EEB 581, Problem Set Nine Solutions

1 : Consider the following covariance matrix,

$$A = \begin{pmatrix} 40 & 30 & -30\\ 30 & 40 & -20\\ -30 & -20 & 40 \end{pmatrix}$$

[,3]

- (a) What is the trace of **A**?. trace(A) = 40+40+40=120
- (b) Use **R** to compute the determinant of **A**. det(A) = 12000
- (c) Use \mathbf{R} to solve for eigenvalues and the corresponding eigenvectors.

```
R returns
$values
[1] 93.58899 20.00000 6.41101
$vectors x
            [,1]
                          [,2]
[1,] -0.6207190 1.459452e-16 0.7840331
[2,] -0.5543951 -7.071068e-01 -0.4389146
[3,] 0.5543951
                  -7.071068e-01 0.4389146
```

- (d) Use **R** to show that the eigenvectors and their corresponding eigenvalues obtained in (c) satisfy the eigenvalue-eigenvector equation (i.e., that $Ae_i = \lambda_i e_i$).
- Using your results from (a) and (c), is trace (A) = sum of the eigenvalues?(e) Yes, 93.58899 + 20.00000 + 6.41101 = 120
- (f) Using your results from (a) and (c), is det(A) = product of the eigenvalues?Yes, 93.58899 * 20.00000 * 6.41101 = 12000
- Diagonalize **A**, i.e., write it as the matrix product $\mathbf{U}^T \Lambda \mathbf{U}$. (g)

$$\mathbf{U} = \begin{pmatrix} -0.620 & 0 & 0.784 \\ -0.554 & -0.707 & -0.439 \\ 0.554 & -0.707 & 0.439 \end{pmatrix}, \qquad \Lambda = \begin{pmatrix} -93.59 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 6.41 \end{pmatrix}$$

Hence

$$\mathbf{A} = \begin{pmatrix} -0.620 & -0.554 & 0.554 \\ 0 & -0.707 & -0.707 \\ 0.784 & -0.439 & 0.439 \end{pmatrix} \begin{pmatrix} -93.59 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 6.41 \end{pmatrix} \begin{pmatrix} -0.620 & 0 & 0.784 \\ -0.554 & -0.707 & -0.439 \\ 0.554 & -0.707 & 0.439 \end{pmatrix}$$

(h) Use matrix multiplication in **R** to show indeed that $\mathbf{A} = \mathbf{U}^T \Lambda \mathbf{U}$.

```
U <- eigen(A)$vectors
Lambda <- diag(eigen(A)$values)</pre>
```

- U%*% Lambda%*% t(U) returns A
- (i) Use matrix multiplication in **R** to show that $\mathbf{U}^T \mathbf{U} = \mathbf{U}\mathbf{U}^T = \mathbf{I}$. t(v) **v and v **t(v) both return I.
- (j) What are the eigenvalues for A^3 ? A^{-1} ? $A^{1/2}$? $A^{-1/2}$? eval <-eigen(A)\$values For A^3 ,eval \land 3 returns $\lambda^3 = 819736.5155$, 8000.0000, 263.4992. For A^{-1} , eval \land (-1) returns $\lambda^{-1} = 0.01068502$, 0.05000000, 0.15598166. For $A^{1/2}$, eval \land (1/2) returns $\lambda^{1/2} = 0.674140$, 4.472136, 2.531997. For $A^{-1/2}$, eval(-1/2) returns $\lambda^{-1/2} = 0.1033684$, 0.2236068, 0.3949451.

(k) Use diagonalization to compute these four matrices. U%*% Lambda∧3 %*% t(U) returns A³

U%*% diag(eigen(A)\$values(-1))%*% t(U) returns A^{-1} (Need to be careful here, as if the matrix has any zero's, 1/0 returns error message. Hence, took the inverse of each element in the eigenvalue vector and then used this for creation of the diagonal matrix.

U%*% Lambda \wedge (1/2)%*% t(U) returns $\mathbf{A}^{1/2}$

U%*% diag(eigen(A)\$values \land (-1/2))%*% t(U) returns $A^{-1/2}$

- Use R to show that A^{1/2}A^{1/2}=A, with A obtained as in (j).
 sqA <- U%*% Lambda∧(1/2)%*% t(U)
 sqA%*%sqA does indeed return A
- (m) For this covariance matrix (which is the vector $\mathbf{x}^T = (x_1, x_2, x_3)$, which linear combination of the x_i corresponds to PC 1? How much of the total variation does PC 1 explain?

```
PC 1 = -0.620 \cdot x_1 - 0.554 \cdot x_2 + 0.554 \cdot x_3. The precent of total variation for PC 1 is 93.59/120 = 0.78, for 78%.
```

(n) What linear combination gives PC 2? How much of the total variation does PC 2 explain?

PC $2 = -(x_2 + x_3)$. The precent of total variation for PC 1 is 20/120 = 0.17, for 17%.