Var(y) (3.17)
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Example 2. Returning to Table 2.1, the preceding formulae can be used to char-
acterize the relationship between maternal weight and offspring number in rats.
Here we take offspring number as the response variable y and maternal weight
as the predictor variable x. The mean and variance for maternal weight were
found to be x = 118.90 and Var(x) = 623.06 (Table 2.1). For offspring number,
y = 5.49 and Var(y) = 2.94. In order to obtain an estimate of the covariance,
we first require an estimate of E(x y). Taking the xy cross-product of all classes
in Table 2.1 (using the midpoint of the interal for the value of x) and weighting
them by their frequencies,

xy =
(1 · 4 · 55) + (3 · 5 · 55) + (1 · 6 · 55) + · · ·+ (1 · 10 · 195)

1003
= 660.14

The covariance estimate is then obtained using Equation 3.9,

Cov(x, y) =
1003
1002

[ 660.14− (118.90× 5.49) ] = 7.39

From Equation 3.14b, the slope of the regression is found to be

b(y, x) =
7.39

623.06
= 0.01

Thus, the expected increase in number of offspring per gram increase in maternal
weight is about 0.01. How predictable is this change? From Equation 3.15a, the
correlation coefficient is estimated to be

r =
7.39√

623.06× 2.94
= 0.17

Squaring this value, r2 = 0.03. Therefore, only about 3 percent of the variance
in offspring number can be accounted for with a model that assumes a linear
relationship with maternal weight.


