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ANOVA

ONE-WAY ANOVA

The traditional approach to analyzing half-sib data is the one-way analysis of
variance, based on the linear model

zij = µ+ si + eij (18.1)

where zij is the phenotype of the jth offspring of the ith father, si is the effect of the
ith father (the sire effect), and eij is the residual error resulting from segregation,
dominance, genetic variance among mothers, and environmental variance. Stated
another way, eij is the deviation of the phenotype of the ijth individual from the
expected value for the ith family. As deviations from the linear model, the eij have
expectations equal to zero. We further assume that the eij are uncorrelated with
each other and have common varianceσ2

e , the within-family variance. TheN sires
are assumed to be a random sample of the entire population so that E(si) = 0.
The variance among sire effects (the among-family variance) is denoted by σ2

s .
A basic assumption of linear models underlying ANOVA is that the random

factors are uncorrelated with each other. As first recognized by Fisher in his classi-
cal 1918 paper, this leads to a key feature — the analysis of variance partitions the total
phenotypic variance into the sum of the variances from each of the contributing factors.
For example, for the half-sib model, the critical assumption is that the residual de-
viations are uncorrelated with the sire effects, i.e., σ(si, eij) = E(sieij) = 0. Thus,
the total phenotypic variance equals the variance due to sires plus the residual
variance,

σ2
z = σ2

s + σ2
e (18.2)

A second relationship that proves to be very useful is that the phenotypic
covariance between members of the same group equals the variance among groups. For
the model given in Equation 18.1, this can be shown quite simply. Members of the
same group (paternal half sibs) share sire effects, but have independent residual
deviations, so

σ(PHS) = σ( zij , zik )
= σ[ (µ+ si + eij), (µ+ si + eik) ]
= σ( si, si ) + σ( si, eik ) + σ( eij , si ) + σ( eij , eik )
= σ2

s (18.3)
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2 ANOVA notes

Thus, the covariance between paternal half sibs equals the variance among sire
effects. This is a particularly useful identity since, as we will see below, ANOVA
provides a simple means of estimating σ2

s .
The pure half-sib design employs the simplest possible linear model. How-

ever, the general logic just outlined applies to the estimation of variance com-
ponents in all linear models, including those employed in subsequent chapters.
Thus, the steps we have just taken are worth summarizing. First, the linear model
is written down. Second, with the assumptions of the model made explicit, an
expression for the total phenotypic variance is written in terms of components.
Third, the components of variance associated with the model are expressed as
covariances between specific classes of relatives. Fourth, using the mechanistic
interpretations of phenotypic covariances between relatives outlined in Chapter 7,
the observable variance components are used to partition the phenotypic variance
into its causal sources. We now demonstrate the practical utility of this approach
by showing how ANOVA generates estimates of the within- and among-family
components of variance from phenotypic data.

One-way Analysis of Variance

ANOVA uses sums of squares, the derivation of which we outline below.
Throughout, we use SS to denote an observed sum of squares, and E(SS) to
denote its expected value. As we will see shortly, scaled sums of squares, known
as mean squares, are used to estimate variance components. We use the parallel
notation, MS and E(MS), to denote observed and expected mean squares.

Consider the balanced design in which n half sibs are assayed from each of
N males, so that there are a total T = Nn individuals in the analysis. The quantity

SST =
N∑
i=1

n∑
j=1

(zij − z)2 (18.4)

defines the observed total sum of squares around the grand mean z. ANOVA
partitions SST into components describing variation among the si (i.e., among
families) and among the eij within families. This partitioning is readily accom-
plished by expanding around the observed family means, zi =

∑n
j=1 zij/n,

SST =
N∑
i=1

n∑
j=1

[(zij − zi) + (zi − z)]2

=
N∑
i=1

n∑
j=1

[(zij − zi)2 + 2(zij − zi)(zi − z) + (zi − z)2] (18.5)

The middle term of this expression is equal to zero, since by the definition of a
mean,

∑n
j=1(zij − zi) = 0. The third term may be written as n

∑N
i=1(zi− z)2 since
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it does not contain j. Thus, the total sum of squares is partitioned into an among-
and a within-family component,

SST = n
N∑
i=1

(zi − z)2 +
N∑
i=1

n∑
j=1

(zij − zi)2

= SSs + SSe (18.6)

The within-family sum of squares (SSe) is simply the sum of the squared de-
viations of individual measures from their observed family means, while the
among-family sum of squares (SSs) is the sum (over all progeny) of the squared
deviations of observed family means from the grand mean.

Assuming that the parents are a random sample of the population at large,
the sums of squares can be used to obtain unbiased estimates of the within- and
among-family components of variance in the following way. We note first that the
expected within-family sum of squares is

E(SSe) =
N∑
i=1

E

 n∑
j=1

(zij − zi)2

 = N(n− 1)σ2
e (18.7a)

This result follows from the fact that
∑n
j=1(zij − zi)2/(n − 1) is an unbiased

estimate of the variance among sibs in the ith family (Chapter 2) and from our
assumption that the variance within each family is equal to σ2

e .
For the among-family sum of squares, similar reasoning leads to

E(SSs) = nE

[
N∑
i=1

(zi − z)2

]
= n(N − 1)σ2(zi) (18.7b)

where σ2(zi) is the expected variance of the observed family means, here (with a
balanced design) assumed to be the same for all families. Further simplification of
this expression is possible. The variance of observed family means is a function of
the variance of the true family means, the (µ+si), as well as of their sampling error,
the ei = zi− (µ+ si). Thus, assuming that the measurement error is independent
of the family mean,

σ2(zi) = σ2(µ+ si) + σ2(ei) (18.8)

Sinceµ is a constant, the first term of this expression is the among-family variance,
σ2
s , while the second is the expected sampling variance of a mean, σ2

e/n (Chapter
2). Substituting into Equation 18.7b,

E(SSs) = (N − 1)(σ2
e + nσ2

s) (18.9)
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Finally, rearranging Equations 18.7a and 18.9, the variance components can be
expressed in terms of the expected sums of squares,

σ2
e =

E(SSe)
N(n− 1)

(18.10a)

σ2
s =

1
n

[
E(SSs)
N − 1

− E(SSe)
N(n− 1)

]
(18.10b)

Note that the sums of squares in these expressions are divided by constants.
Such weighted sums of squares are the mean squares (MS) referred to above, and
the quantities in their denominators are the associated degrees of freedom (df).
For the half-sib model,

MSs =
SSs
N − 1

(18.11a)

MSe =
SSe

N(n− 1)
(18.11b)

are the observed among- and within-family mean squares. Substitution of ob-
served mean squares for their expectations in Equations 18.10a,b yields the fol-
lowing unbiased estimators of σ2

s , σ2
e , and σ2

z ,

Var(s) =
MSs −MSe

n
(18.12a)

Var(e) = MSe (18.12b)

Var(z) = Var(s) + Var(e) (18.12c)

A summary of the steps for obtaining the observed mean squares, generalized to
allow for unequal family sizes, is given in Table 18.1. This general procedure of
estimating variance components from observed mean squares is an example of
the method of moments, as the unknown variances can be expressed in terms of
observable moments (here, the mean squares).

Table 18.1 Summary of a one-way ANOVA involving N independent families, the i th
of which contains ni individuals.

Factor df SS MS E(MS)

Among-families N − 1 SSs =
N∑
i=1

ni(zi − z)2 SSs/(N − 1) σ2
e + n0σ

2
s

Within-families T −N SSe =
N∑
i=1

ni∑
j=1

(zij − zi)2 SSe/(T −N) σ2
e
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Total T − 1 SST =
N∑
i=1

ni∑
j=1

(zij − z)2 SST /(T − 1) σ2
z

Note: The total sample size is T =
∑N
i=1 ni, and n0 = [T − (

∑
n2
i /T )]/(N − 1),which

reduces tonwith equal family sizes. Degrees of freedom are denoted by df, observed sums
of squares by SS, and expected mean squares by E(MS).

The quantity

tPHS =
Var(s)
Var(z)

(18.13)

is the intraclass correlation (Fisher 1918, 1925), discussed previously in Chapter
17.

Ratios of quantities estimated with sampling error are usually biased with
respect to their parametric values (Appendix 1), and this is true for the intraclass
correlation (Ponzoni and James 1978, Wang et al. 1991). Letting τ be the parametric
value, the downward bias is approximately

∆t = τ − E(tPHS) =
2τ(1− τ)[(n− 1)τ + 1]

nN
(18.15)

In principle, correction for this bias can be made by substituting the observed
tPHS for τ in the preceding expression and adding the estimated bias ∆t to tPHS

prior to estimating the heritability with Equation 18.14. The bias in tPHS can be
considerable if N is very small (less than 20), but for larger designs it is generally
no more than a few percent.

Hypothesis Testing

In obtaining the variance-component estimators, Equations 18.12a,b, we made no
assumptions as to how the data or their underlying components (si and eij) were
distributed, other than the constraint that they are independent of each other.
This distribution-free condition illustrates a useful feature of ANOVA that is not
shared by many other estimation procedures — it yields variance-component
estimates that are unbiased with respect to the true parametric values (although,
as just noted, nonlinear functions, such as ratios, of these estimates will be biased).
Unfortunately, this distribution-free property does not extend to the estimation of
confidence intervals for the variance components, nor to most traditional methods
of hypothesis testing.

Most conventional hypothesis tests involving ANOVA assume normality
and homogeneity of error variances. Thus, prior to embarking on an analysis of
variance, an attempt should always be made to ensure that the observed data
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are on an appropriate scale of measurement (Chapter 11). It should be realized,
however, that normality of the observed data does not guarantee normality of the
distributions of the underlying factors si and eij .

Assuming that adequate normalization has been accomplished, standard
theoretical results can be used to test the hypothesis that the among-family com-
ponent of variance, and hence the heritability, is significantly greater than zero.
We accomplish this by recalling from Appendix 5 that when normally distributed
variables with mean zero and variance one (unit normals) are squared, they fol-
low a χ2 distribution. Dividing an observed sum of squares (SS) by its asso-
ciated E(MS) transforms the SS into a sum of squared unit normals, which is
χ2-distributed with the associated degrees of freedom. For the one-way ANOVA,
from Equations 18.7a, 18.9, and 18.11, the expected mean squares are

E(MSs) = σ2
e + nσ2

s (18.16a)

E(MSe) = σ2
e (18.16b)

Thus,

SSs
σ2
e + nσ2

s

∼ χ2
N−1 (18.17a)

SSe
σ2
e

∼ χ2
T−N (18.17b)

Recall also that the ratio of two χ2-distributed variables, each divided by its
respective degrees of freedom, follows an F distribution (Appendix 5).

Now notice that if σ2
s = 0, the denominators of Equations 18.17a and 18.17b

are the same, in which case their ratio is simply SSs/SSe. Recalling that SSx/dfx =
MSx,

F =
MSs
MSe

(18.18)

provides a test of the hypothesis that E(MSs) = E(MSe), or equivalently that
σ2
s = 0. If σ2

s > 0,we expect the ratio of observed mean squares to be greater than
one. However, it needs to be significantly larger than one if we are to be confident
in our conclusion that MSs > MSe did not occur just by chance. An explicit
test of the null hypothesis of no sire effects is made by referring to standard F -
distribution tables and comparing the observed value of F with the critical values
associated with (N − 1) and (T −N) degrees of freedom.

Sampling Variance and Standard Errors

In the analysis of heritability, a case can be made that hypothesis testing is of little
biological relevance. Because polygenic mutation continually introduces genetic
variation into populations, the heritabilities of essentially all characters must be
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nonzero, and the only real issue is their absolute magnitude. If an F -test signals
nonsignificance, it most likely is a simple consequence of inadequate sample size.

Standard errors provide rough guides to the accuracy of variance-component
estimates, and to estimate them, we require the sampling variances of the observed
mean squares. Under the assumptions of normality and balanced design, a useful
(and general) result is that the observed mean squares extracted from an analysis
of variance are distributed independently with expected sampling variance

σ2(MSx) ' 2(MSx)2

dfx + 2
(18.19)

This fundamental relationship has been used in many contexts in quantitative
genetics to derive expressions for variances and covariances of variance compo-
nents extracted from ANOVA (Tukey 1956, 1957; Smith 1956; Bulmer 1957, 1980;
Scheffé 1959). Searle et al. (1992) provide a particularly lucid overview of its utility.

Since the variance-component estimators, Equations 18.12a–c, are linear func-
tions of the observed mean squares, the rules for obtaining variances and covari-
ances of linear functions (Chapter 3 and Appendix 1) can be used in conjunction
with Equation 18.19 to obtain the large-sample approximations

Var[ Var(e) ] = Var(MSe) '
2(MSe)2

T −N + 2
(18.20a)

Var[ Var(s) ] = Var
[

MSs −MSe
n

]
' 2
n2

(
(MSs)2

N + 1
+

(MSe)2

T −N + 2

)
(18.20b)

Cov[ Var(s),Var(e) ] = Cov
[(

MSs −MSe
n

)
,MSe

]
= −Var(MSe)

n

' − 2(MSe)2

n(T −N + 2)
(18.20c)

Var[ Var(z) ] = Var[ Var(e) ] + 2Cov[ Var(s),Var(e) ] + Var[ Var(s) ] (18.20d)

The standard errors of the estimated within-family, among-family, and total phe-
notypic variance estimates are obtained by substituting observed mean squares
into Equations 18.20a,c,d and taking square roots. Since the accuracy of the resul-
tant standard errors depends on the accuracy of the observed mean squares, the
standard errors are not very reliable if the degrees of freedom are small. Hence,
the reference to “large-sample” estimators.

Using the techniques in Appendix 1, Osborne and Paterson (1952) showed
that the large-sample variance of the intraclass correlation from a balanced one-
way ANOVA is

Var(t) ' 2(1− t)2[1 + (n− 1)t]2

Nn(n− 1)
(18.21)
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The standard error of h2 derived by half-sib analysis is estimated by 4
√

Var(t).
Again, the accuracy of this expression increases with the number of families in an
analysis.

Confidence Intervals

Under the assumption of normality, approximate confidence intervals for
variance-component estimates can be obtained from the expected distributions of
the sums of squares (Harville and Fenech 1985, Searle et al. 1992). For the within-
family variance, recalling the distribution of SSe/σ2

e given in Equation 18.17b,
the lower and upper values associated with the 100(1− α)% confidence level are
simply

SSe
χ2

(T−N),(α/2)

< Var(e) <
SSe

χ2
(T−N),(1−α/2)

(18.22)

where χ2
(T−N),(α/2) and χ2

(T−N),(1−α/2) are the upper and lower χ2 values associ-
ated with α given (T −N) degrees of freedom. For example, for a 95% confidence
interval (2.5% error on each side of the estimate), χ2

(T−N),0.025 is the point at which
the probability of obtaining a higher χ2

T−N by chance is 0.025 and χ2
(T−N),0.975

is the point at which the probability of obtaining a higher value is 0.975. These
values can be found in tabular form in most elementary statistics texts.

For the among-family variance, the lower and upper confidence limits asso-
ciated with the 100(1− α)% level are given by

MSe
n

[
F

F(N−1),∞,(α/2)
− 1−

(
F(N−1),(T−N),(α/2)

F(N−1),∞,(α/2)
− 1
) (

F(N−1),(T−N),(α/2)

F

)]
(18.23a)

and

MSe
n

[
F · F∞,(N−1),(α/2) − 1 +

(
1−

F∞,(N−1),(α/2)

F(T−N),(N−1),(α/2)

) (
1

F(T−N),(N−1),(α/2)

)]
(18.23b)

respectively, where the unsubscripted F is the ratio of observed mean squares
defined by Equation 18.18, and the F values subscripted by their degrees of free-
dom are the critical values associated with α/2. These values are also obtainable
from standard tables.

Assuming normality of the underlying data, the 100(1 − α)% confidence
interval for the heritability is given by

4
[

(F/FU )− 1
(F/FU ) + n− 1

]
< h2 < 4

[
(F/FL)− 1

(F/FL) + n− 1

]
(18.24)
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(Scheffé 1959, Graybill 1961, Williams 1962). In these expressions, F is again the
ratio of observed mean squares defined by Equation 18.18, and FU and FL are the
upper and lowerF values associated with (α/2) at (N−1), (T−N) degrees of free-
dom. Specifically,FU = F(N−1),(T−N),(α/2),whereasFL = 1/(F(T−N),(N−1),(α/2)).
(See Example 2 for an application of this equation.)

Although somewhat complicated, the preceding expressions are general,
provided the data are normally distributed with homogeneous variance (i.e.,
s ∼ N(0, σ2

s) and e ∼ N(0, σ2
e) for all families). However, most confidence in-

tervals reported in the literature are approximated by a simpler route. The usual
procedure is to assume that the degrees of freedom are large enough that pa-
rameter estimates are approximately normally distributed. Then, symmetrical
confidence intervals can be computed more simply from the standard errors, e.g.,
95% confidence intervals are obtained by multiplying the standard error by 1.96
(Chapter 2). The degree to which this approach can yield biased confidence inter-
vals will be illustrated in Example 2.

Unbalanced Data

Accidental losses or natural mortality almost always cause inequities in family
sizes in sib analyses. With unbalanced data, estimates of variance components can
still be obtained by the method of moments, but this requires that the definitions
of the expected mean squares first be modified appropriately (Table 18.1). All
aspects of the unbalanced one-way ANOVA are identical to those outlined for
the balanced design, except for the expected among-family mean square, which
is no longer (σ2

e +nσ2
s), but (σ2

e +n0σ
2
s),where n0 is a function of the sire-specific

family sizes (Table 18.1). Thus, in obtaining estimates of the variance components
by the method of moments, we still use Equations 18.12a,b, substituting n0 for n.

Provided the data are normally distributed, the sums of squares obtained
from an unbalanced one-way ANOVA are still independent, and expressions for
the sampling variances and covariance of the variance components analogous to
Equations 18.20a–d are obtainable,

Var[ Var(e) ] ' 2[ Var(e) ]2

T −N + 2
(18.27a)

Var[ Var(s) ] ' 2
n0(N + 1)

{
(T − 1)[ Var(e) ]2

n0(T −N)
+ 2Var(e)Var(s)

+
∑
n2
i + (

∑
n2
i /T )2 − 2

∑
n3
i /T

n0(N − 1)
[ Var(s) ]2

}
(18.27b)

Cov[ Var(s),Var(e) ] ' − 2[ Var(e) ]2

n0(T −N + 2)
(18.27c)

Var[ Var(z) ] ' Var[ Var(e) ] + 2Cov[ Var(s),Var(e) ]

+ Var[ Var(s) ] (18.27d)
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where the summations in Equation 18.27b are over sires. (These expressions con-
tain corrections to results given in Searle et al. 1992).

Comparison of Equation 18.27a with 18.20a shows that the sampling variance
of the within-family component of variance is unaffected by lack of balance. In
fact, lack of balance does not alter the fact that the within-family sum of squares is
χ2-distributed. Thus, Equation 18.22 can still be used to obtain confidence inter-
vals for the within-family component of variance. Unfortunately, the situation is
not so simple with the among-family statistics. If σ2

s = 0, the ratio F = MSs/MSe
still has an F distribution with (N − 1) and (T −N) degrees of freedom, so even
with an unbalanced design, the ratio of mean squares provides a basis for testing
the null hypothesis that σ2

s = 0. Searle et al. (1992, pp. 76–78) outline procedures
for estimating confidence intervals for the among-family variance component and
for tPHS, but these procedures are quite complicated.

In recent years, maximum likelihood procedures have been developed as an
alternative to ANOVA approaches for variance-component estimation. As a con-
sequence of their relative insensitivity to unbalanced designs, these methods have
been embraced widely by animal breeders. Unlike ANOVA, maximum likelihood
techniques assume normality in both the estimation of parameters and hypothesis
testing. A broad overview of the use of maximum likelihood methods in quan-
titative genetics is given in Chapters 26 and 27. For historical completeness, we
note that Smith (1956) long ago introduced a weighted ANOVA procedure for un-
balanced data that is closely related to maximum likelihood estimation. For the
computation of the among-family sum of squares, he proposed that the family
means be weighted by the inverse of their sampling variance. As in the case of
weighted regression (discussed in the preceding chapter), the weights turn out
to be a function of the variance components to be estimated, so an iterative solu-
tion is used in the estimation of the variance components. The weights proposed
in Smith’s (1956) paper are identical to those used in the maximum likelihood
solution to the one-factor model (Searle et al. 1992).

Resampling Procedures

To avoid the interpretative pitfalls that can arise with hypothesis tests involving
nonnormal and unbalanced data, several computer-based resampling procedures
have been developed that make no assumptions about the form of the distribution
of the data or the structure of experimental design (Miller 1968, 1974; Efron 1982;
Milliken and Johnson 1984; Wu 1986; Little and Rubin 1987; Manly 1991; Crowley
1992). All of these techniques assume that the sample data provide a reasonably
good representation of the distribution in the entire population. The data are
then used to generate sampling distributions of desired statistics. Three basic
approaches are used:

1. The jackknife procedure iteratively deletes one unit of the data set, each
time using the truncated data to obtain a set of parameter estimates. For
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the one-way ANOVA, a different paternal half-sib family is deleted in
each analysis, and from the resultant N sets of parameter estimates,
one obtains a mean estimate and a standard error for each variance
component, heritability, and so on.

2. The bootstrap procedure repeatedly draws random samples from the
original data set with replacement. With reasonably large sample sizes,
the number of ways the data set can be sampled is effectively infinite, and
usually a thousand or more analyses are performed to arrive at stable
average values for the parameter estimates and their standard errors.
Confidence intervals are constructed from the cumulative distribution
of the individual estimates. For the one-way ANOVA, bootstrapping
would be done over families, as our interest is in the among-family
variance.

3. Permutation tests randomize the individual data with respect to fam-
ilies, while keeping the overall data structure (number of families and
progeny per family) constant. Again, an essentially unlimited number
of data sets can be constructed in this way, and from a large number of
them, the distribution of the estimated among-family variance can be
established under the null hypothesis that σ2

s = 0. This distribution is
then used to evaluate the probability of obtaining by chance an estimate
of σ2

s with a value as extreme as that found with the original data set.
Mitchell-Olds (1986) used this approach in a sib analysis of life-history
variation in the annual plant Impatiens capensis to test for significant her-
itabilities; later, the delete-one jackknife was applied to the same data
(Mitchell-Olds and Bergelson 1990). The two types of analyses led to
similar, although not identical, conclusions.

NESTED ANOVA

The linear model for the nested design where full-sib families are nested within
half-sib families is

zijk = µ+ si + dij + eijk (18.28a)

where zijk is the phenotype of the kth offspring from the family of the ith sire and
jth dam, si is the effect of the ith sire, dij is the effect of the jth dam mated to the
ith sire, and eijk is the residual deviation. As usual, under the assumption that
individuals are random members of the same population, the si, dij , and eijk are
defined to be independent random variables with expectations equal to zero. It
then follows that the total phenotypic variance is

σ2
z = σ2

s + σ2
d + σ2

e (18.28b)

where σ2
s is the variance among sires, σ2

d is the variance among dams within sires,
and σ2

e is the variance within full-sib families.
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Nested Analysis of Variance

As with one-way ANOVA, estimates of the variance components can be obtained
by the method of moments, i.e., by partitioning the total observed sum of squares
into components, writing the expected mean squares as linear functions of the
variance components, equating the observed mean squares to their expectations,
and solving for the variances. Let zij be the mean phenotype of full-sib family
ij, zi be the mean phenotype of progeny of sire i, and z be the grand mean of
the zijk. The total sum of squared deviations of the zijk from z can be partitioned
into components describing deviations of observed sire means from the grand
mean, deviations of the full-sib family means from their sire group means, and
deviations of individual measures from their full-sib family means (Table 18.3).

The variance-component estimators are given by,

Var(s) =
MSs −MSe − (k2/k1)(MSd −MSe)

k3
(18.32a)

Var(d) =
MSd −MSe

k1
(18.32b)

Var(e) = MSe (18.32c)

where k1, k2, and k3 are functions of the experimental design (equal to n, n, and
Mn under a completely balanced design, where n is the number of offspring per
full-sib family, andM is the number of dams per sire). Table 18.3 gives the general
expressions for these quantities.

By analogy with Equation 18.13, the intraclass correlations for paternal half
sibs and full sibs are

tPHS =
Cov(PHS)

Var(z)
=

Var(s)
Var(z)

(18.33a)

tFS =
Cov(FS)
Var(z)

=
Var(s) + Var(d)

Var(z)
(18.33b)

As in the half-sib design, 4tPHS provides the best estimate of h2 since it is not
inflated by dominance and/or maternal effects. If, however, Var(s) and Var(d)
are found to be approximately equal, then dominance and maternal effects can
be ruled out as significant causal sources of covariance. In that case, the average

Table 18.3 Summary of a nested analysis of variance involvingN sires,Mi dams within
the i th sire, and nij offspring within the ij th full-sib family.

Factor df Sums of Squares MS E(MS)
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Sires N − 1
N∑
i=1

Mi∑
j=1

nij(zi − z)2 SSs/dfs σ2
e + k2σ

2
d + k3σ

2
s

Dams (sires) N(M − 1)
N∑
i=1

Mi∑
j=1

nij(zij − zi)2 SSd/dfd σ2
e + k1σ

2
d

Sibs (dams) T −NM
N∑
i=1

Mi∑
j=1

nij∑
k=1

(zijk − zij)2 SSe/dfe σ2
e

Total T − 1
N∑
i=1

Mi∑
j=1

nij∑
k=1

(zijk − z)2

k1 =
1

N(M − 1)

(
T −

N∑
i=1

∑Mi

j n2
ij

ni

)

k2 =
1

N − 1

(
N∑
i=1

∑Mi

j n2
ij

ni
−
∑N
i

∑Mi

j n2
ij

T

)

k3 =
1

N − 1

(
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∑N
i n

2
i

N

)

Note: T is the total number of individuals in the experiment, M is the mean number of
dams/sire, and ni is the total number of offspring of the i th sire. MS denotes an observed
mean square, E(MS) denotes its expected value, and df denotes degrees of freedom.

of Var(s) and Var(d) provides an estimate of σ2
A/4, and when multiplied by

4/Var(z) provides an estimate of h2. Ideally, such an average should weight the
two variance-component estimates by the inverse of their sampling variances
(Grossman and Norton 1981).

Hypothesis Testing

Under the assumption of normality and balanced design, standardF ratios can be
used to test for significant variation associated with sires and dams. In each case,
the numerator of the F ratio is the observed mean square at the level containing
the factor of interest, and the denominator is the observed mean square at the
next lower level (which incorporates all factors except the one of interest). The
test statistic for evaluating whether there is significant variance associated with
sires is the F ratio MSs/MSd, since under the null hypothesis of σ2

s = 0, the
expected value of the numerator is equal to that of the denominator (see Table
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18.3). Similarly, the test statistic for significant dam effects is the ratio MSd/MSe,
as the expected value of the numerator is again equal to that of the denominator
under the null hypothesis of σ2

d = 0 (Table 18.3).
With unbalanced designs, hypothesis testing with F ratios becomes more

difficult under the nested model. If the data are normally distributed, the logic
developed above tells us that

FN(M−1),(T−NM) =
MSd
MSe

(18.34a)

can still be employed as a test for significant dam effects, since the numerator and
denominator have identical expectations under the null hypothesis of σ2

d = 0.
However, since the coefficients (k1 and k2) associated with σ2

d in the mean squares
associated with dams and sires are unequal in an unbalanced design (Table 18.3),
the numerator and denominator of MSs/MSd no longer have equal expectations
under the null hypothesis σ2

s = 0. Nevertheless, a linear function of the mean
squares can be constructed for the numerator that does fulfill this requirement,
leading to the test statistic

Fr,N(M−1) =
k1MSs + (k2 − k1)MSe

k2MSd
(18.34b)

The main problem with this test statistic is the unknown degrees of free-
dom for the numerator, r. A general solution to this problem was developed by
Satterthwaite (1946). Consider a linear function of m observed mean squares

Q = c1MS1 + c2MS2 + · · ·+ cmMSm (18.35a)

Satterthwaite showed that rQ/E(Q) is approximatelyχ2-distributed with degrees
of freedom equal to

r =
Q2

m∑
i=1

(ciMSi)2

dfi

(18.35b)

Thus, for example, for the numerator of Equation 18.34b, the degrees of freedom
is estimated by

r =
Q2

(csMSs)2

N − 1
+

(ceMSe)2

T −NM

(18.35c)

where cs = k1/k2, ce = (k2 − k1)/k2, and Q = csMSs + ceMSe. This estimate of r
is really only a first-order approximation, as Satterthwaite’s derivation assumes
that the observed mean squares in the function Q are independently distributed,
a condition that is not strictly true with an unbalanced design.
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Recalling that the variance associated with sires is an estimate of σ2
A/4, the F

ratio defined by Equation 18.34b with the numerator degrees of freedom defined
by Equation 18.35c provides a test for significant additive genetic variance. Pro-
vided that both the sire and dam components of variance are significant, the next
question is whether the latter is significantly greater than the former. From Equa-
tion 18.31b, it can be seen that a test of the null hypothesis σ2

s = σ2
d is equivalent to

a test for no significant dominance and/or common-environmental effects. This
test also requires the construction of a linear function of mean squares whose
expectation is equal to the expectation of MSd under the null hypothesis. The
appropriate F ratio is

Fr,N(M−1) =
csMSs + ceMSe

MSd
(18.36)

where cs = k1/(k2 +k3) and ce = (k2 +k3−k1)/(k2 +k3). The numerator degrees
of freedom is approximated by Equation 18.35c, with Q = csMSs + ceMSe.

Resampling procedures provide an alternative to F ratios for testing for the
significance of variance components under the nested design. The jackknife, with
deletion around sire families, has been shown to provide a relatively robust ap-
proach for testing for significance of the sire component of variance (Arvesen
and Schmitz 1970, Knapp and Bridges 1988, Mitchell-Olds and Bergelson 1990).
Presumably, the jackknife or the bootstrap can also be used to test the hypothesis
that σ2

s = σ2
d, by referring to the sampling distribution of Var(d)− Var(s).

Sampling Error

Under a balanced design (with N sires, M dams per sire, and n progeny per
dam), the large-sample variance for tPHS and tFS can be obtained from formulae
provided by Osborne and Paterson (1952),

Var(tPHS) ' 2{(1− tPHS)(φ+MntPHS)}2
M2(N − 1)n2

+
2{[1 + (M − 1)tPHS]φ}2

M2N(M − 1)n2
+

2(n− 1)[tPHS(1− tFS)]2

NMn2
(18.37a)

Var(tFS) ' 2{t′[φ+MntPHS]}2
M2(N − 1)n2

+
2{[M − (M − 1)t′]φ}2
M2N(M − 1)n2

+
2{(1− tFS)[1 + (n− 1)t′]}2

MN(n− 1)n2
(18.37b)

where t′ = tFS − tPHS, and φ = 1− tFS + nt′. The standard error of h2 = 4tPHS is
4
√

Var(tPHS).
A more general procedure for estimating Var(tPHS), which allows for unbal-

anced designs, is to use the large-sample estimator for the variance of a ratio given
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in Appendix 1. Such a computation requires estimates of the sampling variances
and covariances of Var(s), Var(d), and Var(e), expressions for which are given in
Hammond and Nicholas (1972) and Searle et al. (1992). If one is willing to assume
normality and to ignore the sampling variance of Var(z) and the sampling co-
variance between Var(z),Var(s), and Var(d), some fairly simple and conservative
(upwardly biased) estimates are possible,

Var(tPHS) ' Var(MSs) + (k2/k
2
1)Var(MSd) + [1− (k2/k1)]2Var(MSe)

[k3Var(z)]2
(18.38a)

Var(tFS) ' Var(MSs) + k2
3[φ2Var(MSd) + (1 + φ)2Var(MSe)]

[k3Var(z)]2
(18.38b)

with

Var(MSx) =
2(MSx)2

dfx + 2
, φ =

(k2/k3)− 1
k1

and k1, k2, and k3 as defined in Table 18.3 (Dickerson 1969).
Graybill et al. (1956), Broemeling (1969), and Graybill and Wang (1979) pro-

vide expressions for the confidence limits of tPHS and tFS for the special case of
a balanced design with normally distributed effects. These expressions are not
necessarily very robust to violations of the assumptions of balance and normality.

Optimal Design

In the now familiar fashion, the optimal design for a nested analysis of variance
is defined to be the combination of N, M, and n, subject to some constraint, that
minimizes the sampling variance of the intraclass correlation of interest. Since
4tPHS provides the most reliable estimate of h2, it will generally be most desirable
to minimize Var(tPHS) as defined in Equation 18.37a, but the solution is quite
complicated, as it depends upon both tPHS and tFS. Some feeling for the best
design and the sensitivity of Var(tPHS) to nonoptimal designs can be achieved
by substituting different values for the design parameters (N,M,n) and for the
possible values of tPHS and tFS.

Robertson (1959a) has shown that when dominance and common environ-
mental effects are absent, the preferred design for estimating tPHS is to use full-sib
families of only single individuals, i.e., to rely on the pure half-sib analysis out-
lined in the previous section. If on the other hand, one desires approximately
equal precision in the estimates of tPHS and tFS, it is advisable to allocate at least
3 to 4 females/male and to maintain full-sib families of ∼ 1/(2tPHS) (but no less
than 2) progeny/female.

Bridges and Knapp (1987) performed simulation studies to evaluate the prob-
ability of obtaining negative estimates for σ2

A and σ2
D under the nested design.

Assuming no epistatic or common environmental effects, with designs of mod-
erate size, the probability of obtaining a negative estimate of the additive genetic
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variance is usually on the order of only a few percent. However, the probability
of obtaining a negative estimate of σ2

D is typically about an order of magnitude
higher. Thus, although the nested design is often relied on as a means for detecting
dominance, it is not particularly powerful in this regard.

Example 3. To evaluate the causal sources of variation in developmental rate
in the flour beetle Tribolium castaneum, Dawson (1965) estimated the covariances
between several types of relatives. Here we focus on the results from a nested
design in which 30 males were each mated to three different females, with the
goal of assaying 10 progeny per female. Some mortality among the dams and the
offspring induced slight inequalities in family sizes, resulting in k1 = k2 = 9.1
and k3 = 25.7. Following the layout in Table 18.3, the degrees of freedom and
observed and expected mean squares for the nested ANOVA are:

Factor df Mean squares E(MS)

Sires 29 5.949 σ2
e + 9.1σ2

d + 25.7σ2
s

Dams within sires 56 3.925 σ2
e + 9.1σ2

d

Sibs within dams 695 1.314 σ2
e

From Equations 18.32a–c, the estimated variance components for sires, dams
within sires, and sibs within dams are Var(s) = 0.079, Var(d) = 0.288, and
Var(e) = 1.314. From Equations 18.33a,b, the intraclass correlations for paternal
half sibs and full sibs are tPHS = 0.047 and tFS = 0.218. If all of the resem-
blance between relatives were due to additive genetic variance, we would expect
tFS ' 2tPHS. The fact that tFS is nearly five times tPHS immediately suggests
that dominance and/or common maternal effects may be contributing to the co-
variance between full sibs.

How much confidence can we have in these intraclass correlations? To evaluate
the significance of the sire component of variance, we computeF = 5.949/3.925
= 1.52.Using an F -distribution table, for 29 and 56 degrees of freedom, we find
that there is a 5% chance of observing an F as large as 1.68 by chance. Thus, the
hypothesis that σ2

s = 0 cannot be rejected at this level. On the other hand, for
the dam component of variance, F = 3.925/1.314 = 2.99, which is well above
the critical 0.1% value for 56 and 695 degrees of freedom (1.70), implying that a
significant fraction of the total variation in developmental rate is attributable to
dams.

Approximate standard errors can be obtained for the two intraclass correlations
using Equations 18.38a,b. After the appropriate substitutions, we find Var(tPHS)
' 0.0098 and Var(tFS) ' 0.0127. Taking square roots, we arrive at the standard
errors SE(tPHS) ' 0.099 and SE(tFS) ' 0.113. As noted in the text, Equa-
tions 18.38a,b generally yield conservative (upwardly biased) estimates of the
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standard errors. When the more precise Equations 18.37a,b are used, we obtain
SE(tPHS) ' 0.038 and SE(tFS) ' 0.037. When compared with the estimates
tPHS and tFS, these results are consistent with our conclusion that the dam compo-
nent of variance is much more significant than the sire component. The heritability
of developmental rate is estimated as four times tPHS, and its standard error is
four times SE(tPHS). Thus, Dawson’s results yield the estimate h2 ' 0.19, but
with a standard error of 0.15.


