EEB 581, Problem Set One

Due Thursday, 22 Jan 2004

1: Data was collected on 50 individuals for arm size (x) and brain size (y), with the following results:

$$\overline{x} = 10, \qquad \overline{y} = 50$$

$$\sum_{i=1}^{50} (x_i - \overline{x})^2 = 100, \qquad \sum_{i=1}^{50} (y_i - \overline{y})^2 = 400$$

$$\sum_{i=1}^{50} (x_i - \overline{x}) (y_i - \overline{y}) = 175$$

- (a) Compute the variances of x and y, their covariance, and correlation.
- (b) What is the best linear regression of arm size on brain size?
- (c) What is the best linear regression of brain size on arm size?
- (d) What fraction of the total variance in brain size does the regression account for?
- 2: Use the properties of covariances to show that

$$E[(x - \mu_x)^2] = E[x^2] - \mu_x^2$$

where $\mu_x = E[x]$.

- **3:** What is the covariance between a particular data point z_i and the sample mean $\overline{z} = (1/n) \sum z_i$? Assume the data points are independent.
- 4: Assuming the appropriate normality assumptions, compute the 95% confidence intervals for σ_x^2 and σ_y^2 using the data in (1). (Hint: Use R to obtain the appropriate χ^2 values).