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Lecture 13 examined selection response with multiple traits. Here we consider measuring selection
on multivariate phenotypes in some detail, as this is a very popular exercise in modern evolutionary
biology. Moving to multiple traits poses no changes in measuring fitnesses of individuals (Lecture
12), but does require us to provide the multivariate versions of the univariate differentials S and C
and gradients β and γ. As might be expected, these are the matrix extensions of their univariate
counterparts (Lecture 12).

SELECTION ON MULTIVARIATE PHENOTYPES: DIFFERENTIALS AND GRADIENTS

Lecture 12 described a variety of measures of univariate selection, with an emphasis on approxi-
mating the individual fitness function. In extending these methods to multiple characters, our main
concern is the effect of phenotypic correlations. Our development is based on the multiple regres-
sion approach of Lande and Arnold (1983). Similar approaches based on path analysis have also
been suggested (Maddox and Antonovics 1983, Mitchell-Olds 1987, Crespi and Bookstein 1988).
These offer a complementary method of analysis as is discussed below.

The phenotype of an individual is now a vector z = (z1, z2, · · · , zn)T of n character values.
Denote the mean vector and covariance matrix of z before selection by µ and P, and by µ∗ and
P∗ after selection (but before reproduction). To avoid additional complications, we examine only a
single episode of selection.

Changes in the Mean Vector: The Directional Selection Differential, S

The multivariate extension of the directional selection differential S is the vector

S = µ∗ − µ

whose ith element is Si, the differential for character zi. As with the univariate case, the Robertson-
Price identity (Equation 12.8) holds, so that the elements of S represent the covariance between
character value and relative fitness, Si = σ(zi, w). This immediately implies (Equation 12.5) that
the opportunity for selection I (the population variance in relative fitness) bounds the range of Si,

|Si|
σzi
≤
√
I (14.1)

As is illustrated in Figure 14.1, S confounds the direct effects of selection on a character with
the indirect effects due to selection on phenotypically correlated characters. Suppose character 1
is under direct selection to increase in value while character 2 is not directly selected. As Figure
14.1 shows, if z1 and z2 are uncorrelated, there is no within-generation change in µ2 (the mean
of z2). However, if z1 and z2 are positively correlated, individuals with large values of z1 also
tend to have large values of z2, resulting in a within-generation increase in µ2. Conversely, if z1

and z2 are negatively correlated, selection to increase z1 results in a within-generation decrease
in µ2. Hence, a character not under selection can still experience a within-generation change in its
phenotypic distribution due to selection on a phenotypically correlated character (indirect selection).
Fortunately, the directional selection gradient β = P−1S accounts for indirect selection due to
phenotypic correlations, providing a less biased picture of the nature of directional selection acting
on z.
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Figure 14.1. Selection on a character can result in a within-generation change in the mean of other
phenotypically correlated characters not themselves under direct selection. Assume that character 1
is under simple truncation selection so that only individuals with z1 > T reproduce. Left: When z1

and z2 are uncorrelated, S2 = 0. Center: When z1 and z2 are negatively correlated, S2 < 0. Right:
When z1 and z2 are positively correlated, S2 > 0.

The Directional Selection Gradient β

As we will discuss shortly, the directional selection gradient β removes the effects of phenotypic
correlations because it is a vector of partial regression coefficients. From multiple regression theory
(Lecture 2), the vector of partial regression coefficients for predicting the value of y given a vector
of observations z is P−1 σ(z, y), where P is the covariance matrix of z, and σ(z, y) is the vector of
covariances between the elements of z and the variable y. Since S = σ(z, w), it immediately follows
that

P−1 σ(z, w) = P−1 S = β (14.2)

is the vector of partial regression for the best linear regression of relative fitness w on phenotypic
value z, viz.,

w(z) = a+
n∑
j=1

βjzj = a+ βT z (14.3a)

Our main interest in this equation is the vector β of partial regression coefficients – the slopes for the
individual zi. There are several equivalent ways writing this expression and these various forms
interchangeably appear in the literature. First, noting that the regression passes through the mean
of w and the mean of z, namely (1,µ),

w(z) = 1 +
n∑
j=1

βj(zj − µj) = 1 + βT (z− µ) (14.3b)

We can also translate the z values before the analysis to set µ = 0, in which case

w(z) = 1 +
n∑
j=1

βjzj = 1 + βT z (14.3c)

Since βj is a partial regression coefficient, it represents the change generated in relative fitness
by changing zj while holding all other character values in z constant — a one unit increase in zj
(holding all other characters constant) increases the expected relative fitness by βj . Provided we
can exclude the possibility of unmeasured characters influencing fitness that are phenotypically
correlated with z, a character under no directional selection has βj = 0 — when all other characters
are held constant, the best linear regression predicts no change in expected fitness as we change the
value of zj . Thus, β accounts for the effects of phenotypic correlations only among the measured
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characters. Unmeasured traits under selection that are phenotypically correlated with those we
measure and/or unmeasured environmental factors that influence both fitness and the values of
our measured traits result in β being biased measure of the amount of directional selection acting
on each measured character.

Since S = Pβ, we have

Si =
n∑
j=1

βj Pij = βi Pii +
n∑
j 6=i

βj Pij (14.4)

illustrating that the directional selection differential confounds direct selection on that character
with indirect contributions due to selection on phenotypically correlated characters. Equation 14.4
implies that if two characters are phenotypically uncorrelated (Pij = 0), selection on one has no
within-generation effect on the phenotypic mean of the other. However, recall from Lecture 13 that
if i and j are genetically correlated (non-zero additive genetic covariance), then selection on one trait
results in a correlated response in the other, even if there is no phenotypic within-generation change in
the mean.

Directional Gradients, Fitness Surface Geometry and Selection Response

When phenotypes are multivariate normal, β provides a convenient descriptor of the geometry
of both the individual and mean population fitness surfaces. Recall from vector calculus that the
gradient vector ∇xf(x) is defined at

∇xf(x) =


∂f/∂x1

∂f/∂x2

...
∂f/∂xn


Further recall that the gradient vector of a function points to the direction of change in the variables
that will give the greatest (local) increase in the function. In Lecture 15 we will show that

β = ∇µ[ lnW (µ) ] = W
−1 · ∇µ[W (µ) ] (14.5a)

which holds provided fitnesses are frequency-independent (Lande 1976, 1979). In this case β is the
gradient of mean population fitness with respect to the mean vector µ. Since β gives the direction
of steepest increase in the mean population fitness surface, mean population fitness increases most
rapidly when R = β, i.e., when the between-generation change in means is in the same direction
as the selection gradient. If fitnesses are frequency-dependent (individual fitnesses change as the
population mean changes), then for z ∼MVN,

β = ∇µ[ lnW (µ) ] +
∫
∇µ[w(z) ]φ(z) dz (14.5b)

where the second term accounts for the effects of frequency-dependence and φ is the MVN density
function (Lande 1976). Here β does not point in the direction of steepest increase in W unless the
second integral is zero.

If we instead consider the individual fitness surfacew(z), we can alternatively express β as the
gradient of individual fitnesses averaged over the population distribution of phenotypes,

β =
∫
∇z[w(z) ]φ(z) dz (14.6)
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which holds provided z ∼MVN (Lande and Arnold 1983). To see this, using integration by parts
gives ∫ b

a
∇z[w(z) ]φ(z) dz = w(z)φ(z)

∣∣∣∣b
a
−
∫ b

a
∇z[φ(z) ]w(z) dz

Taking the limit as a→ −∞ and b→∞, the first term on the right-hand side vanishes as φ(z)→ 0
when z→ ±∞ (as the phenotypic distribution is assumed to be bounded). If z ∼MVN(µ,P), then
we will show in Lecture 15 that

∇z[φ(z) ] = φ(z) P−1 (z− µ)

Hence ∫
∇z[w(z) ]φ(z) dz = −

∫
∇z[φ(z) ]w(z) dz =

∫
w(z)φ(z) P−1 (z− µ) dz

= P−1

(∫
zw(z)φ(z) dz− µ

∫
w(z)φ(z) dz

)
= P−1 (µ∗ − µ) = P−1S = β

Note from this derivation that Equation 14.6 holds regardless of whether fitness is frequency de-
pendent or frequency independent.

Finally, while our focus has been on the role β plays in measuring phenotypic selection, it also
plays an important role in the response to selection. If we can assume the breeders’ equation holds,
β is the only measure of phenotypic selection required to predict the response in mean as R = Gβ.
Cheverud (1984) makes the important point that although it is often assumed a set of phenotypically
correlated traits responses to selection in a coordinated fashion, this is not necessarily the case. Since
β removes the effects of phenotypic correlations, phenotypic characters will only respond as a group
if they are all under direct selection or if they are genetically correlated, a point we discussed in
detail in Lecture 13.

Changes in the Covariance Matrix: The Quadratic Selection Differential C

Motivated by the univariate case whereinC = σ[w, (z−µ)(z−µ) ], define the multivariate quadratic
selection differential to be a square (n× n) matrix C whose elements are the covariances between
all pairs of quadratic deviations (zi − µzi)(zj − µzj ) and relative fitness w, viz.,

Cij = σ[w, (zi − µzi)(zj − µzj ) ] (14.7a)

As is derived below (Example 14.1), Lande and Arnold (1983) showed that

C = σ[w, (z− µ)(z− µ)T ] = P∗ −P + SST (14.7b)

If no quadratic selection is acting, the covariance between each quadratic deviation and fitness is
zero and C = 0. In this case Equation 14.7b gives

P ∗ij − Pij = −SiSj (14.8)

demonstrating that the SiSj term corrects Cij for the change in covariance caused by directional
selection alone.

Example 14.1. We wish to show P∗−P = σ[w, (z−µ)(z−µ)T ]−SST , which implies Equation
14.7b. From the definition of the variance-covariance matrix,

P = E
[

(z− µ) (z− µ)T
]

=
∫

(z− µ)(z− µ)T p(z) dz

P∗ = E
[

(z∗ − µ∗) (z∗ − µ∗)T
]

=
∫

(z− µ∗)(z− µ∗)T p∗(z) dz
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where p∗(z) = w(z) p(z) is the distribution of z after selection (but before reproduction). Noting that
µ∗ = µ+ S,

(z− µ∗)(z− µ∗)T = (z− µ− S)(z− µ− S)T

= (z− µ− S)( (z− µ)T − ST )

= (z− µ) (z− µ)T − (z− µ) ST − S (z− µ)T + S ST

Since
∫

z p∗(z) dz = µ∗ and
∫
p∗(z) dz = 1, we have that

∫
S ST p∗(z) dz = S ST ,∫

(z− µ) ST p∗(z) dz = (µ∗ − µ)ST = SST , and∫
S(z− µ)T p∗(z) dz = S(µ∗)T − SµT = S(µ∗ − µ)T = SST

Combining these results,

P∗ =
∫

(z− µ) (z− µ)T w(z) p(z) dz− SST − SST + SST

= E
[
w(z) · (z− µ) (z− µ)T

]
− SST

Since E[w(z) ] = 1, we can write P = E[w(z) ] ·P. Using the definition of P then gives

P∗ −P = E
[
w(z) · (z− µ) (z− µ)T

]
− SST − E[w(z) ] · E

[
(z− µ) (z− µ)T

]
= σ

[
w(z), (z− µ)(z− µ)T

]
− SST

with the last equality following from σ(x, y) = E(x · y)− E(x)E(y).

As was the case for S, the fact that Cij is a covariance immediately allows us to bound its range
using the opportunity for selection. Since σ2(x, y) ≤ σ2(x)σ2(y),

C2
ij ≤ I σ2[ (zi − µzi)(zj − µzj ) ] (14.9a)

When zi and zj are bivariate normal, then (Kendall and Stuart 1983),

σ2[ (zi − µzi)(zj − µzj ) ] = P 2
ij + Pii Pjj = P 2

ij(1 + ρ−2
ij ) (14.9b)

where ρij is the phenotypic covariance between zi and zj . Hence, for Gaussian-distributed pheno-
types, ∣∣∣∣CijPij

∣∣∣∣ ≤ √I√1 + ρ−2
ij (14.10)

which is a variant of the original bound based on I suggested by Arnold (1986).

The Quadratic Selection Gradient, γ

Like S, C confounds the effects of direct selection with selection on phenotypically correlated
characters. However, as was true for S, these indirect effects can also be removed by a regression.
Consider the best quadratic regression of relative fitness as a function of phenotypic value,

w(z) = a+
n∑
j=1

bj zj +
1
2

n∑
j=1

n∑
k=1

γjk (zj − µj)(zk − µk) (14.11a)

= a+ bT z +
1
2

(z− µ)T γ (z− µ) (14.11b)
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Where the ij-th element of the matrix γ is γij . Again, we can expression this in a simpler form by
translating z so all traits have mean zero, in which case

w(z) = 1 + bT z +
1
2
zTγz (14.11c)

Using multiple regression theory (Lande and Arnold 1983), the matrix γ of quadratic partial
regression coefficients is given by

γ = P−1 σ[w, (z− µ)(z− µ)T ] P−1 = P−1 C P−1 (14.12)

This is the quadratic selection gradient and (like β) removes the effects of phenotypic correlations,
providing a more accurate picture of how selection is operating on the multivariate phenotype.

The vector of linear coefficients b for the quadratic regression need not equal the vector of
partial regression coefficients β obtained by assuming only a linear regression. Equation 12.21
shows (for the univariate case) that if the phenotypic distribution is skewed, b is a function of
both S and C, while β is only a function of S. When phenotypes are multivariate normal, skew is
absent and Lande and Arnold (1983) show that b = β, recovering the multivariate version of the
Pearson-Lande-Arnold regression,

w(z) = 1 + βT z +
1
2
zT γ z (14.13)

Since the γij are partial regression coefficients, they predict the change in expected fitness
caused by changing the associated quadratic deviation while holding all other variables constant.
Increasing (zj − µj)(zk − µk) by one unit in such a way as to hold all other variables and pairwise
combinations of characters constant, relative fitness is expected to increase by γjk for j 6= k and by
γjj/2 if j = k (the difference arises because γjk = γkj , so that γjk appears twice in the regression
unless j = k). The coefficients ofγ thus describe the nature of selection on quadratic deviations from
the mean for both single characters and pairwise combinations of characters. γii < 0 implies fitness
is expected to decrease as zi moves away (in either direction) from its mean. As was discussed
in Lecture 11, this is a necessary, but not sufficient, condition for stabilizing selection on character
i. As a result, the term convex selection or convex fitness surface is often used with stabilizing
selection restricted for when the fitness surface is both convex and the population distribution is
under a peak in the fitness surface. Similarly, γii > 0 implies fitness is expected to increase as i
moves away from its mean (concave selection), again a necessary, but not sufficient conditional for
disruptive selection. Turning to combinations of characters, non-zero values of γjk (j 6= k) suggests
the presence of correlation selection — γjk > 0 suggests selection for a positive correlation between
characters j and k, while γjk < 0 suggests selection for a negative correlation.

Example 14.2. Brodie (1992) examined one-year survivorship in the garter snake Thamnophis ordi-
noides in a population in Oregon. Over a three year period, 646 snakes were marked, 101 of which
were eventually recaptured. Four morphological and behavior characters were measured — overall
stripedness of the body color pattern (stripes), sprint speed, distance moved until an antipredator dis-
play performed, and number of reversals of direction during flight from predators (reversals). None
of the βi or γii were significant. However, there was a significant quadratic association between strip-
ing pattern and number of reversals, with γij = −0.268 ± 0.097. As is shown in Figure 14.2, the
best-fitting quadratic regression of individual fitness has a saddle point. Brodie suggests a biological
explanation for selection favoring a negative correlation between these two characters. The presence
of body stripes makes it difficult for predators to judge the speed of the snake, so frequent reversals
would be disadvantageous. Conversely, when the body pattern is banded, blotched or spotted, detec-
tion of movement by visual predators is enhanced. In such individuals, frequent reversals can disrupt
a visual search.
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Figure 14.2. The fitness surface (measured as one-year survivorship) for z1 (number of reversals)
and z2 (body stripe index) in the garter snake Thamnophis ordinoides. There is a significant correla-
tional gradient between these two characters, with all other directional and quadratic gradients being
nonsignificant. Left: Plotting lines of equal fitness, with peaks represented by a + and valleys by a
− shows the best-fitting quadratic fitness surface has a saddle point. Right: Three-dimensional rep-
resentation of the best-fitting quadratic fitness surface. The eigenvalues of γ are 0.256 and −0.290,
indicating roughly equal amounts of convex selection along one canonical axis (given by the index
0.77 · z1 − 0.64 · z2) and concave selection along the other (0.64 · z1 + 0.77 · z2). Data from Brodie
(1992).

Although it seems straightforward to infer the overall nature of selection by looking at these
various pairwise combinations, this can give a very misleading picture about the geometry of the
fitness surface. We discuss this problem and its solution shortly.

Finally, we can see the effects of phenotypic correlations in the quadratic selection differential.
Solving for C by post- and pre-multiplying γ by P gives C = PγP, or

Cij =
n∑
k=1

n∑
`=1

γk` Pik P`j (14.14)

showing that within-generation changes in phenotypic covariance, as measured by C, are influenced
by quadratic selection on phenotypically-correlated characters.

Quadratic Gradients, Fitness Surface Geometry and Selection Response

When phenotypes are multivariate-normally distributed, γ provides a measure of the average cur-
vature of the individual fitness surface, as

γ =
∫

Hz[W (z) ]φ(z) dz (14.15a)

where Hz[ f ] denotes the Hessian matrix with respect to z and is a multivariate measure of the
quadratic curvature of a function (the ij-th element of Hz[ f ] is ∂2f/∂zi ∂zj). This result, due to
Lande and Arnold (1983), can be obtained by an integration by parts argument similar to that used to
obtain Equation 14.6, and holds for both frequency-dependent and frequency-independent fitnesses.
When fitnesses are frequency-independent (again provided z ∼MVN), γ provides a description of
the curvature of the log mean population fitness surface, with

Hµ[ lnW (µ) ] = γ− ββT (14.15b)

In particular,
∂ lnW (µ)
∂µi ∂µj

= γij − βiβj (14.15c)
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This result is due to Lande (cited in Phillips and Arnold 1989) and points out that there are
two sources for curvature in the mean fitness surface: −ββT from directional selection and γ from
quadratic selection.

Finally, when the breeders’ equation holds, γ and β are sufficient to describe phenotypic selec-
tion on the additive-genetic covariance matrix. From Example 14.3 (below), the difference between
the additive genetic covariance G∗ after selection (but before reproduction) and the covariance
matrix G before selection is

G∗ −G = GP−1 (P∗ −P) P−1G (14.16a)

We can express this in terms of gradients as follows:

G∗ −G = GP−1 (P∗ −P) P−1G

= GP−1(C− SST )P−1G

= G(P−1CP−1 − (P−1S)(P−1S)T )G
= G(γ− ββT )G (14.16b)

Hence, the within-generation change in G has a component from directional selection (β) and a
second due from quadratic selection (γ),

G∗ −G = −GββTG + GγG

= −R RT + GγG (14.16c)

In terms of the change in covariance for two particular characters, this can be factored as

G∗ij −Gij = −
(

n∑
k=1

βk Gik

)(
n∑
k=1

βk Gjk

)
+

n∑
k=1

n∑
`=1

γk`GikG`j

= −Ri ·Rj +
n∑
k=1

n∑
`=1

γk`GikG`j (14.16d)

Thus the within-generation change in the additive genetic variance of character i is given by

G∗ii −Gii = − (Ri)
2 +

n∑
k=1

n∑
`=1

γk`GikGi` (14.16e)

Example 14.3. This example is a technical derivation and can be skipped by the casual reader. What is
G∗, the variance-covariance matrix of breeding values after selection (but before recombination and
random mating) under the assumptions leading to the multivariate breeders’ equation? From the
definition of a covariance matrix,

G∗ = E
(

(g− µ∗)(g− µ∗)T
)

whereµ∗ is the vector of phenotypic means following selection. Using, respectively, Equation 13.14a,
the matrix identity (ABc)T = cTBTAT (recalling that G and P−1 are symmetric), and expanding
gives

G∗ = E

( [
GP−1(z− µ∗) + e

] [
GP−1(z− µ∗) + e

]T )
= E

( [
GP−1(z− µ∗) + e

] [
(z− µ∗)TP−1G + eT

])
= E

(
GP−1(z− µ∗)(z− µ∗)TP−1G

)
+ E

(
GP−1(z− µ∗)eT

)
+ E

(
e(z− µ∗)TP−1G

)
+ E

(
e eT

)
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Using Equation 2.16a and the independence of e and z, this reduces to

G∗ = GP−1E
(

(z− µ∗)(z− µ∗)T
)
P−1G + GP−1E

(
z− µ∗

)
E
(
eT
)

+ E
(
e
)
E
(

(z− µ∗)T
)
P−1G + E

(
e eT

)
This can be further simplified by noting thatE( e ) = 0 and thatE[ (z−µ∗)(z−µ∗)T ] = P∗ is the
phenotypic variance-covariance matrix after selection. Finally, E(e eT ) = Ve, giving

G∗ = GP−1P∗P−1G + 0 + 0 + (G−GP−1G)

Writing GP−1G = GP−1PP−1G and factoring gives the within-generation change in the variance-
covariance matrix of breeding values as

G∗ −G = GP−1P∗P−1G−GP−1PP−1G
= GP−1(P∗ −P)P−1G

as obtained by Lande and Arnold (1983).

Summary

Table 14.1 (next page) summarizes the main features of differentials and gradients.

MULTIDIMENSIONAL QUADRATIC FITNESS REGRESSIONS

As noted in Lecture 11, in many cases approximating the individual fitness function by a quadratic
may give a very distorted view of the true fitness surface (e.g., when multiple fitness peaks are
present). With this caveat in mind, quadratic fitness surfaces are still quite useful. One advantage
is that a quadratic is the simplest surface allowing for curvature. Further, when phenotypes are
gaussian distributed, the coefficients in the quadratic regression also appear as the coefficients of
equations for predicting evolutionary change (Table 14.1). We briefly review some statistical issues
of fitting such regressions before examining the geometry of multivariate quadratic regressions,
which can get rather involved.

Estimation, Hypothesis Testing and Confidence Intervals

Even if we can assume that a best-fit quadratic is a reasonable approximation of the individual
fitness surface, we are still faced with a number of statistical problems. Unless we test for, and
confirm, multivariate normality, β and γmust be estimated from separate regressions — β from the
best linear regression, γ from the best quadratic regression. In either case, there are a large number
of parameters to estimate — γ has n(n+ 1)/2 terms and β has n terms, for a total n(n+ 3)/2. With
5, 10, and 25 characters, this corresponds to 20, 65 and 350 parameters. The number of observations
should greatly exceed n(n+ 3)/2 in order estimate these parameters with any precision.

A second problem is multicollinearity — if many of the characters being measured are highly
correlated with each other, the phenotypic covariance matrix P can be nearly singular, so that small
errors in estimating P result in large differences in P−1, which in turn gives a very large sampling
variance for the estimate of β and γ. One possibility is to use principal components to extract a
subset of the characters (measured as PCs, linear combinations of the characters) that explains most
of the phenotypic variance of P, and the perform fitness regressions using the first few PCs as the
characters (Lande and Arnold 1983). This approach also reduces the problem of the number of
parameters to estimate, but some have exprssed concern that it risks the real possibility of removing
the most important characters and PCs are often difficult to interpret biologically. While the first
PC for morphological characters generally corresponds to a general measure of size, the others are
often much more problematic. Finally, using PCs can spread the effects of selection on one character
over several PCs, further complicating interpretation.
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Table 14.1. Analogous features of directional and quadratic differentials and gradients.

Changes in Means Changes in Covariances
(Directional Selection) (Quadratic Selection)

Differentials measure the covariance between relative fitness and phenotype

Si = σ [w, zi ] Cij = σ [w, (zi − µi)(zj − µj) ]

The opportunity for selection bounds the differential

|Si|
σ(zi)

≤
√
I

∣∣∣∣CijPij

∣∣∣∣ ≤ √I√1 + ρ−2
ij

for any distribution of z provided z ∼MVN

Differentials confound direct and indirect selection

S = µ∗ − µ = Pβ C = P∗ −P + SST = PγP

Gradients measure the amount of direct selection

β = P−1S γ = P−1CP−1

Gradients describe the slope and curvature of the mean population fitness

surface, provided z ∼MVN and fitnesses are frequency-independent

βi =
∂ lnW (µ)

∂µi
γij =

∂2 lnW (µ)
∂µi ∂µj

+ βiβj

Gradients describe the average slope and average curvature of the individual fitness surface,
provided z ∼MVN

βi =
∫
∂ w(z)
∂zi

φ(z) dz γij =
∫
∂2 w(z)
∂zi ∂zj

φ(z) dz

Gradients appear as coefficients in fitness regressions

w(z) = a+ βT (z− µ) w(z) = a+ bT (z− µ) + 1
2 (z− µ)Tγ (z− µ)

β = slope of best linear fit γ = the quadratic coefficient of the best

quadratic fit. b = βwhen z ∼MVN

Gradients appear as coefficients in evolutionary equations when (z,g) ∼MVN

R = Gβ G∗ −G = G
(
γ− ββT

)
G

An alternative option is that most traits we measure are themselves artificial, and we are naive to
assume that they neatly correspond to the actual characters under selection. In such cases, a lower
dimensional subspace of P may contain most of the varation. As was the case for G (Lecture 13),
by considering such a subspace we are likely to gain a much better (and less biased) presective on
the nature of selection. We return to this point shortly.
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Geometric Aspects

In spite of their apparent simplicity, multivariate quadratic fitness regressions have a rather rich
geometric structure. Scaling characters so that they have mean zero, the general quadratic fitness
regression can be written as

w(z) = 1 +
n∑
i=1

b1zi +
1
2

n∑
i=1

n∑
j=1

γijzizj = 1 + bT z +
1
2

zT γ z (14.17)

If z ∼ MVN, then b = β (the vector of coefficients of the best linear fit). As an aside, if we regard
Equation 14.17 as a second-order Taylor series approximation of w(z), b and γ can be interpreted
as the gradient and hessian of individual fitness evaluated at the population mean (here µ = 0
by construction). The nature of curvature of Equation 14.17 is determined by the matrix γ. Even
though a quadratic is the simplest curved surface, its geometry can still be very difficult to visualize.

We start our exploration of this geometry by considering the gradient of this best-fit quadratic
fitness surface. Taking the gradient of Equation 14.17 (Lecture 15 reviews these operations on
matrices and vectors) gives

∇z[w(z) ] = b + γ z (14.18)

Thus, at the point z the direction of steepest ascent on the fitness surface (the direction in which to
move in phenotype space to maximally increase individual fitness) is given by the vector b + γ z
(when µ = 0).

Solving ∇z[w(z) ] = 0, a point zo is a candidate for a local extremum (stationary point) if
γ zo = −b. When γ is nonsingular,

zo = −γ−1b (14.19a)

is the unique stationary point of this quadratic surface. Substituting into Equation 14.17, the expected
individual fitness at this point is

wo = a+
1
2

bT z0 (14.19b)

as obtained by Phillips and Arnold (1989). Since ∂2w(z)/∂zi ∂zj = γij , the hessian of w(z) is just γ.
Thus z0 is a local minimum if γ is positive-definite (all eigenvalues are positive), a local maximum
if γ is negative-definite (all eigenvalues are negative), or a saddle point if the eigenvalues differ in
sign. If γ is singular (has at least one zero eigenvalue) then there is no unique stationary point.
An example of this is seen in Figure 14.3 where there is a ridge (rather than a single point) of
phenotypic values having the highest fitness value. The consequence of a zero eigenvalue is that
the fitness surface has no curvature along the axis defined by the associated eigenvector. If γ has
k zero eigenvalues, then the fitness surface has no curvature along k dimensions. Ignoring fitness
change along these dimensions, the remaining fitness space has only a single stationary point, which
is given by Equation 14.19a for γ and b reduced to the n− k dimensions showing curvature.

A Brief Digression: Orthonormal and Diagonalized Matrices

We need some additional matrix machinery at this point to further our discussion of the geometry
of the quadratic fitness surface, which is defined by the geometry of the matrix γ.

Matrix transformations consist of two basic operations, rotations (changes in the direction of a
vector) and scalings (changes in its length). We can partition a matrix transformation into these two
basic operations by using orthonormal matrices. Writing a square matrix U as U = (u1,u2, · · · ,un)
where each ui is an n dimensional column vector, U is orthonormal if

uiTuj =
{

1 if i = j

0 if i 6= j
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In other words, each column of U is independent from every other column and has unit length.
Matrices with this property are also referred to as unitary, or orthogonal and satisfy

UT U = U UT = I (14.20a)

Hence,
UT = U−1 (14.20b)

The coordinate transformation induced by an orthonormal matrix has a very simple geometric
interpretation in that it is a rigid rotation of the original coordinate system — all axes of the original
coordinate are simply rotated by the same angle to create the new coordinate system. To see this,
note first that orthonormal matrices preserve all inner products. Taking y1 = Ux1 and y2 = Ux2,

y1
Ty2 = x1

T (UTU)x2 = x1
Tx2

A special case of this is that orthonormal matrices do not change the length of vectors, as ||y1|| =
y1

Ty1 = x1
Tx1 = ||x1||. If θ is the angle between vectors x1 and x2, then following transformation

by an orthonormal matrix,

cos(θ |y1,y2) =
y1
Ty2√

||y1|| ||y2||
=

x1
Tx2√

||x1|| ||x2||
= cos(θ |x1,x2)

and the angle between any two vectors remains unchanged following their transformation by the
same orthonormal matrix.

A symmetric matrix A (such as a variance-covariance matrix) can be diagonalized as

A = UΛUT (14.21a)

where Λ is a diagonal matrix, and U is an orthonormal matrix (U−1 = UT ). If λi and ei are the ith
eigenvalue and its associated unit eigenvector of A, then

Λ = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · · · · λn

 (14.21b)

and
U = ( e1, e2, · · · , en ) (14.21c)

Geometrically, U describes a rigid rotation of the original coordinate system whileΛ is the amount
by which unit lengths in the original coordinate system are scaled in the transformed system. Using
Equation 14.21a, it is easy to show that

A−1 = UΛ−1UT (14.22a)

A1/2 = UΛ1/2UT (14.22b)

where the square root matrix A1/2 (which is also symmetric) satisfies A1/2A1/2 = A. Since Λ is
diagonal, the ith diagonal elements ofΛ−1 andΛ1/2 are λ−1

i and λ1/2
i respectively, implying that if

λi is an eigenvalue of A, then λ−1
i and

√
λi are eigenvalues of A−1 and A1/2. Note that Equations

14.22a/b imply that A, A−1 and A1/2 all have the same eigenvectors. Finally, using Equation 14.21a
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we see that premultiplying A by UT and then postmultiplying by U gives a diagonal matrix whose
elements are the eigenvalues of A,

UTAU = UT (UΛUT )U = (UTU)Λ(UTU)
= Λ (14.23)

As we will shortly see, the effect of using such a transformation is that (on this new scale) we remove
all cross-product terms. Put another way, on this new scale, there is no correlational selection.

Figure 14.3. Three quadratic fitness surfaces, all of which have γ11 = −2 and γ22 = −1 and
b = 0 (i.e., no directional selection). On the left are curves of equal fitness values, with peaks being
represented by a +, and valleys by a −. Axes of symmetry of the surface (the canonical or principal
axes of γ) are denoted by the thick lines. These axes correspond to the eigenvectors of γ. On the
right are three dimensional plots of individual fitness as a function of the phenotypic values of the
characters z1 and z2. Top: γ12 = 0.25. This corresponds to convex selection on both characters, with
fitness falling off more rapidly (as indicated by the shorter distance between contour lines) along the
z1 axis than along the z2 axis. Middle: γ12 =

√
2 ' 1.41, in which case γ is singular. The resulting

fitness surface shows a ridge in one direction with strong convex selection in the other. Bottom: When
γ12 = 4, the fitness surface now shows a saddle point, with convex selection along one of the canonical
axes of the fitness surface and concave selection along the other.

Canonical Transformation of γ

While the (quadratic) fitness surface curvature is completely determined by γ, it is easy to be misled
about the actual nature of the fitness surface if one simply tries to infer it by inspection of γ, as the
following example illustrates.

Example 14.4. Consider selection acting on two characters z1 and z2. Suppose we find thatγ11 = −2
and γ22 = −1, suggesting that the individual fitness surface has negative curvature in both z1 and z2.
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At first glance the picture this evokes is convex (stabilizing) selection on both z1 and z2, with the convex
selection surface perhaps rotated due to selection for correlations between z1 and z2. The first caveat
is that negative curvature, by itself, does not imply a local maximum. Even if γ is negative definite,
the equilibrium point z0 may be outside of the observed range of population values and hence not
currently applicable to the population being studied. A much more subtle point is that, as Figure 14.3
shows, the nature of the fitness surface is very dependent on the amount of selection for correlations
between z1 and z2. Figure 14.3 considers the surfaces associated with three different values of γ12

under the assumption that b = 0. Note that although in all three cases γ12 > 0 (i.e., selection favors
increased correlations between the phenotypic values of z1 and z2), the fitness surfaces are qualitatively
very different. When γ12 = 0.25 (Figure 14.3A), the individual fitness surface indeed shows convex
selection in both characters. However, when γ12 =

√
2 ' 1.42 (Figure 14.3B), the fitness surface has

a ridge in one direction, with convex selection in the other. When γ12 = 4 (Figure 14.3C), the fitness
surface is a saddle, with convex selection along one axis and concave selection along the other. An
especially troubling point is that if the standard error of γ12 is sufficiently large we would not be able
to distinguish between these very different types of selection even if we could show that γ11, γ22 < 0,
and γ12 > 0.

Thus, even for two characters, visualizing the individual fitness surface is not trivial and can
easily be downright misleading. The problem is that the cross-product terms (γij for i 6= j) make the
quadratic form difficult to interpret geometrically. Removing these terms by a change of variables
so that the axes of new variables coincide with the axes of symmetry of the quadratic form (its
canonical axes) greatly facilitates visualization of the fitness surface. From Equation 14.23, if we
consider the matrix U whose columns are the eigenvalues of γ, the transformation y = UT z (hence
z = Uy since U−1 = UT as U is orthonormal) removes all cross-product terms in the quadratic
form, as

w(z) = a+ bTU y +
1
2

(Uy)Tγ(Uy)

= a+ bTU y +
1
2

yT
(
UTγU

)
y

= a+ bTU y +
1
2

yT Λy

= a+
n∑
i=1

θi yi +
1
2

n∑
i=1

λi y
2
i (14.24)

where θi = bT ei, yi = eiT z, with λi and ei the eigenvalues and associated unit eigenvectors of
γ. Alternatively, if a stationary point z0 exists (e.g., γ is nonsingular), the change of variables
y = UT (z− z0) further removes all linear terms (Box and Draper 1987), so that

w(z) = wo +
1
2

yT Λy = wo +
1
2

n∑
i=1

λi y
2
i (14.25)

where yi = eiT (z−z0) andwo is given by Equation 14.19b. Equation 14.24 is called the A canonical
form and Equation 14.25 the B canonical form (Box and Draper 1987). Both forms represent a
rotation of the original axis to the new set of axes (the canonical axes of γ) that align them with axes
of symmetry of the quadratic surface. The B canonical form further shifts the origin to the stationary
point zo. Since the contribution to individual fitness from bT z is a hyperplane, its effect is to tilt
the fitness surface. The B canonical form “levels” this tilting, allowing us to focus entirely on the
curvature (quadratic) aspects of the fitness surface.

The orientation of the quadratic surface is determined by the eigenvectors of γwhile the eigen-
values of γ determine the nature and amount of curvature of the surface along each canonical axis.
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Along the axis defined by yi, the individual fitness function has positive curvature (is concave) if
λi > 0, has negative curvature (is convex) if λi < 0, or has no curvature (is a plane) if λi = 0.
The amount of curvature is indicated by the magnitude of λi, the larger |λi| the more extreme the
curvature.

An alternative way to think about this canonical transformation is that the original vector z
of n characters is transformed into a vector y of n independent selection indices (Simms 1990).
Directional selection on the index yi is measured by θi, while quadratic selection is measured by λi.

Returning to Figure 14.3, we see that the axes of symmetry of the quadratic surface are the
canonical axes of γ. For γ12 = 0.25, λ1 = −2.06 and λ2 = −0.94 so that the fitness surface is convex
along each canonical axis, with more extreme curvature along the y1 axis. When γ =

√
2, one

eigenvalue is zero while the other is −3, so that the surface shows no curvature along one axis (it is
a plane), but is strongly convex along the other. Finally, when γ12 = 4, the two eigenvalues differ
in sign, being −5.53 and 2.53. This generates a saddle point with the surface being concave along
one axis and convex along with other, with the convex curvature being more extreme.

If λi = 0, the fitness surface along yi has no curvature, so that the fitness surface is a ridge along
this axis. If θi = bT ei > 0 this is a rising ridge (fitness increases as yi increases), it is a falling ridge
(fitness decrease as yi increase) if θi < 0, and is flat if θi = 0. Returning to Figure 14.3B, the effect of
b is to tilt the fitness surface. Denoting values on the axis running along the ridge by y1, if θ1 > 0
the ridge rises so that fitness increases as y1 increases. Even if γ is not singular, it may be nearly so,
with some of the eigenvalues being very close to zero. In this case, the fitness surface shows little
curvature along the axes given by the eigenvectors associated with these near-zero eigenvalues.
From Equation 14.24, the fitness change along a particular axis (here given by ei) is θi yi + (λi/2) y2

i .
If |θi| >> |λi|, the curvature of the fitness surface along this axis is dominated by the effects of
linear (as opposed to quadratic) selection. Phillips and Arnold (1989) present a nice discussion
of several other issues relating to the visualization of multivariate fitness surfaces, while Box and
Draper (1987) review the statistical foundations of this approach.

Strength of Selection: γii Versus λ

We have seen that the γii can potentially give a very misleading picture of the nature of quadratic
selection, while the eigenvalues λ of γ provide an exact description of the true nature of selection.
Blows and Brooks stress this point, noting that in an analysis of 19 studies that | γii |max < |λ |max.
Thus, studies (such as Kingsolver et al. 2001) that report weak values for quadratic selection are
potentially biased, as they simply used γii values, rather than the full geometry of γ, as described
by the eigenvectors.

Example 14.5. Brooks and Endler (2001) examined four color traits in male guppies associated with
sexual selection. The estimated γmatrix was

γ =


0.016 −0.016 −0.028 0.103
−0.016 0.00003 0.066 −0.131
−0.028 0.066 −0.011 −0.099

0.103 −0.131 −0.099 0.030


Just considering the diagonal elements suggests evidence for weak concave selection (γ44 = 0.030,
γ11 = 0.016), and some evidence for very weak convex selection (γ33 = −0.011). However, the
eigenvalues of γ are 0.132, 0.006, -0.038, and -0.064. Of these only the leading eigenvalue is significant,
with the amount of concave selection being over four times that suggested from the largest γii value.

Subspaces of γ

Blows and Brooks (2003) note several advantages of focusing on estimating the λi versus the entire
matrix of γij , noting that there are n eigenvalues, and n(n − 1)/2 elements in γ. Further, given
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that many eigenvalues may be close to zero, a subspace of γ (as was the case for G in Lecture 13)
may essentially capture all of the relevant information on the quadratic fitness surface. Following
Simms (1990) and Simms and Rausher (1993), Blows and Brooks suggest that estimation and hy-
pothesis testing can occur by first obtaining the eigenvectors of γ, and then use these to generate the
transformed variables y = UT z in the quadratic regression given by Equation 14.24. The quadratic
terms correspond to eigenvalues, and confidence intervals, as well as significance, can be conducted
within the standard GLM framework (Lecture 2).

There has been considerable debate as to how γ and G interact over long-term selection. One
view is that γ comes to shape G in that the two matrices become geometrically similar. Blows et
al. (2004), building upon the results of Krzanowski (1979), suggest an approach for comparing the
major subspaces of G and γ. As was the case for G (Lecture 13), form a matrix B for a subset of k
eigenvectors on γ by forming the matrix B = (e1, · · · , ek). Forming a similar matrix A with k ≤ n/2
leading eigenvectors of the n× n matrix G, the two subspaces can be compared with the matrix

S = ATBBTA (14.26)

The eigenvalues of S describes the angles between the orthogonal axes of A and B. Specifically, the
smallest angle is given by cos−1

√
λ1, where λ1 is the leading eigenvalue of S.

UNMEASURED CHARACTERS AND OTHER BIOLOGICAL CAVEATS

Even if we are willing to assume that the best-fitting quadratic regression is a reasonable approxi-
mation of the individual fitness surface, there are still a number of important biological caveats to
keep in mind. For example, the fitness surface can change in both time and space, often over short
spatial/temporal scales (e.g., Kalisz 1986, Stewart and Schoen 1987, Scheiner 1989, Jordan 1991), so
that one estimate of the fitness surface may be quite different from another estimation at a different
time and/or location. Hence, considerable care must be used before pooling data from different
times and/or sites to improve the precision of estimates. When the data are such that selection gra-
dients can be estimated separately for different times or areas, space/time by gradient interactions
can be tested for in a straightforward fashion (e.g., Mitchell-Olds and Bergelson 1990).

Population structure can also influence fitness surface estimation in other ways. If the pop-
ulation being examined has overlapping generations, fitness data must be adjusted to reflect this
(e.g., Stratton 1992). Likewise, if members in the population differ in their amount of inbreeding,
measured characters and fitness may show a spurious correlation if both are affected by inbreeding
depression (Willis 1993).

Perhaps the most severe caveat for the regression approach of estimating w(z) is unmeasured
characters — estimates of the amount of direct selection acting on a character are biased if that
character is phenotypically correlated to unmeasured characters also under selection (Lande and
Arnold 1983, Mitchell-Olds and Shaw 1987). Adding one or more of these unmeasured characters to
the regression can change initial estimates of β and γ. Conversely, selection acting on unmeasured
characters that are phenotypically uncorrelated with those being measured has no effect on estimates
of β and γ.

The Bias due to Environmental Correlations Between Fitness and Characters

As mentioned before, environmental correlations between characters and fitness can bias estimates
of how phenotypes influence fitness (Rausher 1992). Suppose plant size and total seed set in an
annual plant are both influenced by the soil concentration of nitrogen, so that plants in nitrogen-rich
soil have both large size and large seed set, while plants in nitrogen-poor soil have small size and
small seed set. Thus, even though we may observe a positive correlation between plant size and
seed set, size itself may have no effect on seed set.

To express this effect formally, decompose the phenotype of the ith character as zi = gi +
Ei, where g represents the genetic contribution and E the environmental contribution (assume
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no genotype × environment interaction and that g and E are independent). Decomposing the
covariance between phenotypic value and fitness gives

Si = σ(w, zi) = σ(w, gi + Ei) = σ(w, gi) + σ(w,Ei)

The first term is the covariance between genotypic value and fitness, while the second (which con-
cerns us here) is the covariance between fitness and Ei the environmental deviation of zi. Provided
that Ei does not influence fitness other than through its effect on phenotype (Ei → zi → w), the
environmental covariance does not bias our view of the phenotype-fitness association. However,
if Ei also has an effect on fitness independent of its effect on the phenotype (e.g., Ei → w without
passing through zi), this augments the covariance over that from the phenotypic effects on fitness
alone. Following Rausher (1992), we use the method of path analysis (Appendix 1 of Lynch and
Walsh) to examine the amount of bias created by such environmental correlations. Figure 14.5 shows
a simplified version for two characters.

Figure 14.5. A path analysis model incorporating character-fitness correlations due to shared envi-
ronmental effects. Here relative fitnessw is determined by the phenotypic value of two characters (z1

and z2) and by three environmental values F1, F2, and U . See text for further details. After Rausher
(1992).

Without loss of generality, assume that Ei is completely determined by the environmental
factor Fi. We wish to decompose the correlation between Ei (= Fi) and w into a component due to
the direct association between phenotype and fitness and a component due to association between
environmental value and fitness independent of the phenotypic value. For two characters, the path
diagram in Figure 14.5 shows fours paths creating correlations between w and E1. The paths
F1 → E1 → z1 → w and F1 ↔ F2 → E2 → z2 → w represent the contribution of the environmental
effects through their effect on phenotypes. The first path represents the phenotypic contribution
through z1 (with path coefficient product of e1 · a1), the second the contribution from z2 due to the
correlation between environmental effects of z1 and z2 (path product = r12 · e2 · a2). The effects of
the environment on fitness independent of phenotypic value are given by the two remaining paths,
F1 → w and F1 ↔ F2 → w (with products a′1 and r12 · a′2, respectively). Summing all four paths
gives the correlation between fitness and the environmental deviation of character i as

ρ(w,Ei) = (e1 · ai + r12 · e2 · a2) + (a′1 + ri1 · a′2)

This correlation can be expressed in terms of a covariance, with σ(w,Ei) = σ(w) · σ(Ei) · ρ(w,Ei).
The first term is the correlation generated by the path through the phenotype, while the second is
the contribution to the correlation of E and w that is independent of the phenotype.
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More generally, consider n characters where rij is the correlation between Ei and Ej , ei the
path coefficient for the effect of the environmental deviation on phenotype (Ei → zi), ai the path
coefficient for the effect of phenotype on fitness (zi → w), and a′i the path coefficient for the effect of
Ei on fitness, independent of phenotypic value (Ei → w). In this case

σ(w,Ei) = σ(w) · σ(Ei) ·
([
ei ai +

∑
j 6=i

rij ej aj

]
+
[
a′i +

∑
j 6=i

rij a
′
j

])
(14.27a)

The contribution from the association of phenotypic value and fitness are given by the first set of
terms (those involving ai), while the second set (those involving a′i) represents the contribution from
associations of environmental values and fitness that are independent of phenotypic value. This set
of terms alters the phenotype-fitness covariance over that created by the phenotypic influence on
fitness alone. Subtracting off this additional covariance term, viz.,

Si − σ(w) · σE(zi) ·
(
a′i +

∑
j 6=i

rij a
′
j

)
(14.27b)

removes this bias. Since we almost never have knowledge of the a′i, the utility of Equation 14.27b
is in exploring just how important these effects might be, given various assumptions. Rausher
suggests an alternative method, based on regressing relative fitness on breeding values (rather than
phenotypic value) to remove some of these sources of bias.
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Lecture 14 Problems

1. Suppose the matrix A can be diagonalized, e.g., A = UΛUT . Let λi denote the ith eigenvalue
and ei the associated (unit) eigenvector of A.

a: What is A2? What are the eigenvalues and eigenvectors?

b: What is An, where n is an integer? What are the eigenvalues and eigenvectors?

2. Suppose you observe the following vector of phenotypic means before and after selection

µ =
(

10
20

)
, µ∗ =

(
15
8

)
with phenotypic covariance matrices before and after selection 0f

P =
(

40 20
20 100

)
, P∗ =

(
60 −10
−10 80

)

a: Compute the differentials S and C.

b: Compute the gradients β, γ.

c: What can you say about the nature of selection given a and b?

d: Compute the eigenvalues and eigenvalues of γ.

c: What can you say about the nature of selection given d?
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