Consider the following 25 data points (to save retyping, this list is also on the website as a text link)

<table>
<thead>
<tr>
<th>8.26</th>
<th>6.33</th>
<th>10.4</th>
<th>5.27</th>
<th>5.35</th>
<th>5.61</th>
<th>6.12</th>
<th>6.19</th>
<th>5.2</th>
<th>7.01</th>
<th>8.74</th>
<th>7.78</th>
<th>7.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.5</td>
<td>5.8</td>
<td>5.12</td>
<td>7.41</td>
<td>6.52</td>
<td>6.21</td>
<td>12.28</td>
<td>5.6</td>
<td>5.38</td>
<td>6.6</td>
<td>8.74</td>
<td></td>
</tr>
</tbody>
</table>

Using this data

1: Using a randomization test, what is the \(p \) value for a test that the mean = 8?

Assuming the distribution is symmetric about the mean, we expected equal numbers above and below the mean, while we have 5 above the mean and 20 below. Recall that since we really don’t care which number is in excess, this is a two-sided test, and we need to compute the probability of seeing 5 (or fewer) above the mean and 5 (or fewer) below the mean. Under the null hypothesis, the expected number \(k \) is distributed as a binomial with \(n = 25 \) and \(p = 1/2 \). In \(R \), \(\text{pbinom}(5, 25, 0.5) \) returns the probability that \(k \leq 5 \), or 0.002038658. Likewise, the chance of seeing 5 or fewer below the mean (i.e. \(k \geq 20 \)) is \(1 - \text{pbinom}(20, 25, 0.5) \), or 0.0004552603. Hence, the probability of seeing something this extreme is 0.002493918, or 0.25%.

2: What is the jackknife estimate, its standard error, and the approximate confidence intervals for the estimated skew,

\[\hat{S}_3 = \frac{1}{n} \sum \frac{(x_i - \bar{x})^3}{n} \]

Using the \(R \) code from the the \(R \) bootstrap notes, we first need to define the skew. Let \(x \) be the data vector, then define the skew with the function \(SK \),

\[
> \text{SK} <- \text{function}(x) \ \text{sum}((x-\text{mean}(x))^3) / \text{length}(x)
\]

Here (from the notes) is the \(R \) code to jackknife this data.

\[
\text{jack} <- \text{numeric(length}(x)-1)\\\text{pseudo} <- \text{numeric(length}(x))\\\text{for (i in 1:length}(x))\\\quad \text{for (j in 1:length}(x))\\\qquad \text{if(j < i) jack[j] <- x[j] else if(j > i) jack[j-1] <- x[j]}\\\text{pseudo[i] <- length}(x) * \text{SK}(x) - (\text{length}(x)-1) * \text{SK}(\text{jack})
\]

The jackknife estimator is the mean of the pseudovalues,

\[
> \text{mean(pseudo)}\\[1] \ 8.735525
\]

The standard error is the square root of the variance of the pseudovalues,

\[
> \text{sqrt(} \text{var(pseudo)} / \text{length}(x))\\[1] \ 5.3023
\]

The approximate 95% confidence interval is given by \(\text{mean(pseudo) + \text{qt}(0.975, \text{length}(x)-1) * \text{sqrt(} \text{var(pseudo)} / \text{length}(x))} \)

Using \(R \), the upper and lower limits become

\[
> \text{mean(pseudo) + \text{qt}(0.975, \text{length}(x)-1) * \text{sqrt(} \text{var(pseudo)} / \text{length}(x))}\\[1] \ 19.68079\\> \text{mean(pseudo) - \text{qt}(0.975, \text{length}(x)-1) * \text{sqrt(} \text{var(pseudo)} / \text{length}(x))}\\[1] -2.209743
\]
3: Using 1000 bootstrap samples, consider an estimate of the scaled kurtosis,

\[\hat{K} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 - 3 \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^2 \]

Again, letting \(\mathbf{x} \) be the data vector, then the estimated kurtosis is given by the function \texttt{kur},

```r
> kur <- function(x) sum((x-mean(x))^4)/length(x) - 3*(sum((x-mean(x))^2)/length(x))^2
```

To generate 1000 bootstrap values the \texttt{R} code from the bootstrap notes is

```r
> boot <- numeric(1000)
> for (i in 1:1000) boot[i] <- kur(sample(x, replace=T))
```

(a) Plot the distribution of bootstrap values

```r
> hist(boot)
```

The bootstrap estimator becomes

```r
> mean(boot)
[1] 11.53792
```

(b) What is the estimated bias and the standard deviation for \(\hat{K} \)?

```r
> bias <- mean(boot) - kur(x)
[1] -7.30799
> sqrt(var(boot))
[1] 13.27730
```

(c) Using the results for (a), what is an approximate 95% (normally-assumption) confidence interval for \(\hat{K} \)?

Assuming normality, the approximate 95% confidence interval is given by

\[\hat{K} \pm 1.96 \sqrt{\text{Var(bootstrap)}} \]

(or adjusting for the bias an lower and upper values of

```r
> kur(x) - bias - 1.96*sqrt(var(boot))
[1] 0.1303970
> kur(x) - bias + 1.96*sqrt(var(boot))
[1] 52.1774
```

(d) Compute Efron’s 95% confidence limit for this data.

```r
> quantile(boot, 0.975)
[1] 36.45404
```

and

```r
> quantile(boot, 0.025)
[1] -8.53793
```

(e) Compute Hall’s 95% confidence limit for this data.

```r
> 2*kur(x) - quantile(boot, 0.025)
[1] 46.22974
```

and

```r
> 2*kur(x) - quantile(boot, 0.975)
[1] 1.237769
```

Fun \texttt{R} fact. If \(\mathbf{x} \) is a vector of data, then the \texttt{R} command \texttt{sample(x, replace=T)} returns a sampling with replacement vector of the data in \(\mathbf{c} \), i.e., a bootstrap sample.