
MIXED MODELS

This chapter introduces best linear unbiased prediction (BLUP), a general method
for predicting random effects, while Chapter 27 is concerned with the estima-
tion of variances by restricted maximum likelihood (REML). These two methods
are related in that BLUP assumes that the appropriate variance components are
known, while REML procedures estimate variance components in an iterative
fashion from BLUP estimates of random effects. Although the basic properties of
these techniques have been known for decades, because of their computational
demands, their practical application is a fairly recent phenomenon. BLUP is now
by far the dominant methodology for estimating breeding values.

After a brief introduction to the general mixed model, we will develop expres-
sions for BLUEs (best linear unbiased estimators) of fixed effects and for BLUPs
of random effects under the assumption that variances are known in the base
population.

THE GENERAL MIXED MODEL

Consider a column vector y containing the phenotypic values for a trait measured
in n individuals. We assume that these observations are described adequately by
a linear model with a p× 1 vector of fixed effects (β) and a q× 1 vector of random
effects (u). The first element of the vector β is typically the population mean,
and other factors included may be gender, location, year of birth, experimental
treatment, and so on. The elements of the vector u of random effects are usually
genetic effects such as additive genetic values. In matrix form,

y = Xβ + Zu + e (26.1)

where X and Z are respectively n × p and n × q incidence matrices (X is also
called the design matrix), and e is the n× 1 column vector of residual deviations
assumed to be distributed independently of the random genetic effects. Usually,
all of the elements of the incidence matrices are equal to 0 or 1, depending upon
whether the relevant effect contributes to the individual’s phenotype. Because
this model jointly accounts for fixed and random effects, it is generally referred
to as a mixed model (Eisenhart 1947). Analysis of Equation 26.1 forms the basis
for the remainder of this chapter and the next.

Example 1. Suppose that three sires are chosen at random from a population,
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746 Mixed Models

and each mated to a randomly chosen dam. Two offspring from each mating are
evaluated, some in environment 1 and some in environment 2. Let yijk denote
the phenotypic value of the kth offspring of sire i in environment j. The model
is then

yijk = βj + ui + eijk

This model has three random effects (u1, u2, u3), which measure the contribution
from each sire, and two fixed effects (β1, β2), which describe the influence of
the two environments. The model assumes an absence of sire × environment
interaction.

As noted above, a total of six offspring were measured. One offspring of sire 1 was
assigned to environment 1 and had phenotypic value y1,1,1 = 9, while the second
offspring was assigned to environment 2 and had phenotypic value y1,2,1 = 12.
The two offspring of sire 2 were both assigned to environment 1 and had values of
y2,1,1 = 11 and y2,1,2 = 6. One offspring of sire 3 was assigned to environment
1 and had phenotypic value y3,1,1 = 7, while the second offspring was assigned
to environment 2 and had phenotypic value y3,2,1 = 14. The resulting vector of
observations can be written as

y =


y1,1,1

y1,2,1

y2,1,1

y2,1,2

y3,1,1

y3,2,1

 =


9
12
11
6
7
14


giving the mixed model as

y = Xβ + Zu + e

where the incidence matrices for fixed and random effects and the vectors of these
effects are respectively

X =


1 0
0 1
1 0
1 0
1 0
0 1

 , Z =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , β =
(

β1

β2

)
, u =

 u1

u2

u3



Now consider the means and variances of the component vectors of the
mixed model. Since E(u) = E(e) = 0 by definition, E(y) = Xβ. Denote the
(n× n) covariance matrix for the vector e of residual errors by R and the (q × q)
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covariance matrix for the vector u of random genetic effects by G. Excluding the
difference among individuals due to fixed effects, from Equation 8.21b and the
assumption that u and e are uncorrelated, the covariance matrix for the vector of
observations y is

V = ZGZT + R (26.2)

The first term accounts for the contribution from random genetic effects, while
the second accounts for the variance due to residual effects. We will generally
assume that residual errors have constant variance and are uncorrelated, so that
R is a diagonal matrix, with R = σ2

E I.
We are now in a position to contrast the mixed model and the general linear

model. Under the general linear model (Chapter 8),

y = Xβ + e∗ where e∗ ∼ (0,V) implying y ∼ (Xβ,V)

where the notation ∼ (a, b) means that the random variable has mean a and
variance b. On the other hand, the mixed model partitions the vector of residual
effects into two components, with e∗ = Zu + e, giving

y = Xβ + Zu + e where u ∼ (0,G) and e ∼ (0,R)

implying y ∼ (Xβ,V) = (Xβ,ZGZT + R)

When analyzed in the appropriate way, both formulations yield the same estimate
of the vector of fixed effects β, while the mixed-model formulation further allows
estimates of the vector of random effects u.

For the mixed model, we observe y, X, and Z, while β, u, R, and G are
generally unknown. Thus, mixed-model analysis involves two complementary
estimation issues: (1) estimation of the vectors of fixed and random effects, β
and u, and (2) estimation of the covariance matrices G and R. These covariance
matrices are generally assumed to be functions of a few unknown variance com-
ponents. For the remainder of this chapter, we consider estimators of β and u
under the assumption that y, X, Z, G, and R are all known. Estimation of the
variance components (and hence R and G) from y, X, and Z is the subject of the
next chapter.

Estimating Fixed Effects and Predicting Random Effects

As outlined in the preceding chapters, the primary goal of a quantitative-genetic
analysis is often solely to estimate variance components. However, there are also
numerous situations in which inferences about fixed effects (such as the effect of a
particular environment or year) and/or random effects (such as the breeding value
of a particular individual) are the central motivation. Inferences about fixed effects
have come to be called estimates, whereas those that concern random effects are
known as predictions. Procedures for obtaining such estimators and predictors
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have been developed using a variety of approaches, such as likelihood theory
(Appendix 4). The most widely used procedures are BLUE and BLUP, referring
respectively to best linear unbiased estimator and best linear unbiased predic-
tor. They are best in the sense that they minimize the sampling variance, linear in
the sense that they are linear functions of the observed phenotypes y, and unbiased
in the sense that E[ BLUE(β) ] = β and E[ BLUP(u) ] = u.

For the mixed model given by Equation 26.1, the BLUE of β is

β̂ =
(
XT V−1X

)−1

XT V−1y (26.3)

with V as given by Equation 26.2. Notice that this is just the generalized least-
squares (GLS) estimator discussed in Chapter 8. Henderson (1963) showed that
the BLUP of u is

û = GZT V−1
(
y−Xβ̂

)
(26.4)

which is equivalent to the conditional expectation of u given y under the assump-
tion of multivariate normality (cf. Equation 8.27). As noted above, the practical
application of both of these expressions requires that the variance components
be known. Thus, prior to a BLUP analysis, the variance components need to be
estimated by ANOVA or REML.

Example 2. What are the BLUP values for the sire effects (u1, u2, u3) in Example
1? In order to proceed, we require the covariance matrices for sire effects and
errors. We assume that the residual variances within both environments are the
same (σ2

E), so R = σ2
E I, where I is the 6× 6 identity matrix. Assuming that all

three sires are unrelated and drawn from the same population, G = σ2
S I, where

I is the 3 × 3 identity matrix and σ2
S is the variance of sire effects. Assuming

only additive genetic variance, the sire effects (breeding values) are half the sires’
additive genetic values. Thus, since the sires are sampled randomly from an
outbred base population, σ2

S = σ2
A/4, where σ2

A is the additive genetic variance.
Assuming that σ2

A = 8 and σ2
E = 6, the covariance matrix V for the vector of

observations y is given by ZGZT + R, or

V =
8
4


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


 1 0 0

0 1 0
0 0 1

  1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

+6


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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=


8 2 0 0 0 0
2 8 0 0 0 0
0 0 8 2 0 0
0 0 2 8 0 0
0 0 0 0 8 2
0 0 0 0 2 8

 giving V−1 =
1
30
·


4 −1 0 0 0 0
−1 4 0 0 0 0

0 0 4 −1 0 0
0 0 −1 4 0 0
0 0 0 0 4 −1
0 0 0 0 −1 4


Using this result, a few simple matrix calculations give

β̂ =
(

β̂1

β̂2

)
=

(
XT V−1X

)−1

XT V−1y =
1
18

(
148
235

)

and

û =

 û1

û2

û3

 = GZT V−1
(
y−Xβ̂

)
=

1
18

−1
2
−1



Example 3. As mentioned in Chapter 13, the effects of different genotypes at a
single QTL are often estimated by ordinary least squares (OLS), using the model

yij = gi + eij

where yij is the observed phenotype of the jth individual of genotype i, gi is the
mean genotypic value for the ith genotype at the locus of interest, and eij is a
residual deviation assumed to be independently distributed among individuals.
While this model may be reasonable for a random collection of individuals from
a large population, when some sampled individuals are relatives, the sharing of
alleles at other loci influencing the trait will induce correlations between residuals.
If this is the case, OLS analysis can produce biased estimates of the QTL effects.
When one of the QTL genotypes is very rare, as is often the case, the sampled
individuals may be intentionally selected from the same pedigree, so the problem
of bias is not trivial.

Use of a mixed model provides a means for accounting for associations among
background QTLs in a way that eliminates bias in estimates of QTL effects. If the
relatives in question share only additive effects (as in a pedigree with no full sibs or
double first cousins, or when there is no nonadditive gene action), the correlations
among residuals are accounted for by the additive genetic relationship matrix A,
where Aij is twice the coefficient of coancestry, 2Θij . When sibs are included and
dominance is present at background QTLs, both A and a dominance relationship
matrix (see below) are required.
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Here we assume that all of the background genetic effects are additive, in which
case the simplest mixed model can be applied,

yij = gi + aij + eij

with the contribution from the different single-locus genotypes (gi) being treated
as fixed effects. The additive genetic background effects (aij) and the residual
environmental deviations (eij) are treated as random effects, both with expected
values equal to zero, and with respective variances σ2

A and σ2
E . Note that σ2

A is
the background additive genetic variance for the trait in excess of that caused by
the QTL.

In matrix form,
y = Xg + Za + e

If there is a single observation for each individual, as we assume below, then
Z = I and the covariance matrix for the vector of observations (y) is

V = σ2
A A + σ2

E I

Thus, the covariance between the residual errors of two individuals (i and j) is
just 2Θijσ

2
A, while the variance of individual errors is σ2

A + σ2
E . The error in

using OLS to estimate single gene effects is that A is assumed to equal an identity
matrix, so that V is incorrectly assumed to be a diagonal matrix.

From Equation 26.3, the estimates of the QTL means are given by

ĝ =
(
XT V−1X

)−1

XT V−1y

Kennedy et al. (1992) showed that mixed-model estimates of QTL effects are
much more reliable than OLS estimates, especially in small selected populations.
Building on this approach, several authors (Hoeschele 1988, Hofer and Kennedy
1993, Kinghorn et al. 1993) have proposed BLUP-based segregation analysis for
estimating the effects of an unknown major gene. Here the elements in the de-
sign matrix X associated with gi are probabilistic estimates for the major-locus
genotypes of each individual.

Note that the solution of Equations 26.3 and 26.4 requires the inverse of
the covariance matrix V. In the preceding example, V−1 was not particularly
difficult to obtain. However, when y contains many thousands of observations,
as is commonly the case in cattle breeding, the computation of V−1 can be quite
difficult. As a way around this problem, Henderson (1950, 1963, 1973, 1984a)
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offered a more compact method for jointly obtaining β̂ and û in the form of his
mixed-model equations (MME),XT R−1X XT R−1Z

ZT R−1X ZT R−1Z + G−1

  β̂

û

 =

XT R−1y

ZT R−1y

 (26.5)

While these expressions may look considerably more complicated than Equations
26.3 and 26.4, R−1 and G−1 are trivial to obtain if R and G are diagonal, and hence
the submatrices in Equation 26.5 are much easier to compute than V−1. A second
advantage of Equation 26.5 can be seen by considering the dimensionality of the
matrix on the left. Recalling that X and Z are n×p and n×q respectively, XT R−1X
is p×p, XT R−1Z is p×q, and ZT R−1Z+G−1 is q×q. Thus, the matrix that needs
to be inverted to obtain the solution for β̂ and û is of order (p+ q)× (p+ q), which
is usually considerably less than the dimensionality of V (an n× n matrix).

Although there are several ways to derive the mixed-model equations (Robin-
son 1991), Henderson (1950) originally obtained them by assuming that the co-
variance matrices G and R are known and that the densities of the vectors u and
e are each multivariate normal with no correlations between them. Equation 26.5
then yields the maximum likelihood estimates of the fixed and random effects.
Henderson (1963) later showed that the mixed-model equations do not actually
depend on normality, and that β̂ and û are BLUE and BLUP, respectively, under
general conditions provided the variances are known.

Example 4. Using the values from Examples 1 and 2, we find that

XT R−1X =
1
6

(
4 0
0 2

)
, XT R−1Z =

(
ZT R−1X

)T

=
1
6

(
1 2 1
1 0 1

)

G−1 + ZT R−1Z =
5
6

 1 0 0
0 1 0
0 0 1

 , XT R−1y =
1
6

(
33
26

)
, ZT R−1y =

1
6

 21
17
21


Thus, after factoring out 1/6 from both sides, the mixed-model equations for
these data become 

4 0 1 2 1
0 2 1 0 1
1 1 5 0 0
2 0 0 5 0
1 1 0 0 5




β̂1

β̂2

û1

û2

û3

 =


33
26
21
17
21


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Taking the inverse gives the solution
β̂1

β̂2

û1

û2

û3

 =
1

270


100 25 −25 −40 −25
25 175 −40 −10 −40
−25 −40 67 10 13
−40 −10 10 70 10
−25 −40 13 10 67




33
26
21
17
21

 =
1
18


148
235
−1

2
−1


which is identical to the results obtained in Example 2.

Although the method of predicting random effects using BLUP methodology
was first discussed by Henderson (1949, 1950), the expression “best linear unbi-
ased predictor” was apparently first used by Goldberger (1962), with the acronym
BLUP due to Henderson (1973). In a relatively short time, BLUP has become the
method of choice for estimating the breeding values of individuals from field
records of large and complex pedigrees. For BLUPs to be the best unbiased esti-
mates, the appropriate genetic variances must be known without error. Kackar
and Harville (1981) show that BLUP estimates remain unbiased when estimates
of genetic variances are used in place of actual values (as is usually the case),
although they are not guaranteed to be the best of all unbiased linear estimators.

Estimability of Fixed Effects

It is sometimes impossible to obtain unique BLUE estimates for all of the fixed
factors in a model. Suppose, for example, that

β =

 β1

β2

β3

 with X =

 1 1 0
1 1 0
0 0 1


Here, factors 1 and 2 are completely confounded, as they contribute equally to
all individuals, so unique estimates of β1 and β2 cannot be acquired. Generally,
when two or more columns of X are not independent, it is still possible to obtain
unique BLUEs for certain linear combinations of β through the use of generalized
inverses (Appendix 3). With the preceding design matrix X, the solution is simple
— by combining the two factors into a single new factor, β1 + β2, the new model
becomes

β∗ =
(

β1 + β2

β3

)
with X∗ =

 1 0
1 0
0 1


Since the columns of β∗ are now independent, a unique solution exists for
XT
∗V
−1X∗, and from Equation 26.3, the two BLUEs of the fixed effects are given

by

β̂∗ =
(
XT
∗V
−1X∗

)−1

XT
∗V
−1y
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Situations in which linear combinations of fixed effects are required com-
monly arise when a very large number of fixed factors are included in the model,
as occurs in large breeding programs involving multiple environments (such as
different herds and different years.) Henderson (1984a) provides an extended dis-
cussion of the issues. Throughout the remainder of the book, we assume that β is
estimable, either immediately or after an appropriate transformation. Appendix
3 discusses how to determine which combinations of effects are estimable when
singular matrices exist.

Standard Errors

A relatively straightforward extension of Henderson’s mixed-model equations
provides estimates of the standard errors of the fixed and random effects. Let the
inverse of the leftmost matrix in Equation 26.5 beXT R−1X XT R−1Z

ZT R−1X ZT R−1Z + G−1

−1

=

C11 C12

CT
12 C22

 (26.6)

where C11, C12, and C22 are, respectively, p×p, p×q, and q×q submatrices. Using
this notation, Henderson (1975) showed that the sampling covariance matrix for
the BLUE of β is given by

σ(β̂ ) = C11 (26.7a)

that the sampling covariance matrix of the prediction errors (û− u) is given by

σ( û− u ) = C22 (26.7b)

and that the sampling covariance of estimated effects and prediction errors is
given by

σ(β̂, û− u ) = C12 (26.7c)

(We consider û − u rather than û as the latter includes variance from both the
prediction error and the random effects u themselves.) The standard errors of
the fixed and random effects are obtained, respectively, as the square roots of
the diagonal elements of C11 and C22. For very large animal breeding designs
where the inverse of the MME matrix may be difficult to compute, Meyer (1989a)
presents methods for approximating the diagonal elements of the inverse of this
matrix (and hence the standard errors).

Example 5. Consider the mixed-model equation from Example 4. Here for the
fixed factors β1, β2 and the random effects u1, u2, u3, the inverse of the coefficient
matrix is
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
4 0
0 2

...
1 2 1
1 0 1

· · · · · · · · ·
1 1
2 0
1 1

...
5 0 0
0 5 0
0 0 5


−1

=
1

270


100 25
25 175

...
−25 −40 −25
−40 −10 −40

· · · · · · · · ·
−25 −40
−40 −10
−25 −40

...
67 10 13
10 70 10
13 10 67


Hence,

C11 =
1

270

(
100 25
25 175

)
and C22 =

1
270

 67 10 13
10 70 10
13 10 67


so that, for example,

σ2(β̂1) =
100
270

, σ2(β̂2) =
175
270

, σ(β̂1, β̂2) =
25
270

and, likewise,

σ2(û2 − u2) =
70
270

, σ(û1 − u1, û3 − u3) =
13
270

, and so on.

JOINT ESTIMATION OF SEVERAL VECTORS OF RANDOM EFFECTS

The mixed-model equations can be easily extended to situations where two (or
more) vectors of random effects are of interest, as for example, in the estimation
of both additive and dominance values or in the estimation of breeding values
and maternal effects. With two vectors of random effects (u1 and u2) uncorrelated
with each other, the mixed model becomes

y = Xβ + Z1u1 + Z2u2 + e (26.19a)

The vectors of random effects can have different dimensions (q1 for u1, q2 for u2),
so with n individuals in the vector y, the incidence matrix Zi is n×qi (for i = 1, 2).
Letting R be the n × n covariance matrix for the vector of residual errors e, and
Gi be the qi × qi covariance matrix for ui, the MMEs become

XT R−1X XT R−1Z1 XT R−1Z2

ZT
1 R−1X ZT

1 R−1Z1 + G−1
1 ZT

1 R−1Z2

ZT
2 R−1X ZT

2 R−1Z1 ZT
2 R−1Z2 + G−1

2




β̂

û1

û2


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=


XT R−1y

ZT
1 R−1y

ZT
2 R−1y

 (26.19b)

Equation 26.19b can be extended in an obvious fashion to incorporate additional
uncorrelated vectors of random effects. The following sections outline a few com-
mon applications of this extension of the mixed model.

Repeated Records

Another situation in which correlations are expected among residual errors arises
when multiple observations are made on individuals, a common procedure used
to reduce measurement error. Here, assuming dominance is of negligible impor-
tance, the residual error can be described as p + e, where p is the “permanent”
environmental effect common to all observations on the same individual, and e is
the residual error between observations of the same individual due, for example,
to measurement error and changes in some environmental factors. Recall from
Chapter 6 that the repeatability of a character (r) is defined to be the correlation
between different measurements in the same individual. If j and k denote dif-
ferent observations on the same individual i, the covariance between repeated
measurements is

σ(yij , yik) = rσ2
y = σ(ai + pi + eij , ai + pi + eik)

= σ2
A + σ2

P

which follows from the assumption that the residual errors for the same individ-
ual are uncorrelated. Assuming purely additive gene action, σ2

A = h2σ2
y of the

covariance is due to genetic effects, leaving (r−h2)σ2
y = σ2

P as the covariance due
to permanent environmental effects.

One approach to estimating breeding values when repeated measures are
contained in the data set is to continue to apply the simple animal model (Equation
26.8), with suitable Z to accommodate multiple records, modifying the residual
covariance matrix R such that

Rjk =


(1− h2)σ2

y j = k (the same measurement in an individual)

(r − h2)σ2
y j and k are repeated measures (26.25)

0 j and k are measures on different individuals.

Since the resulting covariance matrix is not diagonal, it is not always easily in-
verted, a potentially serious complication for extremely large data sets.

An alternative approach follows the same rationale as the model incorporat-
ing dominance, i.e., explicitly accounting for shared environmental effects (rather
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than incorporating them into the residual error structure) by introducing a new
random factor into the model, such that

yij = µ + ai + pi + eij (26.26)

(Henderson 1977a). With this structure, all residual effects are again uncorrelated
with common variance σ2

E = (1− r)σ2
y.

Suppose a total of k measurements are made on n individuals (such a balanced
design is not essential). We can write this in the general mixed-model framework
as

y = Xβ + Z(a + p) + e = Xβ + Za + Zp + e (26.27)

where aT = (a1, · · · , an)T and pT = (p1, · · · , pn)T , and each row of the nk × n
incidence matrix Z has all zeros except a one at the position corresponding to the
individual measured. This model has the resulting covariance matrices

σ(a,a) = h2σ2
y A, σ(p,p) = (r − h2) σ2

y I, σ(e, e) = (1− r) σ2
y I

with a, p, and e being assumed to be uncorrelated. Applying Equation 26.19b and
removing the common factor σ2

y from all expressions, the mixed-model equations
becomeXT X XT Z XT Z

ZT X ZT Z + λA A−1 ZT Z
ZT X ZT Z ZT Z + λP I

  β̂
â
p̂

 =

XT y
ZT y
ZT y

 (26.28a)

where

λA =
σ2

E

σ2
A

=
1− r

h2
, λP =

σ2
E

σ2
P

=
1− r

r − h2
(26.28b)

Example 10. To compare the two different methods for dealing with repeated
records, suppose three unrelated and noninbred individuals are measured, with
two observations on individual one (y1 = 7, y2 = 8), three observations on
individual two (y3 = 6, y4 = 6, y5 = 5), and one observation on individual three
(y6 = 9). Assume that the only fixed factor is the mean and that the character
has heritability h2 = 0.4 and repeatability r = 0.5, giving 1 − h2 = 0.6 and
r − h2 = 0.1. For either formulation, we have

y =


7
8
6
6
5
9

 , β = ( µ ) , X =


1
1
1
1
1
1

 , Z =


1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1


Since all three individuals are assumed to be unrelated, A = I.
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To apply the permanent-effects model yi = µ + ai + pi + ei, note that

λA =
1− r

h2
=

1− 0.5
0.4

= 1.25, λP =
1− r

r − h2
=

1− 0.5
0.5− 0.4

= 5,

XT X = 6, XT y = 41,

ZT X = (XT Z)T =

 2
3
1

 , ZT y =

 15
17
9

 , ZT Z =

 2 0 0
0 3 0
0 0 1

 ,

ZT Z + λA A−1 =

 3.25 0 0
0 4.25 0
0 0 2.25

 , ZT Z + λP I =

 7 0 0
0 8 0
0 0 6


giving the MMEs (Equation 26.28a) as

6 2 3 1 2 3 1
2 3.25 0 0 2 0 0
3 0 4.25 0 0 3 0
1 0 0 2.25 0 0 1
2 2 0 0 7 0 0
3 0 3 0 0 8 0
1 0 0 1 0 0 6





µ̂
â1

â2

â3

p̂1

p̂2

p̂3


=



41
15
17
9
15
17
9


which has solutions

µ̂ ' 7.174,

 â1

â2

â3

 '
 0.174
−0.904

0.730

 ,

 p̂1

p̂2

p̂3

 '
 0.043
−0.226

0.183


Conversely, applying the simple animal model yi = µ + ai + ei, from Equation
26.25 the covariance matrix for the residual errors becomes

R = σ2
y


0.5 0.1 0 0 0 0
0.1 0.5 0 0 0 0
0 0 0.5 0.1 0.1 0
0 0 0.1 0.5 0.1 0
0 0 0.1 0.1 0.5 0
0 0 0 0 0 0.5


Likewise, G = h2σ2

y I, and hence G−1 = (h2σ2
y)−1 I. Removing the factor σ2

y
common to all expressions gives

XT R−1X ' 8.27, ZT R−1X = (XT R−1Z)T '

 2.86
3.75
1.67


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ZT R−1Z + G−1 = ZT R−1Z +
1
h2

I '

 5.36 0 0
0 6.25 0
0 0 4.17


XT R−1y = 57.68, ZT R−1y '

 21.43
21.25
15


Substituting into Equation 26.5 gives the MMEs

8.27 2.86 3.75 1.67
2.86 5.36 0 0
3.75 0 6.25 0
1.67 0 0 4.17




µ̂
â1

â2

â3

 =


57.68
21.43
21.25
15


which gives the same estimates as obtained with the permanent-effects model.


