EEB 581, Problem Set Ten

Solutions

Consider the following 25 data points (to save retyping, this list is also on the website as a text link)

Using this data

1: Using a randomization test, what is the p value for a test that the mean = 8?

Assuming the distribution is symmetric about the mean, we expected equal numbers above and below the mean, while we have 5 above the mean and 20 below. Recall that since we really don't care which number is in excess, this is a two-sided test, and we need to compute the probability of seeing 5 (or fewer) above the mean and 5 (or fewer) below the mean. Under the null hypothesis, the expected number k is distribution as a binomial with n=25 and p=1/2. In R, > pbinom(5,25,0.5) returns the probability that $k \leq 5$, or 0.002038658. Likewise, the chance of seeing 5 or fewer below the mean (i.e. $k \geq 20$) is > 1- pbinom(20,25,0.5), or 0.0004552603. Hence, the probability of seeing something this extreme is 0.002493918, or 0.25%.

2: What is the jackknife estimate, its standard error, and the approximate confidence intervals for the estimated skew,

$$\widehat{S}_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3$$

Using the R code from the the R bootstrap notes, we first need to define the skew. Let x be the data vector, then define the skew with the function SK,

```
> SK <- function(x) sum((x-mean(x))^3) /length(x)</pre>
Here (from the notes) is the R code to jackknife this data.
jack <- numeric(length(x)-1)</pre>
pseudo <- numeric(length(x))</pre>
for (i in 1:length(x))
{ for (j in 1:length(x))
\{if(j < i) | jack[j] < x[j] | else | if(j > i) | jack[j-1] < x[j] \}
pseudo[i] <- length(x)*SK(x) -(length(x)-1)*SK(jack)}</pre>
The jackknife estimator is the mean of the pseudovalues,
> mean(pseudo)
[1] 8.735525
The standard error is the square root of the variance of the pseudovalues,
> sqrt(var(pseudo)/length(x))
[1] 5.3032
The approximate 95% confidence interval is given by mean(pseudo) \pm t_{0.975,n-1}\sqrt{\text{var}(\text{pseudo})}/n
Using R, the upper and lower limits become
> mean(pseudo) + qt(0.975,length(x)-1)*sqrt(var(pseudo)/length(x))
[1] 19.68079
> mean(pseudo) - qt(0.975,length(x)-1)*sqrt(var(pseudo)/length(x))
[1]-2.209743
```

3: Using 1000 bootstrap samples, consider an estimate of the scaled kurtosis,

$$\hat{K} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4 - 3\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2$$

Again, letting x be the data vector, then the estimated kurtosis is given by the function function kur.

- > kur <- function(x) sum((x-mean(x))^4)/length(x) -</pre>
 - $3*(sum((x-mean(x))^2)/length(x))^2$

To generate 1000 bootstrap values the R code from the bootstrap notes is

> boot <-numeric(1000)</pre>

for (i in 1:1000) boot[i] <- kur(sample(x,replace=T))</pre>

- (a) Plot the distribution of bootstrap values
 - > hist(boot) yields

The bootstrap estimator becomes

- > mean(boot)
- [1] 11.53792
- (b) What is the estimated bias and the standard deviation for \hat{K} ?
 - > bias <- mean(boot) kur(x)</pre>
 - [1] -7.30799
 - > sqrt(var(boot))
 - [1] 13.27730
- (c) Using the results for (a), what is an approximate 95% (normally-assumption) confidence interval for *K*?

Assuming normality, the approximate 95% confidence interval is given by

$$\widehat{K} \pm 1.96 \sqrt{\text{Var(bootstrap)}}$$

(or adjusting for the bias an lower and upper values of

- > kur(x) bias 1.96*sqrt(var(boot))
- [1] 0.1303970
- > kur(x) bias + 1.96*sqrt(var(boot))
- [1] 52.1774
- (d) Compute Efron's 95% confidence limit for this data.
 - > quantile(boot,0.975)
 - [1] 36.45404

and

- > quantile(boot,0.025)
- [1] -8.53793
- (e) Compute Hall's 95% confidence limit for this data.
 - > 2*kur(x) quantile(boot,0.025)
 - [1] 46.22974

and

- > 2*kur(x) quantile(boot,0.975)
- [1] 1.237769

Fun \mathbb{R} fact. If \mathbb{x} is a vector of data, then the \mathbb{R} command $\mathbf{sample}(\mathbb{x}, \mathbf{replace} = \mathbb{T})$ returns a sampling with replacement vector of the data in \mathbb{C} , i.e., a bootstrap sample.